FINDING THE TIME WITHOUT A CHRONOMETER

In the reference made above to the testing of Harrison's watch, it was stated that that instrument varied by only a certain number of seconds in the course of the westerly voyage across the Atlantic, and that its variation was somewhat greater on the return voyage. This implies, clearly, that some method was available to test the watch in the West Indies, without waiting for the return to England. At first thought this may cause no surprise, since the local time can of course be known anywhere through meridian observations; but on reflection it may seem less and less obvious as to just what test was available through which the exact difference in time between Greenwich, at which the watch was originally tested, and local time at the station in the West Indies could be determined. There are, however, several astronomical observations through which this could be accomplished, and in point of fact the comparative times and hence the precise longitudes at many points on the Western Hemisphere—and indeed of all portions of the civilized globe—were accurately known before the day of the chronometer.

One of the simplest and most direct means of testing the time of a place, as compared with Greenwich time, is furnished by observation of the occultation of one of the moons of Jupiter. By occultation is meant, as is well known, the eclipse of the body through passing into the shadow of its parent planet. This phenomenon, causing the sudden blotting out of the satellite as viewed from the earth, occurs at definite and calculable periods and is obviously quite independent of any terrestrial influence. It occurs at a given instant of time and would be observed at that instant by any mundane witness to whom Jupiter was at that time visible. If then an observer noted the exact local time at which occultation occurred, and compared this observed time with the Greenwich time at which such occultation was predicted to occur, as recorded in astronomical tables, a simple subtraction or addition will tell him the difference in time between his station and the meridian at Greenwich; and this difference of time can be translated into degrees of longitude by merely reckoning fifteen degrees for each hour of time, and fractions of the hour in that proportion.

It will be noted that this observation has value for the purpose in question only in conjunction with certain tables in which the movements of Jupiter and its satellite are calculated in advance. This is equally true of the various other observations through which the same information may be obtained—as for example, the observation of a transit of Mars, or the measurement of apparent distance between the moon and a given fixed star. Before the tables giving such computations were published it was quite impossible to determine the exact longitude of any transatlantic place whatsoever. We have already pointed out that Columbus had only a vague notion as to how far he had sailed when he discovered land in the West. The same vagueness obtained with all the explorations of the immediately ensuing generations.

It was not until about the middle of the sixteenth century that Mercator and his successors brought the art of map-making to perfection; and the celebrated astronomical tables of the German Mayer, which served as the foundation for calculations of great importance to the navigator, were not published until 1753. The first Nautical Almanac, in which all manner of astronomical tables to guide the navigator were included, was published at the British Royal Observatory in 1767.

At the present time, a navigator would be as likely to start on a voyage without compass and sextant as without charts and a Nautical Almanac. Indeed were he to overlook the latter the former would serve but a vague and inadequate purpose. Yet, as just indicated, this invaluable adjunct to the equipment of the navigator was not available until well toward the close of the eighteenth century. But of course numerous general tables had been in use long before this, else—to revert to the matter directly in hand—it would not have been possible to make the above-recorded test in the case of Harrison's famous watch in the voyage of 1761–62.