SODIUM NITRATE.

210. Functions of Sodium Nitrate.—Practically the only form of oxidized nitrogen which is of importance from an agronomic point of view is sodium nitrate, often known in commerce by the name Chile saltpeter. Applied to a growing crop it at once becomes dissolved at the first rainfall or by the natural moisture of the soil. It carries thus to the rootlets of plants a supply of nitrogen in the most highly available state. There is perhaps no other kind of plant food which is offered to the living vegetable in a more completely predigested state, and none to which a quicker response will be given. By reason of its high availability, however, it must be used with care. A too free use of such a stimulating food may have, in the end, an injurious effect upon the crop, and is quite certain to lead to the waste of a considerable portion of expensive material. For this reason sodium nitrate should be applied with extreme care, in small quantities at a time and only when it is needed by the growing crop. It would be useless, for instance, to apply this fertilizer in the autumn with the expectation of its benefitting the crop to a maximum degree the following spring. Again, if the application of this salt should be made just previous to a heavy rain almost or quite the whole of it would be removed beyond the reach of the absorbing organs of the plant.

When once the nitric acid has been absorbed by the living rootlet it is held with great tenacity. Living plants macerated in water give up only a trace of nitric acid, but if they be previously killed with chloroform the nitric acid they contain is easily leached out.

The molecule of sodium nitrate is decomposed in the process of the absorption of the nitric acid. The acid enters the plant organism and the soda is excreted and left to combine with the soil acids. The nascent soda may thus play a role of some importance in decomposing particles of minerals containing potash or phosphoric acid. It is probable that the decomposition of the sodium nitrate takes place in the cells of the absorbing plant organs for it is difficult to understand how it could be accomplished externally. While the soda therefore is of no importance as a direct plant food it can hardly be dismissed as of no value whatever in the process of fertilization. Many of the salts of soda as, for instance, common salt, are quite hygroscopic and serve to attract moisture from the air and thus become carriers of water between the plant and the air in seasons of drought; and sodium nitrate itself is so hygroscopic as not to be suited to the manufacture of gunpowder.

To recapitulate: The chief functions of sodium nitrate are to give to the plant a supply of oxidized nitrogen ready for absorption into its tissues and incidentally to aid, by the residual soda, in the decomposition of silt particles containing potash or phosphoric acid and in supplying to the soil salts of a more or less deliquescent nature.

211. Commercial Forms of Chile Saltpeter.—The Chile saltpeter of commerce may reach the farmer or analyst in the lumpy state in which it is shipped or as finely ground and ready for application to the fields. Unless the farmer is provided with means for grinding, the latter condition is much to be preferred. It permits of a more even distribution of the salt and thus encourages economy in its use. For the chemist also it is advantageous to have the finely ground material, which condition permits more easily a perfect sampling, a process which, with the unground salt, is attended with no little difficulty.

212. Percentage of Nitrogen in Chile Saltpeter.—Chemically pure sodium nitrate contains 16.49 per cent of nitrogen. The salt of commerce is never pure. It contains moisture, potash, magnesia, lime, sulfur, chlorin, iodin, silica and insoluble materials, and traces of other bodies. The value of the salt depends, therefore, not only on the market value of nitrogen at the time of sale, but also on its content of nitrogen. The nitrate of commerce varies greatly in its nitrogen content and is sold on a guaranty of its purity. The best grades range in nitrogen from fifteen to sixteen per cent. The content of nitrogen has long been estimated in the trade by determining the other constituents and counting the rest as nitrogen. This practice arose in former times when no convenient method was at hand for determining nitric nitrogen. The process is tiresome and unreliable because all errors of every kind are accumulated in the nitrogen content, but inasmuch as the method is still required by many merchants, the analyst should be acquainted with it, and it is therefore given further along. The usual methods for determining nitric nitrogen may be applied in all cases where samples of sodium nitrate are under examination, but some special processes are added for convenience.

213. Adulteration of Chile Saltpeter.—The analyst is the only protector of the farmer in guarding against the practice of adulteration of sodium nitrate aside from the honesty of the dealer. Even the honest dealer is compelled to protect himself against fraud, and therefore, the world over, commerce in this fertilizer is now conducted solely on the analyst’s certificate. Happily, therefore, adulteration is almost unknown because it is certain to be detected. Formerly, the saltpeter was adulterated with common salt, or low grade salts from the potash mines; but it is an extremely rare thing now to find any impurities in the salts other than those naturally present.

In every case the analyst may grow suspicious when he finds the content of nitrogen in a sample to fall below thirteen per cent. It must not be forgotten, however, that some potassium nitrate may be present in the sample, and since that salt contains only 13.87 per cent of nitrogen its presence would tend to lower the value of the fertilizer; but although the potash itself is a fertilizer of value it is not worth more than one-third as much as nitrogen. In all cases of suspected adulteration, it is advisable to make a complete analysis. The results of this work will, as a rule, lead the analyst to a correct judgment.

Figure. 15.

Halle Nitric Acid Apparatus.

214. The Halle Zinc-Iron Method.—For determining the nitrogen in Chile saltpeter the reduction method is conducted at the Halle Station as follows:[179] Ten grams of the nitrate are dissolved in one liter and fifty cubic centimeters of the solution corresponding to half a gram of the sample, taken for each determination. The apparatus employed is shown in [Fig. 15]. A mixture of five grams of zinc dust and an equal weight of iron filings is employed as the source of hydrogen. The reduction takes place in an alkaline medium secured by adding to the other materials mentioned, eighty cubic centimeters of soda-lye of 1.30 specific gravity. The respective quantities of iron and zinc may be measured instead of weighed, as exact proportions are not required. After the addition of all the materials the flask is allowed to stand for an hour at room temperature. The distillation is then commenced and continued until at least 100 cubic centimeters of distillate have been collected. The receiving flasks are ordinary erlenmeyers, each of which contains twenty cubic centimeters of set sulfuric acid, as in the usual kjeldahl process. The flasks are sealed with a few drops of water by the device [shown in the figure]. After the end of the operation the water in each one is washed back into its proper flask with freshly boiled water. During the vigorous evolution of hydrogen, at the beginning of the operation, some kind of a safety arrangement is necessary to prevent the particles of soda-lye being carried over by the bubbles of that gas. The siphon bulb shown in the figure is found effective for this purpose. In this operation better results are obtained by condensing the escaping steam, and for this reason the block tin tubes are conducted through a tank supplied with a current of cold water. The ends of the tubes should not dip below the surface of the liquid in the receivers. When the condensed liquid collects in considerable quantities in the safety tube the lamp should be extinguished under the flask, which permits the return of the liquid to the flask by means of the siphon. This should be done two or three times during the progress of the distillation to prevent a too high concentration of the soda-lye, thus endangering the flask. The excess of the acid in the receiver is determined by titration, as in the regular kjeldahl method. Blank determinations should be made, from time to time, and corrections made in harmony therewith.

215. Method of the French Sugar Chemists.—The nitrogen in Chile saltpeter is estimated by the French chemists according to the method of Schlösing, described in the first volume, page 500. In order to avoid the trouble of calculating the results from the volume of nitric oxid obtained, a determination is first made with a pure salt, sodium or potassium nitrate. The volume of gas obtained is read directly without correction and taken for direct comparison. The comparison is made as follows:

The solutions of the pure salts and of the sample to be analyzed are made of such a strength as to contain sixty-six grams of sodium nitrate, or eighty grams of potassium nitrate, in a liter. Five cubic centimeters of such a solution will yield a little less than 100 cubic centimeters of nitric oxid under usual conditions. Let the volume of gas obtained with the pure salt be v; and that with the sample be v′. The calculation is then made from the equation:

v′ = x
v100

Example: Let ninety-five cubic centimeters be the volume of gas from five cubic centimeters of the pure salt (sodium nitrate), and 91.5 cubic centimeters be the volume of gas from five cubic centimeters of the sample; then

91.5 = x , whence x = 96.31.
95100

Hence the sample analyzed contains 96.31 per cent of sodium nitrate. Since the pure sodium nitrate contains 16.47 per cent of nitrogen the sample under examination would contain

16.47 × 96.31 = 15.86 per cent.
100

It is evident that this comparative method is quite easy of application when the sample under examination has no other nitrate in it except that combined with the one base.

216. Volumetric Method of Gantter.—The process proposed by Gantter for determining the nitrogen, volumetrically, in Chile saltpeter and other nitrates is based on the following principles:[180]

(1) If a nitrate be heated in contact with sulfuric and phosphorous acids, nitrous acid will be formed.

(2) If nitrous acid be boiled with ammonium chlorid, nitrogen will be quantitatively evolved from both compounds. These processes are illustrated by the following formulas:

(a) N₂O₅ + P₂O₃ = N₂O₃ + P₂O₅.
(b) N₂O₃ + 2NH₄Cl = 2N₂ + 3H₂O + 2HCl.

Figure. 16.

Gantter’s Nitrogen Apparatus.

It is seen from the above that the nitrate will give, by this treatment, double the volume of nitrogen which it contains. In practice, the two reactions may be secured in one operation by warming the nitrate solution slowly with sulfuric and phosphorous acids and ammonium chlorid. The nitric acid, as it becomes free, gives a part of its oxygen to the phosphorous compound, and the nitrous acid, in a nascent state, is at once reduced by the ammonium chlorid. There are two sources of error which must be guarded against in the work; a portion of the nitrogen may escape reduction to the elementary state, or some of the nitrate may fail to be decomposed. These errors are easily avoided if the reaction be begun slowly, so that the evolution of gas may be gradual. The temperatures at first should, therefore, be kept as low as possible. The development of red fumes, showing the presence of undecomposed nitrogen oxids, shows that the results will be too low. It is necessary, also, to provide for the absorption of the hydrochloric acid which is formed. The reaction is very conveniently conducted in the apparatus shown in [Fig. 16]. The decomposition takes place in the flask A and the mixed gases pass into the absorption bulb C. The delivery-tube is very much expanded, as shown in the figure, so that no soda-lye can enter A during the cooling of the flask. The absorption bulb is connected with A and B by the tubes a and b as shown. The tube d connects the apparatus with the gasvolumeter.[181] The bulb B serves as a pipette for the introduction of the decomposing acid. The operation is conducted as follows: Three cubic centimeters of the nitrate solution, containing no more than 300 milligrams of substance, are placed in the flask A with half a gram each of crystallized ammonium chlorid and phosphorous acid. In the bulb B are placed seven cubic centimeters of sulfuric acid to which has been added one-third its volume of water. Two cubic centimeters of acid are allowed to flow from B into A. The apparatus is brought to a constant temperature by being immersed in a large cylinder, E, containing water at a temperature which can easily be controlled. When this constant temperature has been reached the apparatus is taken from the cooling cylinder which contains also a smaller cylinder, D, nearly filled with water and connected through f′ with the measuring apparatus M. The barometer-tube F is half filled with colored water so that the pressure may be equalized before and after the operation. The flask A is warmed very gently at first, and the nitrogen evolved is conducted into D driving an equivalent volume of water into M. The evolution of the gas must be carefully controlled and the heat at once removed if it become too rapid. The appearance of a red color shows the evolution of oxids of nitrogen rendering the analysis inexact. When the evolution of nitrogen has nearly ceased the lamp is removed and some more sulfuric acid allowed to flow into A from B, after which A is again heated, this time to the boiling-point. All vapors of hydrochloric acid produced are absorbed by the soda-lye in C. The boiling is continued a few minutes, but not long enough to darken the liquid in A. After replacing the apparatus in the cylinder E and bringing both temperature and pressure to the same point as before the beginning of the operation, the volume of nitrogen evolved is determined by measuring the water in M.

The apparatus is first set by using pure potassium or sodium nitrate. Since the temperature and pressure do not vary much within an hour or two the volume of water obtained with a sample of white saltpeter can be compared directly with that given off by the same weight of a pure potassium or sodium nitrate without correction.

Example.—Two hundred and fifty milligrams of potassium nitrate, containing 34.625 milligrams of nitrogen, displaced in a given case sixty cubic centimeters of water; therefore one cubic centimeter of water equals 0.578 milligram of nitrogen. If 289 instead of 250 milligrams be taken then the number of cubic centimeters of water displaced divided by five will give the per cent of nitrogen.

217. Method of Difference.—In the analysis of Chile saltpeter by the direct method a variation of 0.25 per cent in the content of nitrogen is allowed from the dealers’ guaranty. This would allow a total variation in the content of sodium nitrate of 1.52 per cent. Dealers and shippers have always been accustomed to estimate the quantity of sodium nitrate in a sample by difference; i. e., by estimating the constituents not sodium nitrate and subtracting the sum of the results from 100. Chile saltpeter usually contains sodium nitrate, water, insoluble ferruginous matters, sodium chlorid, sodium sulfate, magnesium chlorid, sodium iodate, calcium sulfate and sometimes small quantities of potassium nitrate.

When the total sodium nitrate is to be estimated by difference the following procedure, arranged by Crispo,[182] may be followed:

Water.—Dry ten grams of the finely powdered sample to constant weight at 150°-160°.

Chlorin.—The residue, after drying, is dissolved and the volume made up to one-fourth liter with water and the chlorin determined in one-fifth thereof and calculated as sodium chlorid.

Insoluble.—Twenty grams are treated with water until all soluble matter has disappeared, filtered on a tared gooch, and the filtrate dried to constant weight.

Sulfuric Acid.—The sulfuric acid is precipitated by barium chlorid in the slightly acid filtrate from the insoluble matter. The acidity is produced by a few drops of nitric acid. The rest of the process is conducted in the usual way.

Magnesia.—This is precipitated by ammonium sodium phosphate, filtered, ignited, and weighed as pyrophosphate. The magnesium is then calculated as chlorid. Magnesia is rarely found in excess of one-fourth per cent. When this amount is not exceeded the estimation of it may be neglected without any great error. As has already been said the chlorin is all calculated as sodium chlorid. If a part of it be combined with one-fourth per cent of magnesia it would represent 0.59 per cent of magnesium chlorid instead of 0.73 per cent sodium chlorid. In omitting the estimation of the magnesia therefore the importer is only damaged to the extent of 0.14 per cent of sodium nitrate.

Sodium Iodate.—This body, present only in small quantities, may also be neglected. In case the content of this body should reach one-fourth per cent the estimation of chlorin by titration using potassium chromate as indicator is impracticable. Such an instance, however, is rarely known.

Approximate Results.—When the determinations outlined above have been carefully made it is claimed that the result obtained by subtraction from 100 will not vary more than from two-tenths to three-tenths per cent from the true content of sodium nitrate. The method, however, cannot be considered strictly scientific and is much more tedious and chronophagous than the direct determination. In the direct determination, however, the analyst must assure himself that potassium is present in only appreciable quantities otherwise the per cent of sodium nitrate will be too low.

The presence of potassium nitrate is a detriment in this respect only; viz., that it contains a less percentage of nitrogen than the corresponding sodium salt. As a fertilizer, the value of Chile saltpeter may be increased by its content of potassium.

218. The Application of Chile Saltpeter to the Soil.—The analyst is often asked to determine the desirability of the use of sodium nitrate as a fertilizer and the methods and times of applying it. These are questions which are scarcely germane to the purpose of this work but which, nevertheless, for the sake of convenience may be briefly discussed. In the first place it may be said that the data of a chance chemical analysis will not afford a sufficiently broad basis for an answer. A given soil may be very rich in nitrogen as revealed by chemical analysis, and yet poor in an available supply. This is frequently the case with vegetable soils, containing, as they do, large quantities of nitrogen but holding it in practically an inert state. I have found such soils very rich in nitrogen, yet almost entirely devoid of nitrifying organisms. It is necessary therefore in reaching a judgment on this subject from analytical data to consider the different states in which the nitrogen may exist in a soil and above all the nitrifying power of the soil if the nitrogen be chiefly present in an organic state. Culture solutions should therefore be seeded with samples of the soil under examination and the beginning and rapidity of the nitrification carefully noted. In conjunction with this the nitrogen present in the soil in a nitric or ammoniacal form should be accurately determined. These determinations should be made according to the directions given in the first volume, pp. 448-548.

For the determination of nitrifying power we prefer the following method:

219. Taking Samples of Soil in Sterilized Tubes.—Brass tubes are prepared twenty centimeters in length and one and a half in diameter. One end is ground to a beveled edge and compressed in a mold so as to make the cutting edge slightly smaller in diameter than the internal diameter of the tube. It is then ground or filed until smooth and sharp. The blunt end of the tube is stoppered loosely with cotton and it is then sterilized by heating for an hour to 150°. Rubber caps are provided and each one has placed at the bottom a rubber ball to prevent the rubber from being cut by the edges of the brass tube. The caps should be of two distinct colors. Half of the rubber caps are sterilized by being boiled for an hour in water for three successive days. The caps cannot be heated to 150° dry heat with safety. On removing the brass tube from the sterilizing oven as soon as it is cool enough to handle, a sterilized rubber cap is slipped over its cutting end. An unsterilized cap is then slipped over the other end containing the cotton plug. Inasmuch as the cotton plug is never removed it is not necessary to sterilize the cap covering it. Large numbers of the tubes can thus be prepared for use and they can be safely transmitted to a distance by express or mail. For convenience, each tube is encased in a small cloth bag, which is tied with a cord carrying a tag on which the necessary data can be recorded at the time of taking the sample.

The tubes and their rubber caps thus carefully sterilized should not be removed from their cloth envelopes until the moment of taking each sample. After the sample has been taken and the cap replaced on the tube the latter should be immediately enclosed in the cloth sack and labeled with one of the tags therewith enclosed. The sample should be taken in two kinds of soil, in one instance in a cultivated soil, which is most characteristic of the locality, and in the second place a virgin soil of the same type. The virgin soil may be either soil which has been covered with grass or in forest. The spots at which the samples are to be taken having been previously selected, the tags for each tube should be prepared beforehand so as to avoid delay at the time of sampling. A pit with straight walls should be dug, the sides of which are at least two feet wide and even three feet would be better. The pit should be about forty-two inches deep. One of the sides having been made perfectly smooth and without allowing the loose fragments from the top to fall down and adhere to the walls below, the spots at which the samples are to be taken should be marked with a tape line at the following points; viz., three, fifteen, twenty-seven, and thirty-nine inches, respectively, below the surface. Beginning at the bottom point, carefully scrape off the surface of the wall over an area slightly larger than that of the end of the sample tube by means of a spatula, which, just previous to use, has been held for a moment or two in the flame of an alcohol or other convenient lamp. The sample tube having been removed from its sack, it will be noted that the end covered with black rubber is the one which is to be held in the hand, and this black rubber cap should be first removed being careful not to extract the plug of sterilized cotton which closes the end of the tube. Holding the tube firmly by the end, the fingers extending only about two inches from the end, remove the light-colored cap and push the tube with a turning motion into the side of the pit at the point where the surface has been removed with the sterilized spatula. When this is properly done the tube will be filled with a cylinder of soil equal to the length of the part of the tube penetrating the wall of the pit. The tube is then withdrawn, the light rubber cap first replaced, and then the black one. The light rubber cap should be held in the hand during the process in such a way that no dust or particles of soil are permitted to contaminate its inner walls. For this purpose the open end of the cap should be held downward. For the same reason after the removal of the light rubber cap the brass tube should be carefully preserved from dust or fragments, the open end, that is the cutting end, being held downward until ready for use. After one tube has been filled, capped, replaced in the sack and labeled, the spatula should be again sterilized and samples taken in regular order until the top one is finished.

220. Directions for Taking Bulk Samples.—From the sides of the pit described above, bulk samples should be taken as follows:

By means of a spade the soil should be removed from the four sides to the depth of six or nine inches or until the change of color between the soil and subsoil is noted; in all enough to make about 150 pounds of the air-dried soil. In the same way take a sample of the subsoil to the depth of nine additional inches. Remove all stones, large pebbles, sticks, roots, etc., and spread the samples in a sheltered place where they can be air-dried as rapidly as possible. The bulk samples should be taken both from the cultivated and virgin soils. In selecting the cultivated soil, preference should be given to those soils which have not been fertilized within a few years. If recent fertilization have been practiced the character and amount of it should be noted.

221. The Nitrifiable Solution.—The solution to test the nitrifying power of the samples collected as above described is conveniently made as follows:

One liter of the above solution is enough for ten samples, each of 100 cubic centimeters. This quantity is placed in an erlenmeyer, which is stoppered with cotton and sterilized by being kept at 100° for an hour on three successive days. The erlenmeyer should be sterilized beforehand by heating for an hour at 150°. The freshly precipitated and washed calcium carbonate should be sterilized separately and added to each erlenmeyer at the time of seeding. Enough should always be used to be in excess of the nitrous and nitric acids found. The seeding is accomplished by filling a sterilized spoon which holds approximately half a gram of the soil, from the contents of one of the brass tubes, lifting the plug in the erlenmeyer and transferring quickly to the flask. This should be done in a perfectly still room, preferably as high above the ground as possible and in a place free from dust and under cover. The cotton plug being replaced the erlenmeyer is shaken until the sample of soil added is thoroughly disintegrated and intimately mixed with its contents. With care and experience the seeding is easily accomplished without danger of accidental contamination.

At the end of each period of five days the beginning and progress of nitrification should be determined by some of the methods described in volume first. Either the ammonia can be determined by nesslerizing or the nitrous and nitric acids estimated. For nitrous acid we prefer the method described in volume first, paragraph 504, and for nitric the one in same volume paragraphs 497 and 498.

By supplementing the analysis of a soil by the above described experiments in nitrification the analyst will be able to judge with sufficient accuracy of its needs for nitric nitrogen.

222. Quantity of Chile Saltpeter to be Applied.—The quantities of Chile saltpeter which should be applied per acre vary with so many conditions as to make any definite statement impossible. On account of the great solubility of this salt no more should be used than is necessary for the nutrition of the crop. For each 100 pounds used, from fourteen to fifteen pounds of nitrogen will be added to the soil. Field crops, as a rule, will require less of the salt than garden crops. There is an economic limit to the application which should not be passed. As a rule 250 pounds per acre will prove to be a maximum dressing. The character of the crop must also be considered. Different amounts are required for sugar beets, tobacco, wheat, and other standard crops. It is rarely the case that a crop demands a dressing of Chile saltpeter alone. It will give the best effects, as a rule, when applied with phosphoric acid or potash. But this is a branch of the subject which cannot be entered into at greater length in this manual. The reader is referred to Stutzer’s work on Chile saltpeter for further information.[183]

223. Consumption of Chile Saltpeter.—The entire consumption of sodium nitrate for manurial purposes in the whole world for 1894 was 992,150 metric tons, valued at $41,000,000. For the several countries using it the consumption was distributed as follows:

Germany397,200 tons.
France187,100
England117,000
Belgium123,000
United States100,000
Holland56,700
Italy and Spain5,200
Other countries  5,950
Total992,150

The above figures represent the actual commerce of each country in Chile saltpeter, and may not give the exact consumption.[184] For instance, Germany exports sodium nitrate to Russia and Austria, but it imports this salt from Holland and Belgium. Belgium imports from France, but its exportation is greater than its importations from that country, so that its actual consumption on the farm probably falls considerably below that given on the table. Holland also exports larger quantities than are imported from neighboring states. The exports from England are inconsiderable compared with the quantities received, amounting only to about 5,000 tons a year, while the exportations from France reach nearly 10,000 tons.

Sodium nitrate has a moderate value at the factories where it is prepared for shipment in Chile. Its chief value at the ports where it is delivered for consumption comes from freights and profits of the syndicate. The factories, where it is prepared for the market, are at or near the deposits, and the freights thence to the sea coast are very high. The rail roads which have been constructed to the high plateaux which contain the deposits, have been built at a very great cost, and the freights charged are correspondingly high. There is also a tax of $1.20 levied on each ton exported. Deducting all costs of transportation and export duties the actual value of sodium nitrate at the factory, ready for shipment, is about sixteen dollars in gold a ton.

AUTHORITIES CITED IN
PART SECOND.

[125] American Chemical Journal, Vol. 13, No. 7.

[126] Atwater: Report of the U. S. Commissioner of Fish and Fisheries, 1888, pp. 679-868.

[127] American Naturalist, Vol. 14, p. 473.

[128] Wiley: Retiring Address as President of American Chemical Society, Baltimore Meeting, Dec. 1893, Journal of the American Chemical Society, Vol. 16, pp. 17-20.

[129] Vid. op. et. loc. cit. supra.

[130] Vid. op. et. loc. cit. 4.

[131] Vid. op. et. loc. cit. 4.

[132] Vid. op. et. loc. cit. 4.

[133] Bulletin No. 43, p. 343 (to paragraph 156).

[134] American Chemical Journal, Vol. 2, pp. 27, et seq.

[135] Vid. op. et. loc. cit. supra.

[136] Weather Bureau: Barometers and Measurements of Atmospheric Pressures.

[137] Physikalisch-Chemische Tabellen Landolt und Börnstein, S. 32.

[138] Battle and Dancy: Conversion Tables, p. 34.

[139] Bulletin No. 43, p. 348 (to paragraph 169).

[140] Guide pour le dosage de l’Azote No. 3, p. 8.

[141] Zeitschrift für analytische Chemie, Band 23, S. 557.

[142] Chemiker Zeitung, Band 8, S. 1747.

[143] Journal of the Chemical Society, Transactions, 1881, p. 87.

[144] Bulletin No. 16, p. 51.

[145] Bulletin No. 28, p. 193 (to paragraph 175).

[146] Journal Society of Chemical Industry, Vol. 2, p. 21.

[147] Bulletin de l’Association des Chimistes de Sucrèrie, Tome 9, p. 598.

(bis p. 192) Journal Chemical Society; Transactions, Vol. 21, p. 161.

[148] Zeitschrift für analytische Chemie, Band 22, S. 366.

[149] Vid. op. cit. supra, pp. 370, et seq.

[150] Vid. op. cit., 24. Band 24, S. 455.

[151] Chemisches Centralblatt, 1886, S. 165.

[152] Nederlandsche Staatscourant, Jan. 11, 1893.

[153] Die Agricultur-Chemische Versuchs-Station, Halle a/S., S. 34.

(bis. p. 204) Bulletin No. 43, p. 345.

[154] Bulletin No. 31, 142.

[155] Fresenius, quantitative Analyse, 6th Auflage, S. 731.

[156] Zeitschrift für Analytische Chemie, Band 24, S. 455.

[157] Vid. op. cit. supra, Band 25, S. 149.

[158] Archive der Pharmacie {3}, Band 23, S. 177.

[159] Chemisches Centralblatt, 1886, S. 375.

[160] Vid. op. cit. supra, S. 161.

[161] Vid. op. cit. 35, S. 433.

[162] Vid. op. et. loc. cit. 28.

[163] Vid. op. cit. 29, S. 44.

[164] Bulletin No. 16, p. 51.

[165] Zeitschrift für analytische Chemie, Band 28, S. 188.

[166] Bulletin No. 35, p. 68.

[167] Bulletin No. 35, p. 202.

[168] Bulletin No. 112, Connecticut Agricultural Experiment Station, and Bulletin No. 35, p. 96.

[169] Guide pour le dosage de l’Azote, p. 14.

[170] Revue de Chimie Analytique Appliquée, Tome 1, p. 51.

[171] Chemiker Zeitung, Band 4, S. 360.

[172] Bulletin No. 43, p. 361.

[173] Bulletin de la Société Chimique, 1890, p. 324.

[174] Bulletin No. 35, p. 88.

[175] Die Agricultur-Chemische Versuchs-Station, Halle a/S., S. 50.

[176] Vid., Vol. 1, p. 539.

[177] Berichte der deutschen chemischen Gesellschaft, Band 27,S. 1633.

[178] Vid. op. et. loc. cit. supra.

[179] Vid. op. cit. 51, S. 48.

[180] Zeitschrift für analytische Chemie, Band 34, S. 26.

[181] Vid. op. cit. supra, Band 32, S. 553.

[182] L’Engrais, Tome 9, p. 877.

[183] Der Chile Saltpeter; Seine Bedeutung und Anwendung als Düngemittel.

[184] L’Engrais, 5 Avril, 1895, p. 324.

PART THIRD.
POTASH IN FERTILIZING MATERIALS
AND FERTILIZERS.

224. Introduction.—The potash present in unfertilized soils has been derived from the decay of rocks containing potash minerals. Among these potash producers feldspars are perhaps the most important. For a discussion of the nature of their decomposition and the causes producing it the first part of volume first may be consulted. Potash is quite as extensively distributed as phosphoric acid and no true soils are without it in some proportion. Its presence is necessary to plant growth and it forms, in combination with organic and mineral acids, an essential part of the vegetable organism, existing in exceptionally rich quantities in the seeds. It is possible that potash salts, such as the chlorid, sulfate, and phosphate may be assimilated as such, but, as with other compounds, we must not deny to the plant the remarkable faculty of being able to decompose its most stable salts and to form from the fragments thus produced entirely new compounds. This is certainly true of the potash compounds existing in plants in combination with organic acids. The potash which is assimilated by plants exists in the soil chiefly in a mineral state, and that added as fertilizer is chiefly in the same condition. That part of the potash in a soil arising directly from the decomposition of vegetable matters may exist partly in organic combination, but this portion, in comparison with the total quantity absorbed by the plant, is insignificant.

It is then safe to assume that at least a considerable part of the potash absorbed by the plant is decomposed from its original form of combination by the vegetable biochemical forces, and is finally incorporated in the plant tissues in forms determined by the same powerful forces of vegetable metabolism.

The analyst is not often called upon to investigate the forms in which the potash exists in plants, when engaged in investigation of fertilizers. It is chiefly found in combination with organic and phosphoric acids, and on ignition will appear as phosphate or carbonate in the ash.

225. Forms in which Potash is Found in Fertilizers.—The chief natural sources of potash used in fertilizer fabrication are: First, organic compounds, such as desiccated mineral matters, tobacco waste, cottonseed hulls, etc.; second, the ash derived from burning terrestrial plants of all kinds; third, the natural mineral deposits, such as Stassfurt salts.

All of these forms of potash may be found in mixed fertilizers. While the final methods of analyses are the same in all cases the preliminary treatment is very different, being adapted to the nature of the sample. For analytical purposes, it is highly important that the potash be brought into a soluble mineral form, and that any organic matters which the sample contains be destroyed. If the sample be already of a mineral nature, it may still be mixed with other organic matter and then it requires treatment as above, for it is not safe always to rely solely on the solubility of the potash mineral, and the solution, moreover, in such cases, is likely to contain organic matter. In some States, only that portion of the potash soluble in water is allowed to be considered in official fertilizer work. In these cases it is evident that the organic matter present should not be destroyed in the original sample, but only in the aqueous solution. Since, however, the potash occluded in organic matter becomes constantly available as the process of decay goes on, it is not just to exclude it from the available supply. It may not be so immediately available as when in a soluble mineral state, but it is not long before it becomes valuable. Experience has shown, moreover, that phosphorus, nitrogen, and potash are all more valuable finally when applied to the soil in an organic form. This fact is a corroboration of the theory already advanced that all mineral compound bodies are probably decomposed before they enter as component parts into the tissues of the vegetable organism.

It is highly probable, therefore, that the potash existing in organic compounds, finely divided and easily decomposed, is of equal, if not greater value to plant life than that already in a soluble mineral state. The organic matter, when present, is destroyed, either by ignition at a low temperature, or by moist combustion with an oxidizing agent before the potash is precipitated.