Method
One often notices an emphasis on projectile points in archaeological reports, especially in studies of non-ceramic or pre-ceramic cultures. Archaeology as a historical science must integrate all the data with their own context and with events which preceded and followed. In searching for data that provide such chronological and geographical correlation (e.g. horizon styles in the sense of Willey and Phillips), there are certain basic needs. Though any cultural element could be used in correlations of this kind, some are less useful because their forms are governed by function, and others are fundamentally common and form traditions rather than horizon styles (e.g. grinding stones in some parts of the United States). A horizon marker must have some kind of stylistic development which allows variation outside of function. In cultures without pottery, as Willey and Phillips have pointed out (1958), projectile points become the most important artifacts in classification and integration because, 1) the usual economic mode of subsistence of people at this level renders a plentiful supply of such artifacts, and 2) as artistic representations they are sensitive to styles yet remain stable for adequate periods of time.
Projectile points from the LoDaisKa Site are therefore treated differently from certain other artifacts. We have illustrated all of the projectile points from pre-ceramic levels. Where these make up a type all of the artifacts of this type, even though it may extend into ceramic times, are so treated. This has been done for two reasons: 1) A major portion of the material is apparently affiliated with the Great Basin. Great Basin types are extremely variable and difficult to classify. 2) Cultures of that area have been, until recently, little investigated and cultural patterns which are not now recognized may some day be distinguished; the authors hope to create a record which will be useful even when new data come to light. For ceramic periods we forgo such detail for two reasons: 1) Pottery is present as a more sensitive marker. 2) The points found are usually uniform enough to fit into a few internally consistent categories.
We have divided projectile points into 16 categories, 8 major ones. This is primarily for convenience; secondly because some categories probably do represent cultural types; and thirdly because there are morphological ranges which may be described briefly in terms of a basic pattern. We believe with Cressman (1956) that some form existed in the minds of their makers and that a certain amount of variation is consistent within a type. It is worth noting the testimony of certain Ute informants who claimed that each tribe made its own recognizable form of point. ([See below, p. 122].)
PROJECTILE POINTS: CLASSIFICATION
Dart Points
A Blade wide, leaf-shaped, edge usually convex, stem straight or contracting, leaving pronounced shoulder, no barb, base concave. Largest 1½34? × ¹⁵/₁₆ inches, smallest ⅞ × ⁹/₁₆ inches, ([Fig. 15]).
A1 Blade wide, leaf-shaped, edge convex, stem expanding, shoulder, no barb, concave base. Two specimens, ¾ × ½, 1? × ½ inches, ([Fig. 16]).
A2 Blade triangular, straight edge, lateral barb, stem straight—slightly contracting, base deeply concave. Two specimens, ⅞ × ⅝, 1¼ × ⅞ inches, ([Fig. 16]).
B Blade leaf-shaped, edges convex, stem contracting but no shoulder, base concave. Largest 1½? × ⅝, smallest 1? × ½ inches, ([Fig. 16]).
C Blade triangular, edge straight or slightly convex, all serrated, pronouncedly expanding base as wide or wider than blade giving the impression of high corner notches, definite barb rare. Largest 1⅜ × ⅝, smallest ⅞? × ⅝ inches, ([Fig. 17]).
C1 Blade triangular, two specimens straight sides, one shouldered, all deeply serrated, two concave based, one straight. Three specimens, 1½? × ¾, 1¼ × ½, 2? × ¾ inches, ([Fig. 17]).
D Blade triangular, length three to four times the width, edge sinuous: tapering from barb to center, expanding toward point, then tapering off; stem expanding, narrower than blade, base concave or straight. Largest 2¼? × ⅞, smallest 1½ × ¾ inches, ([Fig. 18]).
E Blade triangular to leaf-shaped, edges straight or convex, shallow to deep side notches, base concave or convex, expanding or contracting. Largest 1¾? × ¾, smallest ¾ × ½ inches, ([Fig. 19]).
F Blade triangular to leaf-shaped, straight to curving edges, stem nearly as wide as blade, giving almost the appearance of side-notching, base straight to slightly convex, two specimens serrated. Largest 1⅞ × ¾, smallest 1¼ × ¾ inches, ([Fig. 20]).
G Blade triangular, edge concave, stem narrow, straight or slightly expanding and rather small, barbs projecting to level of base giving impression of double basal notch, base convex. Largest 1 × 1, smallest ⅞ × ¾ inches, ([Fig. 20]).
H Blade triangular to leaf-shaped, rounded shoulders, stem narrower than blade, base rounded, serrated. Largest 1½ × ½, smallest ⅞ × ½ inches, ([Figs. 21], [22]).
I Blade triangular, curving edges, stem narrower than blade, expanding, giving the appearance of corner notching, barbs straight, distinct, base convex. Largest 1½? × 1, smallest ¾ × ⅝ inches, ([Fig. 24]).
J Blade triangular to leaf-shaped, edges straight or slightly convex, four serrated, base expanding, corner-notched, barb pronounced, base straight or convex. Largest 1¼ × ⅞, smallest 1 × ⅝ inches, ([Fig. 24]).
K Blade triangular, sides straight or slightly convex, distinct down-curving barbs, base expanding narrower than blade, gives appearance of corner notching, base straight or slightly concave, four serrated. Largest 2 × 1, smallest ⅞ × ⁵/₁₆ inches, ([Fig. 25]).
L Two specimens of quartzite, both shown in [Fig. 25]. Blade leaf-shaped, indented bases, oblique parallel flaking, edges ground on first specimen in [Fig. 23] about one inch up from base. The second specimen also has ground edges.
Figure 15— Projectile Points,
TYPE A
TYPE A1
TYPE A2
TYPE B
Figure 16— Projectile Points, Types A1 A2 B.
TYPE C1
TYPE C2
Figure 17— Projectile Points, Types C and C1.
Figure 18— Projectile Points, Type D.
Figure 19— Projectile Points, Type E.
TYPE F
TYPE G
Figure 20— Projectile Points, Types F and G.
Figure 21— Projectile Points, Type H.
TYPE H
UNIQUE SPECIMEN
Figure 22— Projectile Points, Type H and Unique Specimen.
Figure 23— Projectile Points, Type L.
TYPE I
Figure 24— Projectile Points, Types I and J.
Figure 25— Projectile Points, Type K.
Arrow Points
aa Blade triangular, corner-notched, length 1¼ times the width, base generally convex, expanding, often just slightly narrower than blade. Largest 1⅛ × ½, smallest ⅝ × ½ inches. Points of this type are generally much lighter and thinner than those above, ([Fig. 26]).
bb Blade triangular, edges either convex or concave, specimen’s length generally twice width, almost all serrated, stems usually straight, generally ½ width or less. Largest 1 × ½, smallest ¾ × ⅝ inches. A variation of this type is less long in relation to width, but has its base located a-centrally. Careful examination reveals no differential of wear on the sides such as would be expected if they were used as knives. ([Fig. 26]).
cc These points are located morphologically between types aa and bb and do not fit into either category. Largest 1¼ × ⅜, smallest ⅝ × ½ inches, ([Fig. 27]).
Other Projectile Points
x A blunt point, large expanding base, shoulders pronounced, blade semi-ellipse shaped. One point 1 × ⅞ inches, ([Fig. 27]).
xx Four specimens, located stratigraphically in pre-pottery levels. All are flake points, rather small and light, in general fit into category H. Largest 1 × ½, smallest ¾ × ⅝ inches. These may have been children’s toys? ([Fig. 27]).
A “grainy” quartzite was used for 85 percent of the dart points. For the arrow points, the preference was not as marked, for it constituted only 55 percent of the total. The remainder were of crypto-crystalline or “flinty” quartz.
Knives ([Figs. 28-31])
There are four types of knives or bifacially worked cutting implements. All are relatively thin, less than ¼ inch thick, and flaked on both sides, often with broad shallow chipping. The first type consists of small ovoid bifaces. The largest of these measures 2¼ × 1 inch, the smallest ⅞ × ⅝ inches with most being about 1 × ¾ inches. The majority resemble [Fig. 28], being slightly asymmetrical although some are more triangular. They were probably used as small knives, possibly hafted. Since the point is usually off-center, and they are generally thick in relation to their size, they do not appear to be projectile point blanks, though a few of the finest may have been. They are usually of a crypto-crystalline quartz. One is of obsidian. There is a total of 41 pieces.
aa
bb
Figure 26— Projectile Points, Types aa and bb.
bb
xx
cc
Figure 27— Projectile Points, Types bb, xx, cc.