NEPTUNE.
God of the sea; sign
, his trident.
Distance from the sun, 2,775,000,000 miles. Diameter, 34,500 miles. Velocity per minute, 201.6 miles. Axial revolution unknown. Orbital, 164.78 years. One moon.
Men sought for Neptune as the heroes sought the golden fleece. The place of Uranus had been mapped for nearly one hundred years by these accidental observations. On applying the law of universal gravitation, a slight discrepancy was found between its computed place and its observed place. This discrepancy was exceedingly slight. In 1830 it was only 20"; in 1840,190"; in 1884, 2'. Two stars that were 2' apart would appear as one to the keenest unaided eye, but such an error must not exist in astronomy. Years of work were given to its correction. Mr. John C. Adams, of Cambridge, England, finding that the attraction of a planet exterior to Uranus would account for its irregularities, computed the place of such a hypothetical body with singular exactness in October, 1841; but neither he nor the royal astronomer Airy looked for it. Another opportunity for immortality was heedlessly neglected. Meanwhile, M. Leverrier, of Paris, was working at the same problem. In the summer of 1846 Leverrier announced the place of the exterior planet. The conclusion was in striking coincidence with that of Mr. Clark. Mr. Challis commenced to search for the planet near the indicated place, and actually saw and mapped the star August 4th, 1846, but did not recognize its planetary character. Dr. Galle, of Berlin, on the 23d of September, 1846, found an object with a planetary disk not plotted on the map of stars. It was the sought-for world. It would seem easy to find a world seventy-six times as large as the earth, and easy to recognize it when seen. The fact that it could be discovered only by such care conveys an overwhelming idea of the distance where it moves.
Fig. 66.—Perturbation of Uranus.
The effect of these perturbations by an exterior planet is understood from Fig. 66. Uranus and Neptune were in conjunction, as shown, in 1822. But in 1820 it had been found that Uranus was too far from the sun, and too much accelerated. Since 1800, Neptune, in his orbit from F to E, had been hastening Uranus in his orbit D from C to B, and also drawing it farther from the sun. After 1822, Neptune, in passing from E to D, had been retarding Uranus in his orbit from B to A.
We have seen it is easy to miss immortality. There is still another instance. Lalande saw Neptune on May 8th and 10th, 1795, noted that it had moved a little, and that the observations did not agree; but, supposing the first was wrong, carelessly missed the glory of once more doubling the bounds of the empire of the sun.
It is time to pause and review our knowledge of this system. The first view reveals a moon and earth endowed with a force of inertia going on in space in straight lines; but an invisible elastic cord of attraction holds them together, just counterbalancing this tendency to fly apart, and hence they circle round their centre of gravity. The revolving earth turns every part of its surface to the moon in each twenty-four hours. By an axial revolution in the same time that the moon goes round the earth, the moon holds the same point of its surface constantly toward the earth. If we were to add one, two, four, eight moons at appropriate distances, the result would be the same. There is, however, another attractive influence—that of the sun. The sun attracts both earth and moon, but their nearer affection for each other keeps them from going apart. They both, revolving on their axes and around their centre of gravity, sweep in a vastly wider curve around the sun. Add as many moons as has Jupiter or Saturn, the result is the same—an orderly carrying of worlds through space.
There lies the unsupported sun in the centre, nearer to infinity in all its capacities and intensities of force than our minds can measure, filling the whole dome to where the stars are set with light, heat, and power. It holds five small worlds—Vulcan, Mercury, Venus, Earth, and Mars—within a space whose radius it would require a locomotive half a thousand years to traverse. It next holds some indeterminate number of asteroids, and the great Jupiter, equal in volume to 13,000 earths. It holds Saturn, Uranus, and Neptune, and all their variously related satellites and rings. The two thoughts that overwhelm us are distance and power. The period of man's whole history is not sufficient for an express train to traverse half the distance to Neptune. Thought wearies and fails in seeking to grasp such distances; it can scarcely comprehend one million miles, and here are thousands of them. Even the wings of imagination grow weary and droop. When we stand on that outermost of planets, the very last sentinel of the outposts of the king, the very sun grown dim and small in the distance, we have taken only one step of the infinite distance to the stars. They have not changed their relative position—they have not grown brighter by our approach. Neptune carries us round a vast circle about the centre of the dome of stars, but we seem no nearer its sides. In visiting planets, we have been only visiting next-door neighbors in the streets of a seaport town. We know that there are similar neighbors about Sirius and Arcturus, but a vast sea rolls between. As we said, we stand with the outermost sentinel; but into the great void beyond the king of day sends his comets as scouts, and they fly thousands of years without for one instant missing the steady grasp of the power of the sun. It is nearer almightiness than we are able to think.
If we cannot solve the problems of the present existence of worlds, how little can we expect to fathom the unsoundable depths of their creation and development through ages measureless to man! Yet the very difficulty provokes the most ambitious thought. We toil at the problem because it has been hitherto unsolvable. Every error we make, and discover to be such, helps toward the final solution. Every earnest thinker who climbs the shining worlds as steps to a higher thought is trying to solve the problem God has given us to do.
IX.
THE NEBULAR HYPOTHESIS.
"And the earth was without form, and void; and darkness was upon the face of the deep."—Genesis i. 2.
"A dark
Illimitable ocean, without bound,
Without dimension, where length, breadth, and height,
And time, and place are lost."—MILTON.
"It is certain that matter is somehow directed, controlled, and arranged; while no material forces or properties are known to be capable of discharging such functions."—LIONEL BEALE.
"The laws of nature do not account for their own origin."—JOHN STUART MILL.
THE NEBULAR HYPOTHESIS.
The method by which the solar system came into its present form was sketched in vast outline by Moses. He gave us the fundamental idea of what is called the nebular hypothesis. Swedenborg, that prodigal dreamer of vagaries, in 1734 threw out some conjectures of the way in which the outlines were to be filled up; Buffon followed him closely in 1749; Kant sought to give it an ideal philosophical completeness; as he said, "not as the result of observation and computation," but as evolved out of his own consciousness; and Laplace sought to settle it on a mathematical basis.
It has been modified greatly by later writers, and must receive still greater modifications before it can be accepted by the best scientists of to-day. It has been called "the grandest generalization of the human mind;" and if it shall finally be so modified as to pass from a tentative hypothesis to an accepted philosophy, declaring the modes of a divine worker rather than the necessities of blind force, it will still be worthy of that high distinction.
Let it be clearly noted that it never proposes to do more than to trace a portion of the mode of working which brought the universe from one stage to another. It only goes back to a definite point, never to absolute beginning, nor to nothingness. It takes matter from the hand of the unseen power behind, and merely notes the progress of its development. It finds the clay in the hands of an intelligent potter, and sees it whirl in the process of formation into a vessel. It is not in any sense necessarily atheistic, any more than it is to affirm that a tree grows by vital processes in the sun and dew, instead of being arbitrarily and instantly created. The conclusion reached depends on the spirit of the observer. Newton could say, "This most beautiful system of the sun, planets, and comets could only proceed from the counsel and dominion of an intelligent and powerful being!" Still it is well to recognize that some of its most ardent defenders have advocated it as materialistic. And Laplace said of it to Napoleon, "I have no need of the hypothesis of a god."
The materialistic statement of the theory is this: that matter is at first assumed to exist as an infinite cloud of fire-mist, dowered with power latent therein to grow of itself into every possibility of world, flower, animal, man, mind, and affection, without any interference or help from without. But it requires far more of the Divine Worker than any other theory. He must fill matter with capabilities to take care of itself, and this would tax the abilities of the Infinite One far more than a constant supervision and occasional interference. Instead of making the vase in perfect form, and coloring it with exquisite beauty by an ever-present skill, he must endow the clay with power to make itself in perfect form, adorn itself with delicate beauty, and create other vases.
The nebular hypothesis is briefly this: All the matter composing all the bodies of the sun, planets, and satellites once existed in an exceedingly diffused state; rarer than any gas with which we are acquainted, filling a space larger than the orbit of Neptune. Gravitation gradually contracted this matter into a condensing globe of immense extent. Some parts would naturally be denser than others, and in the course of contraction a rotary motion, it is affirmed, would be engendered. Rotation would flatten the globe somewhat in the line of its axis. Contracting still more, the rarer gases, aided by centrifugal force, would be left behind as a ring that would ultimately be separated, like Saturn's ring, from the retreating body. There would naturally be some places in this ring denser than others; these would gradually absorb all the ring into a planet, and still revolve about the central mass, and still rotate on its own axis, throwing off rings from itself. Thus the planet Neptune would be left behind in the first sun-ring, to make its one moon; the planet Uranus left in the next sun-ring, to make its four moons from four successive planet-rings; Saturn, with its eight moons and three rings not made into moons, is left in the third sun-ring; and so on down to Vulcan.
The outer planets would cool off first, become inhabitable, and, as the sun contracted and they radiated their own heat, become refrigerated and left behind by the retreating sun. Of course the outer planets would move slowly; but as that portion of the sun which gave them their motion drew in toward the centre, keeping its absolute speed, and revolving in the lessening circles of a contracting body, it would give the faster motion necessary to be imparted to Earth, Mercury, and Vulcan.
The four great classes of facts confirmatory of this hypothesis are as follows: 1st. All the planets move in the same direction, and nearly in the same plane, as if thrown off from one equator; 2d. The motions of the satellites about their primaries are mostly in the same direction as that of their primaries about the sun; 3d. The rotation of most of these bodies on their axes, and also of the sun, is in the same direction as the motion of the planets about the sun; 4th. The orbits of the planets, excluding asteroids, and their satellites, have but a comparatively small eccentricity; 5th. Certain nebulæ are observable in the heavens which are not yet condensed into solids, but are still bright gas.
The materialistic evolutionist takes up the idea of a universe of material world-stuff without form, and void, but so endowed as to develop itself into orderly worlds, and adds to it this exceeding advance, that when soil, sun, and chemical laws found themselves properly related, a force in matter, latent for a million eons in the original cloud, comes forward, and dead matter becomes alive in the lowest order of vegetable life; there takes place, as Herbert Spencer says, "a change from an indefinite, incoherent homogeneity, into a definite, coherent heterogeneity, through continuous differentiation and integration." The dead becomes alive; matter passes from unconsciousness to consciousness; passes up from plant to animal, from animal to man; takes on power to think, reason, love, and adore. The theistic evolutionist may think that the same process is gone through, but that an ever-present and working God superintends, guides, and occasionally bestows a new endowment of power that successively gives life, consciousness, mental, affectional, and spiritual capacity.
Is this world-theory true? and if so, is either of the evolution theories true also? If the first evolution theory is true, the evolved man will hardly know which to adore most, the Being that could so endow matter, or the matter capable of such endowment.
There are some difficulties in the way of the acceptance of the nebular hypothesis that compel many of the most thorough scientists of the day to withhold their assent to its entirety. The latest, and one of the most competent writers on the subject, Professor Newcomb, who is a mathematical astronomer, and not an easy theorist, evolving the system of the universe from the depth of his own consciousness, says: "Should any one be sceptical as to the sufficiency of these laws to account for the present state of things, science can furnish no evidence strong enough to overthrow his doubts until the sun shall be found to be growing smaller by actual measurement, or the nebulæ be actually seen to condense into stars and systems." In one of the most elaborate defences of the theory, it is argued that the hypothesis explains why only one of the four planets nearest the sun can have a moon, and why there can be no planet inside of Mercury. The discovery of the two satellites to Mars and of the planet Vulcan makes it all the worse for these facts.
Some of the objections to the theory should be known by every thinker. Laplace must have the cloud "diffused in consequence of excessive heat," etc. Helmholtz, in order to account for the heat of the contracting sun, must have the cloud relatively cold. How he and his followers diffused the cloud without heat is not stated.
The next difficulty is that of rotation. The laws of science compel a contraction into one non-rotating body—a central sun, indeed, but no planets about it. Laplace cleverly evades the difficulty by not taking from the hand of the Creator diffused gas, but a sun with an atmosphere filling space to the orbit of Neptune, and already in revolution. He says: "It is four millions to one that all motions of the planets, rotations and revolutions, were at once imparted by an original common cause, of which we know neither the nature nor the epoch." Helmholtz says of rotation, "the existence of which must be assumed." Professor Newcomb says that the planets would not be arranged as now, each one twice as far from the sun as the next interior one, and the outer ones made first, but that all would be made into planets at once, and the small inner ones quite likely to cool off more rapidly.
It is a very serious difficulty that at least one satellite does not revolve in the right direction. How Neptune or Uranus could throw their moons backward from its equator is not easily accounted for. It is at least one Parthian arrow at the system, not necessarily fatal, but certainly dangerous.
A greater difficulty is presented by the recently discovered satellites of Mars. The inner one goes round the planet in one-third part of the time of the latter's revolution. How Mars could impart three times the speed to a body flying off its surface that it has itself, has caused several defenders of the hypothesis to rush forward with explanations, but none with anything more than mere imaginary collisions with some comet. It is to be noticed that accounting for three times the speed is not enough; for as Mars shrunk away from the ring that formed that satellite, it ought itself to attain more speed, as the sun revolves faster than its planets, and the earth faster than its moon. In defending the hypothesis, Mitchel said: "Suppose we had discovered that it required more time for Saturn or Jupiter to rotate on their axes than for their nearest moon to revolve round them in its orbit; this would have falsified the theory." It is also asserted that the newly discovered planet Vulcan makes an orbital in less time than the sun makes an axial revolution.
In regard to one Martial moon, Professor Kirkwood, on whom Proctor conferred the highest title that could be conferred, "the modern Kepler," says: "Unless some explanation can be given, the short period of the inner satellite will be doubtless regarded as a conclusive argument against the nebular hypothesis." If gravitation be sufficient to account for the various motions of the heavenly bodies, we have a perplexing problem in the star known as 1830 Groombridge, now in the Hunting Dogs of Bootes. It is thought to have a speed of two hundred miles per second—a velocity that all the known matter in the universe could not give to the star by all its combined attraction. Neither could all that attraction stop the motion of the star, or bend it into an orbit. Its motion must be accounted for on some hypothesis other than the nebular.
The nebulæ which we are able to observe are not altogether confirmatory of the hypothesis under consideration. They have the most fantastic shapes, as if they had no relation to rotating suns in the formative stages. There are vast gaps in the middle, where they ought to be densest. Mr. Plumer, in the Natural Science Review, says, in regard to the results of the spectroscopic revelations: "We are furnished with distinct proof that the gases so examined are not only of nearly equal density, but that they exist in a low state of tension. This fact is fatal to the nebular theory."
In the autumn of 1876 a star blazed out in Cygnus, which promised to throw a flood of light on the question of world-making. Its spectrum was like some of the fixed stars. It probably blazed ont by condensation from some previously invisible nebula. But its brilliancy diminished swiftly, when it ought to have taken millions of years to cool. If the theory was true, it ought to have behaved very differently. It should have regularly condensed from gas to a solid sun by slow process. But, worst of all, after being a star awhile, it showed unmistakable proofs of turning into a cloud-mist—a star into a nebula, instead of vice versa. A possible explanation will be considered under variable stars.
Such are a few of the many difficulties in the way of accepting the nebular hypothesis, as at present explained, as being the true mode of development of the solar system. Doubtless it has come from a hot and diffused condition into its present state; but when such men as Proctor, Newcomb, and Kirkwood see difficulties that cannot be explained, contradictions that cannot be reconciled by the principles of this theory, surely lesser men are obliged to suspend judgment, and render the Scotch verdict of "not proven." Whatever truth there may be in the theory will survive, and be incorporated into the final solution of the problem; which solution will be a much grander generalization of the human mind than the nebular hypothesis.
Of some things we feel very sure: that matter was once without form and void, and darkness rested on the face of the mighty deeps; that, instead of chaos, we have now cosmos and beauty; and that there is some process by which matter has been brought from one state to the other. Whether, however, the nebular hypothesis lays down the road travelled to this transfiguration, we are not sure. Some of it seems like solid rock, and some like shifting quicksand. Doubtless there is a road from that chaos to this fair cosmos. The nebular hypothesis has surveyed, worked, and perfected many long reaches of this road, but the rivers are not bridged, the chasms not filled, nor the mountains tunnelled.
When men attempt to roll the hypothesis of evolution along the road of the nebular hypothesis of worlds, and even beyond to the production of vegetable and animal life, mind and affection, the gaps in the road become evident, and disastrous.
A soul that has reached an adoration for the Supreme Father cares not how he has made him. Doubtless the way God chose was the best. It is as agreeable to have been thought of and provided for in the beginning, to have had a myriad ages of care, and to have come from the highest existent life at last, as to have been made at once, by a single act, out of dust. The one who is made is not to say to the Maker, "Why hast thou formed me in this or that manner?" We only wish the question answered in what manner we were really made.
Evolution, without constant superintendence and occasional new inspiration of power, finds some tremendous chasms in the road it travels. These must be spanned by the power of a present God or the airy imagination of man. Dr. McCosh has happily enumerated some of these tremendous gaps over which mere force cannot go. Given, then, matter with mechanical power only, what are the gaps between it and spirituality?
"1. Chemical action cannot be produced by mechanical power.
"2. Life, even in the lowest forms, cannot be produced from unorganized matter.
"3. Protoplasm can be produced only by living matter.
"4. Organized matter is made up of cells, and can be produced only by cells. Whence the first cell?
"5. A living being can be produced only from a seed or germ. Whence the first vegetable seed?
"6. An animal cannot be produced from a plant. Whence the first animal?
"7. Sensation cannot be produced in insentient matter.
"8. The genesis of a new species of plant or animal has never come under the cognizance of man, either in pre-human or post-human ages, either in pre-scientific or scientific times. Darwin acknowledges this, and says that, should a new species suddenly arise, we have no means of knowing that it is such.
"9. Consciousness—that is, a knowledge of self and its operations—cannot be produced out of mere matter or sensation.
"10. We have no knowledge of man being generated out of the lower animals.
"11. All human beings, even savages, are capable of forming certain high ideas, such as those of God and duty. The brute creatures cannot be made to entertain these by any training.
"With such tremendous gaps in the process, the theory which would derive all things out of matter by development is seen to be a very precarious one.
The truth, according to the best judgment to be formed in the present state of knowledge, would seem to be about this: The nebular hypothesis is correct in all the main facts on which it is based; but that neither the present forces of matter, nor any other forces conceivable to the mind of man, with which it can possibly be endowed, can account for all the facts already observed. There is a demand for a personal volition, for an exercise of intelligence, for the following of a divine plan that embraces a final perfection through various and changeful processes. The five great classes of facts that sustain the nebular hypothesis seem set before us to show the regular order of working. The several facts that will not, so far as at present known, accord with that plan, seem to be set before us to declare the presence of a divine will and power working his good pleasure according to the exigencies of time and place.
X.
THE STELLAR SYSTEM.
"The heavens number out the glory of the strong God."—DAVID.
Richter says that "an angel once took a man and stripped him of his flesh, and lifted him up into space to show him the glory of the universe. When the flesh was taken away the man ceased to be cowardly, and was ready to fly with the angel past galaxy after galaxy, and infinity after infinity, and so man and angel passed on, viewing the universe, until the sun was out of sight—until our solar system appeared as a speck of light against the black empyrean, and there was only darkness. And they looked onward, and in the infinities of light before, a speck of light appeared, and suddenly they were in the midst of rushing worlds. But they passed beyond that system, and beyond system after system, and infinity after infinity, until the human heart sank, and the man cried out: 'End is there none of the universe of God?' The angel strengthened the man by words of counsel and courage, and they flew on again until worlds left behind them were out of sight, and specks of light in advance were transformed, as they approached them, into rushing systems; they moved over architraves of eternities, over pillars of immensities, over architecture of galaxies, unspeakable in dimensions and duration, and the human heart sank again and called ont: 'End is there none of the universe of God?' And all the stars echoed the question with amazement: 'End is there none of the universe of God?' And this echo found no answer. They moved on again past immensities of immensities, and eternities of eternities, until in the dizziness of uncounted galaxies the human heart sank for the last time, and called out: 'End is there none of the universe of God?' And again all the stars repeated the question, and the angel answered: 'End is there none of the universe of God. Lo, also, there is no beginning.'"
THE OPEN PAGE OF THE HEAVENS.
The Greeks set their mythological deities in the skies, and read the revolving pictures as a starry poem. Not that they were the first to set the blazonry of the stars as monuments of their thought; we read certain allusions to stars and asterisms as far back as the time of Job. And the Pleiades, Arcturus, and Orion are some of the names used by Him who "calleth all the stars by their names, in the greatness of his power." Homer and Hesiod, 750 B.C., allude to a few stars and groups. The Arabians very early speak of the Great Bear; but the Greeks completely nationalized the heavens. They colonized the earth widely, but the heavens completely; and nightly over them marched the grand procession of their apotheosized divinities. There Hercules perpetually wrought his mighty labors for the good of man; there flashed and faded the changeful star Algol, as an eye in the head of the snaky-haired Medusa; over them flew Pegasus, the winged horse of the poet, careering among the stars; there the ship Argo, which had explored all strange seas of earth, nightly sailed in the infinite realms of heaven; there Perseus perpetually killed the sea-monster by celestial aid, and perpetually won the chained Andromeda for his bride. Very evident was their recognition of divine help: equally evident was their assertion of human ability and dominion. They gathered the illimitable stars, and put uncountable suns into the shape of the Great Bear—the most colossal form of animal ferocity and strength—across whose broad forehead imagination grows weary in flying; but they did not fail to put behind him a representative of themselves, who forever drives him around a sky that never sets—a perpetual type that man's ambition and expectation correspond to that which has always been revealed as the divine.
The heavens signify much higher power and wisdom to us; we retain the old pictures and groupings for the convenience of finding individual stars. It is enough for the astronomer that we speak of a star as situated right ascension 13' 45", declination 88° 40'. But for most people, if not all, it is better to call it Polaris. So we might speak of a lake in latitude 42° 40', longitude 79° 22', but it would be clearer to most persons to say Chatauqua. For exact location of a star, right ascension and declination must be given; but for general indication its name or place in a constellation is sufficiently exact. The heaven is rather indeterminably laid out in irregular tracts, and the mythological names are preserved. The brightest stars are then indicated in order by the letters of the Greek alphabet—Alpha (α), Beta (β), Gamma (γ), etc. After these are exhausted, the Roman alphabet is used in the same manner, and then numbers are resorted to; so that the famous star 61 Cygni is the 111th star in brightness in that one constellation. An acquaintance with the names, peculiarities, and movements of the stars visible at different seasons of the year is an unceasing source of pleasure. It is not vision alone that is gratified, for one fine enough may hear the morning stars sing together, and understand the speech that day uttereth unto day, and the knowledge that night showeth unto night. One never can be alone if he is familiarly acquainted with the stars. He rises early in the summer morning, that he may see his winter friends; in winter, that he may gladden himself with a sight of the summer stars. He hails their successive rising as he does the coming of his personal friends from beyond the sea. On the wide ocean he is commercing with the skies, his rapt soul sitting in his eyes. Under the clear skies of the East he hears God's voice speaking to him, as to Abraham, and saying, "Look now toward the heavens, and tell the number of the stars, if thou be able to number them."
A general acquaintance with the stars will be first attempted; a more particular knowledge afterward. Fig. 67 ([page 201]) is a map of the circumpolar region, which is in full view every clear night. It revolves daily round Polaris, its central point. Toward this star, the two end stars of the Great Dipper ever point, and are in consequence called "the Pointers." The map may be held toward the northern sky in such a position as the stars may happen to be. The Great Bear, or Dipper, will be seen at nine o'clock in the evening above the pole in April and May; west of the pole, the Pointers downward, in July and August; close to the north horizon in October and November; and east of the pole the Pointers highest, in January and February. The names of such constantly visible stars should be familiar. In order, from the end of the tail of the Great Bear, we have Benetnasch η, Mizar ζ, Little Alcor close to it, Alioth, ε Megrez, δ at the junction, has been growing dimmer for a century, Phad, γ Dubhe and Merak. It is best to get some facility at estimating distances in degrees. Dubhe and Merak, "the Pointers," are five degrees apart. Eighteen degrees forward of Dubhe is the Bear's nose; and three pairs of stars, fifteen degrees apart, show the position of the Bear's three feet. Follow "the Pointers" twenty-nine degrees from Dubhe, and we come to the pole-star. This star is double, made of two suns, both appearing as one to the naked eye. It is a test of an excellent three-inch telescope to resolve it into two. Three stars beside it make the curved-up handle of the Little Dipper of Ursa Minor. Between the two Bears, thirteen degrees from Megrez, and eleven degrees from Mizar, are two stars in the tail of the Dragon, which curves about to appropriate all the stars not otherwise assigned. Follow a curve of fifteen stars, doubling back to a quadrangle from five to three degrees on a side, and thirty-five degrees from the pole, for his head. His tongue runs out to a star four degrees in front. We shall find, hereafter, that the foot of Hercules stands on this head. This is the Dragon slain by Cadmus, and whose teeth produced such a crop of sanguinary men.
The star Thuban was once the pole-star. In the year B.C. 2300 it was ten times nearer the pole than Polaris is now. In the year A.D. 2100 the pole will be within 30' of Polaris; in A.D. 7500, it will be at α of Cepheus; in A.D. 13,500, within 7° of Vega; in A.D. 15,700, at the star in the tongue of Draco; in A.D. 23,000, at Thuban; in A.D. 28,000, back to Polaris. This indicates no change in the position of the dome of stars, but a change in the direction of the axis of the earth pointing to these various places as the cycles pass. As the earth goes round its orbit, the axis, maintaining nearly the same direction, really points to every part of a circle near the north star as large as the earth's orbit, that is, 185,000,000 miles in diameter. But, as already shown, that circle is too small to be discernible at our distance. The wide circle of the pole through the ages is really made up of the interlaced curves of the annual curves continued through 25,870 years. The stem of the spinning top wavers, describes a circle, and finally falls; the axis of the spinning earth wavers, describes a circle of nearly 28,000 years, and never falls.
The star γ Draconis, also called Etanin, is famous in modern astronomy, because observations on this star led to the discovery of the aberration of light. If we held a glass tube perpendicularly out of the window of a car at rest, when the rain was falling straight down, we could see the drops pass directly through. Put the car in motion, and the drops would seem to start toward us, and the top of the tube must be bent forward, or the drops entering would strike on the backside of the tube carried toward them. So our telescopes are bent forward on the moving earth, to enable the entered light to reach the eye-piece. Hence the star does not appear just where it is. As the earth moves faster in some parts of its orbit than others, this aberration is sometimes greater than at others. It is fortunate that light moves with a uniform velocity, or this difficult, problem would be still further complicated. The displacement of a star from this course is about 20".43.
On the side of Polaris, opposite to Ursa Major, is King Cepheus, made of a few dim stars in the form of the letter K. Near by is his brilliant wife Cassiopeia, sitting on her throne of state. They were the graceless parents who chained their daughter to a rock for the sea-monster to devour; but Perseus, swift with the winged sandals of Mercury, terrible with his avenging sword, and invincible with the severed head of Medusa, whose horrid aspect of snaky hair and scaly body turned to stone every beholder, rescues the maiden from chains, and leads her away by the bands of love. Nothing could be more poetical than the life of Perseus. When he went to destroy the dreadful Gorgon, Medusa, Pluto lent him his helmet, which would make him invisible at will; Minerva loaned her buckler, impenetrable, and polished like a mirror; Mercury gave him a dagger of diamonds, and his winged sandals, which would carry him through the air. Coming to the loathsome thing, he would not look upon her, lest he, too, be turned to stone; but, guided by the reflection in the buckler, smote off her head, carried it high over Libya, the dropping blood turning to serpents, which have infested those deserts ever since.
The human mind has always been ready to deify and throne in the skies the heroes that labor for others. Both Perseus and Hercules are divine by one parent, and human by the other. They go up and down the earth, giving deliverance to captives, and breaking every yoke. They also seek to purge away all evil; they slay dragons, gorgons, devouring monsters, cleanse the foul places of earth, and one of them so wrestles with death as to win a victim from his grasp. Finally, by
Fig. 67.—Circumpolar Constellations. Always visible. In this position.—January 20th, at 10 o'clock; February 4th, at 9 o'clock; and February 19th, at 8 o'clock. an ascension in light, they go up to be in light forever. They are not ideally perfect. They right wrong by slaying wrong-doers, rather than by being crucified themselves; they are just murderers; but that only plucks the fruit from the tree of evil. They never attempted to infuse a holy life. They punished rather than regenerated. It must be confessed, also, that they were not sinless. But they were the best saviors the race could imagine, and are examples of that perpetual effort of the human mind to incarnate a Divine Helper who shall labor and die for the good of men.
Fig. 68.—Algol is on the Meridian, 51° South of Pole.—At 10 o'clock, December 7th; 9 o'clock, December 22d; 8 o'clock, January 5th.
Equatorial Constellations.
If we turn our backs on Polaris on the 10th of November, at 10 o'clock in the evening, and look directly overhead, we shall see the beautiful constellation of Andromeda. Together with the square of Pegasus, it makes another enormous dipper. The star α Alpheratz is in her face, the three at the left cross her breast. β and the two above mark the girdle of her loins, and γ is in the foot. Perseus is near enough for help; and Cetus, the sea-monster, is far enough away to do no harm. Below, and east of Andromeda, is the Ram of the golden fleece, recognizable by the three stars in an acute triangle. The brightest is called Arietis, or Hamel. East of this are the Pleiades, and the V-shaped Hyades in Taurus, or the Bull. The Pleiades rise about 9 o'clock on the evening of the 10th of September, and at 3 o'clock A.M. on June 10th.
Fig. 69.—Capella (45° from the Pole) and Rigel (100°) are on the Meridian at 8 o'clock February 7th, 9 o'clock January 22d, and at 10 o'clock January 7th.
Fig. 69 extends east and south of our last map. It is the most gorgeous section of our heavens. (See the Notes to the Frontispiece.) Note the triangle, 26° on a side, made by Betelguese, Sirius, and Procyon. A line from Procyon to Pollux leads quite near to Polaris. Orion is the mighty hunter. Under his feet is a hare, behind him are two dogs, and before him is the rushing bull. The curve of stars to the right of Bellatrix, γ, represents his shield of the Nemean lion's hide. The three stars of his belt make a measure 3° long; the upper one, Mintaker, is less than 30' south of the equinoctial. The ecliptic passes between Aldebaran and the Pleiades. Sirius rises about 9 o'clock P.M. on the 1st of December, and about 4 o'clock A.M. on the 16th of August. Procyon rises about half an hour earlier.
Fig. 70—Regulus comes on the Meridian, 79° south from the Pole, at 10 o'clock March 23d, 9 o'clock April 8th, and at 8 o'clock April 23d.
Fig. 70 continues eastward. Note the sickle in the head and neck of the Lion. The star β is Denebola, in his tail. Arcturus appears by the word Bootes, at the edge of the map. These two stars make a triangle with Spica, about 35° on a side. The geometric head of Hydra is easily discernible east of Procyon: The star γ in the Virgin is double, with a period of 145 years. ζ is just above the equinoctial. There is a fine nebula two-thirds of the way from δ to η, and a little above the line connecting the two. Coma Berenices is a beautiful cluster of faint stars. Spica rises at 9 o'clock on the 10th of February, at 5 o'clock A.M. on the 6th of November.
Fig. 7l.—Arcturus comes to the Meridian, 70° from the Pole, at 10 o'clock May 25th, 9 o'clock June 9th, and at 8 o'clock June 25th.
Fig. 71 represents the sky to the eastward and northward of the last. A line drawn from Polaris and Benetnasch comes east of Arcturus to the little triangle called his sons. Bootes drives the Great Bear round the pole. Arcturus and Denebola make a triangle with α, also called Cor Coroli, in the Hunting Dogs. This triangle, and the one having the same base, with Spica for its apex, is called the "Diamond of the Virgin." Hercules appears head down—α in the face, β, γ, δ in his shoulders, π and η in the loins, τ in the knee, the foot being bent to the stars at the right. The Serpent's head, making an X, is just at the right of the γ of Hercules, and the partial circle of the Northern Crown above. The head of Draco is seen at β on the left of the map. Arcturus rises at 9 o'clock about the 20th of February, and at 5 A.M. on the 22d of October; Regulus 3h. 35m. Earlier.
Fig. 72.—Altair comes to the Meridian, 82° from the Pole, at 10 o'clock P.M. August 18th, at 9 o'clock September 2d, and at 8 o'clock September 18th.
Fig. 72 portrays the stars eastward and southward. Scorpio is one of the most brilliant and easily traced constellations. Antares, α, in the heart, is double. In Sagittarius is the Little Milk-dipper, and west of it the bended bow. Vega is at the top of the map. Near it observe ζ, a double, and ε, a quadruple star. The point to which the solar system is tending is marked by the sign of the earth below π Herculis. The Serpent, west of Hercules, and coiled round nearly to Aquila, is very traceable. In the right-hand lower corner is the Centaur. Below, and always out of our sight, is the famous α Centauri. The diamond form of the Dolphin is sometimes called "Job's Coffin." The ecliptic passes close to β of Scorpio, which star is in the head. Antares, in Scorpio, rises at 9 o'clock P.M. on May 9th, and at 5 o'clock A.M. on January 5th.
Fig. 73.—Fomalhaut comes to the Meridian, only 17° from the horizon, at 8 o'clock November 4th.
In Fig. 73 we recognize the familiar stars of Pegasus, which tell us we have gone quite round the heavens. Note the beautiful cross in the Swan. β in the bill is named Albireo, and is a beautiful double to almost any glass. Its yellow and blue colors are very distinct. The place of the famous double star 61 Cygni is seen. The first magnitude star in the lower left-hand corner is Fomalhaut, in the Southern Fish. α Pegasi is in the diagonal corner from Alpharetz, in Andromeda. The star below Altair is β Aquilæ, and is called Alschain; the one above is γ Aquilæ, named Tarazed. This is not a brilliant section of the sky. Altair rises at 9 o'clock on the 29th of May, and at 6 o'clock A.M. on the 11th of January.
Fig. 74.—Southern Circumpolar Constellations invisible north of the Equator.
Fig. 74 gives the stars that are never seen by persons north of the earth's equator. In the Ship is brilliant Canopus, and the remarkable variable η. Below it is the beautiful Southern Cross, near the pole of the southern heavens. Just below are the two first magnitude stars Bungala, α, and Achernar, β, of the Centaur. Such a number of unusually brilliant stars give the southern sky an unequalled splendor. In the midst of them, as if for contrast, is the dark hole, called by the sailors the "Coal-sack," where even the telescope reveals no sign of light. Here, also, are the two Magellanic clouds, both easily discernible by the naked eye; the larger two hundred times the apparent size of the moon, lying between the pole and Canopus, and the other between Achernar and the pole. The smaller cloud is only one-fourth the size of the other. Both are mostly resolvable into groups of stars from the fifth to the fifteenth magnitude.
For easy out-door finding of the stars above the horizon at any time, see star-maps at end of the book.
Characteristics of the Stars.
Such a superficial examination of stars as we have made scarcely touches the subject. It is as the study of the baptismal register, where the names were anciently recorded, without any knowledge of individuals. The heavens signify much more to us than to the Greeks. We revolve under a dome that investigation has infinitely enlarged from their estimate. Their little lights were turned by clumsy machinery, held together by material connections. Our vast worlds are connected by a force so fine that it seems to pass out of the realm of the material into that of the spiritual. Animal ferocity or a human Hercules could image their idea of power. Ours finds no symbol, but rises to the Almighty. Their heavens were full of fighting Orions, wild bulls, chained Andromedas, and devouring monsters. Our heavens are significant of harmony and unity; all worlds carried by one force, and all harmonized into perfect music. All their voices blend their various significations into a personal speaking, which says, "Hast thou not heard that the everlasting God, the Lord, the creator of the ends of the earth, fainteth not, neither is weary?" There is no searching of his understanding. Lift up your eyes on high, and behold who hath created all these things, that brought out their host by number, that calleth them all by their names in the greatness of his power; for that he is strong in power not one faileth.
Number.
We find about five thousand stars visible to the naked eye in the whole heavens, both north and south. Of these twenty are of the first magnitude, sixty-five of the second, two hundred of the third, four hundred of the fourth, eleven hundred of the fifth, and three thousand two hundred of the sixth. We think we can easily number the stars; but train a six-inch telescope on a little section of the Twins, where six faint stars are visible, and over three thousand luminous points appear. The seventh magnitude has 13,000 stars; the eighth, 40,000; the ninth, 142,000. There are 18,000,000 stars in the zone called the Milky Way. When our eyes are not sensitive enough to be affected by the light of far-off stars the tastimetre feels their heat, and tells us the word of their Maker is true—"they are innumerable."[*]
[Footnote *: Telescopic Work.—Look at the Hyades and Pleiades in Taurus. Notice the different colors of stars in them both. Find the cluster Præsepe in Fig. 70, just a trifle above a point midway between Procyon and Regulus. It is equally distant from Procyon and a point a little below Pollux. Sweep along the Milky Way almost anywhere, and observe the distribution of stars; in some places perfect crowds, in others more sparsely scattered. Find with the naked eye the rich cluster in Perseus. Draw a line from Algol to α of Perseus (Fig. 67); turn at right angles to the right, at a distance of once and four-tenths the first line a brightness will be seen. The telescope reveals a gorgeous cluster.]
Double and Multiple Stars.
If we look up during the summer months nearly overhead at the star ε Lyra, east of Vega (Fig. 72), we shall see with the naked eye that the star appears a little elongated. Turn your opera-glass upon it, and two stars appear. Turn a larger telescope on this double star, and each of the components separate into two. It is a double double star. We know that if two stars are near in reality, and not simply apparently so by being in the same line of sight, they must revolve around a common centre of gravity, or rush to a common ruin. Eagerly we watch to see if they revolve. A few years suffice to show them in actual revolution. Nay, the movement of revolution has been decided before the companion star was discovered. Sirius has long been known to have a proper motion, such as it would have if another sun were revolving about it. Even the direction of the unseen body could always be indicated. In February, 1862, Alvan Clark, artist, poet, and maker of telescopes (which requires even greater genius than to be both poet and artist), discovered the companion of Sirius just in its predicted place. As a matter of fact, one of Mr. Clark's sons saw it first; but their fame is one. The time of revolution of this pair is fifty years. But one companion does not meet the conditions of the movements. Here must also be one or more planets too small or dark to be seen. The double star ξ in the Great Bear (see Fig. 70) makes a revolution in fifty-eight years.
Procyon moves in an orbit which requires the presence of a companion star, but it has as yet eluded our search. Castor is a double star; but a third star or planet, as yet undiscovered, is required to account for its perturbations. Men who discovered Neptune by the perturbations of Uranus are capable of judging the cause of the perturbations of suns. We have spoken of the whole orbit of the earth being invisible from the stars. The nearest star in our northern hemisphere, 61 Cygni, is a telescopic double star; the constituent parts of it are forty-five times as far from each other as the earth is from the sun, yet it takes a large telescope to show any distance between the stars.[*]
[Footnote *: Telescopic Work.—Only such work will be laid out here as can be done by small telescopes of from two to four inch object-glasses. The numbers in Fig. 75 correspond to those of the table.
| No. | Name. | Fig. | Dist. of Parts. | Magnitudes. | Remarks. |
|---|---|---|---|---|---|
| 1. | ε Lyræ | 72 | 1' 56" | Quadruple. | |
| 2. | ζ Lyræ | 72 | 44 | 5 & 6 | Topaz and green. |
| 3. | β Cygni | 73 | 34-1/2 | 3 & 6 | Yellow and blue. |
| 4. | 61 Cygni | 73 | 20 | 5 & 6 | Nearest star but one. |
| 5. | Mizar | 67 | 14 | 3 & 4 | Both white. |
| 6. | Polaris | 67 | 18-1/2 | 2 & 9 | Test object of eye and glass. |
| 7. | ρ Orionis | Frontispiece. | 7 | 5 & 8 | Yellow and blue. |
| 8. | β Orionis | " | 9 | 1 & 8 | Rigel. |
| 9. | δ " | " | 10 | 2 & 8 | Red and white. |
| 10. | θ " | " | Septuple. | ||
| 11. | λ " | " | 5 | White and violet. | |
| 12. | σ " | " A, B. | 11 | 4 & 10 | Octuple. |
| 13. | Castor | 69 | 5-1/2 | 2 & 3 | White. |
| 14. | Pollux | 69 | Triple. | Orange, gray, lilac. | |
| 15. | γ Virginis | 70 | 5 | 3 & 3 | Both yellow. |
When γ Virginis was observed in 1718 by Bradley, the component parts were 7" asunder. He incidentally remarked in his note-book that the line of their connection was parallel to the line of the two stars Spica, or α and δ Virginis. By 1840 they were not more than 1" apart, and the line of their connection greatly changed. The appearance of the star is given in Fig. 75 (15), commencing at the left, for the years 1837 '38 '39 '40 '45 '50 '60 and '79. also a conjectural orbit, placed obliquely, and the position of the stars at the times mentioned, commencing at the top. The time of its complete revolution is one hundred and fifty years.
Fig. 75.—Aspects and Revolution of Double Stars.
The meaning of these double stars is that two or more suns revolve about their centre of gravity, as the moon and earth about their centre. If they have planets, as doubtless they have, the movement is no more complicated than the planets we call satellites of Saturn revolving about their central body, and also about the sun. Kindle Saturn and Jupiter to a blaze, or let out their possible light, and our system would appear a triple star in the distance. Doubtless, in the far past, before these giant planets were cooled, it so appeared.
We find some stars double, others triple, quadruple, octuple, and multiple. It is an extension of the same principles that govern our system. Some of these suns are so far asunder that they can swing their Neptunes between them, with less perturbation than Uranus and Neptune have in ours. Light all our planets, and there would be a multiple star with more or less suns seen, according to the power of the instrument. Perhaps the octuple star σ in Orion differs in no respect from our system, except in the size and distance of its separate bodies, and less cooling, either from being younger, or from the larger bodies cooling more slowly. Suns are of all ages. Infinite variety fills the sky. It is as preposterous to expect that every system or world should have analogous circumstances to ours at the present time, as to insist that every member of a family should be of the same age, and in the same state of development. There are worlds that have not yet reached the conditions of habitability by men, and worlds that have passed these conditions long since. Let them go. There are enough left, and an infinite number in the course of preparation. Some are fine and lasting enough to be eternal mansions.
Colored Stars.
In the cloudy morning we get only red light, but the sun is white. So Aldebaran and Betelguese may be girt by vapors, that only the strong red rays can pass. Again, an iron moderately heated gives out dull red light; becoming hotter, it emits white light. Sirius, Regulus, Vega, and Spica may be white from greater intensity of vibration. Procyon, Capella, and Polaris are yellow from less intensity of vibration. Again, burn salt in a white flame, and it turns to yellow; mix alcohol and boracic acid, ignite them, and a beautiful green flame results; alcohol and nitrate of strontia give red flame; alcohol and nitrate of barytes give yellow flame. So the composition of a sun, or the special development of anyone substance thereof at any time, may determine the color of a star.
The special glory of color in the stars is seen in the marked contrasts presented in the double and multiple stars. The larger star is usually white, still in the intensity of heat and vibration; the others, smaller, are somewhat cooled off, and hence present colors lower down the scale of vibration, as green, yellow, orange, and even red.
That stars should change color is most natural. Many causes would produce this effect. The ancients said Sirius was red. It is now white. The change that would most naturally follow mere age and cooling would be from white, through various colors, to red. We are charmed with the variegated flowers of our gardens of earth, but he who makes the fields blush with flowers under the warm kisses of the sun has planted his wider gardens of space with colored stars. "The rainbow flowers of the footstool, and the starry flowers of the throne," proclaim one being as the author of them all.
Clusters of Stars.
From double and multiple we naturally come to groups and clusters. Allusion has been made to the Hyades, Pleiades, etc. Everyone has noticed the Milky Way. It seems like two irregular streams of compacted stars. It is not supposed that they are necessarily nearer together than the stars in the sparse regions about the pole. But the 18,000,000 suns belonging to our system are arranged within a space represented by a flattened disk. If one hundred lights, three inches apart, are arranged on a hoop ten feet in diameter, they would be in a circle. Add a thousand or two more the same distance apart, filling up the centre, and extending a few inches on each side of the inner plane of the hoop: an eye in the centre, looking out toward the edge, would see a milky way of lights; looking out toward the sides or poles, would
Fig. 76.—Sprayed Cluster below η in Hercules. see comparatively few. It would seem as if this oblate spheroidal arrangement was the result of a revolution of all the suns composing the system. Jupiter and earth are flattened at the poles for the same reason.
In various parts of the heavens there are small globular well-defined clusters, and clusters very irregular in form, marked with sprays of stars. There is a cluster of this latter class in Hercules, just under the S, in Fig. 72. "Probably no one ever saw it with
Fig. 77.—Globular Cluster. a good telescope without a shout of wonder." Here is a cluster of the former class represented in Fig. 77. "The noble globular cluster, ω Centauri is beyond all comparison the richest and largest object of the kind in the heavens. Its stars are literally innumerable; and as their total light, when received by the naked eye, affects it hardly more than a star of the fifth to fourth magnitude, the minuteness of each star may be imagined."
There are two possibilities of thought concerning these clusters. Either that they belong to our stellar system, and hence the stars must be small and young, or they are another universe of millions of suns, so far way that the inconceivable distances between the stars are shrunken to a hand's-breadth, and their unbearable splendor of innumerable suns can only make a gray haze at the distance at which we behold them. The latter is the older and grander thought; the former the newer and better substantiated.
Nebulæ.
The gorgeous clusters we have been considering appear to the eye or the small telescope as little cloudlets of hazy light. One after another were resolved into stars; and the natural conclusion was, that all would yield and reveal themselves to be clustered suns, when we had telescopes of sufficient power. But the spectroscope, seeing not merely form but substance also, shows that some of them are not stars in any sense, but masses of glowing gas. Two of these nebulæ are visible to the naked eye: one in Andromeda (see Fig. 68), and one around the middle star of the sword of Orion, shown in Fig.78. A three-inch telescope resolves θ Orionis into the famous trapezium, and a nine-inch instrument sees two stars more. The shape of the nebula is changeable, and is hardly suggestive of the moulding influence of gravitation. It is probably composed of glowing nitrogen and hydrogen gases. Nebulæ are of all conceivable shapes—circular, annular, oval, lenticular, conical, spiral, snake-like, looped, and nameless. Compare the sprays of the Crab nebulæ above ζ Tauri, seen in Fig. 79, and the ring nebula, Fig. 80. This last possibly consists of stars, and is situated, as shown in Fig. 81, midway between β and γ Lyræ.
Fig. 78.—The great Nebula about the multiple Star θ Orionis. (See Frontispiece.)
When Herschel was sweeping the heavens with his telescope, and saw but few stars, he often said to his assistant, "Prepare to write; the nebulæ are coming." They are most abundant where the stars are least so. A zone about the heavens 30° wide, with the Milky Way in the centre, would include one-fourth of the celestial sphere; but instead of one-fourth, we find nine-tenths of the stars in this zone, and but one-tenth of the nebulæ.
These immense masses of unorganized matter are noticed to change their forms, vary their light greatly, but not quickly; they change through the ages. "God works slowly." He takes a thousand years to lift his hand off.
Fig. 79.—Crab Nebula, near ζ Tauri. (See Frontispiece.)
There are many unsolved problems connected with these strange bodies. Whether they belong to our system, or are beyond it, is not settled; the weight of evidence leans to the first view.
Variable Stars.
Fig. 80.—The Ring Nebula.
Our sun gives a variable amount of light, changing through a period of eleven years. Probably every star, if examined by methods sufficiently delicate and exact, would be found to be variable. The variations of some stars are so marked as to challenge investigation. β Lyræ (Fig. 81) has two maxima and minima of light. In three days it rises from magnitude 4-1/2 to 3-1/2; in a week falls to 4, and rises to 3-1/2; and in three days more drops to 4-1/2: it makes all these changes in thirteen days; but this period is constantly increasing. The variations of one hundred and forty-three stars have been well ascertained.
Fig. 81.—Constellation Lyra, showing place of the Ring Nebula.
Mira, or the Wonderful, in the Whale (Fig. 68), is easily found when visible. Align from Capella to the Pleiades, and as much farther, and four stars will be seen, situated thus:
*
* * *
The right-hand one is Mira. For half a month it shines as a star of the second magnitude. Then for three months it fades away, and lost to sight; going down even to the eleventh magnitude. But after five months its resurrection morning mes; and in three months more—eleven months in all—our Wonderful is in its full glory in the heavens. It its period and brilliancy are also variable. The star Megrez, δ in the Great Bear, has been growing dim for a century. In 1836 Betelguese was exceedingly variable, and continued so till 1840, when the changes became much less conspicuous. Algol (Fig. 68) has been already referred to. This slowly winking eye is of the second magnitude during 2d. 14h. Then it dozes off toward sleep for 4h. 24m., when it is nearly invisible. It wakes up during the same time; so that its period from maximum brilliancy to the same state again is 2d. 20h. 48m. Its recognizable changes are within five or six hours. As I write, March 25th, 1879, Algol gives its minimum light at 9h. 36m. P.M. It passes fifteen minima in 43d. 13m. There will therefore be another minimum May 7th, at 9h. 49m. Its future periods are easy to estimate. Perhaps it has some dark body revolving about it at frightful speed, in a period of less than three days. The period of its variability is growing shorter at an increasing rate. If its variability is caused by a dark body revolving about it, the orbit of that body is contracting, and the huge satellite will soon, as celestial periods are reckoned, commence to graze the surface of the sun itself, rebound again and again, and at length plunge itself into the central fire. Such an event would evolve heat enough to make Algol flame up into a star of the first magnitude, and perhaps out-blaze Sirius or Capella in our winter sky.
None of the causes for these changes we have been able to conjecture seem very satisfactory. The stars may have opaque planets revolving about them, shutting off their light; they may rotate, and have unequally illuminated sides; they may revolve in very elliptical orbits, so as to greatly alter their distance from us; they may be so situated in regard to zones of meteorites as to call down periodically vast showers; but none or all of these suppositions apply to all cases, if they do to any.
Temporary, New, and Lost Stars.
Besides regular movements to right and left, up and down, to and from us—changes in the intensity of illumination by changes of distance—besides variations occurring at regular and ascertainable intervals, there are stars called temporary, shining awhile and then disappearing; new, coming to a definite brightness, and so remaining; and lost, those whose first appearance was not observed, but which have utterly disappeared.
In November, 1572, a new star blazed out in Cassiopeia. Its place is shown in Fig. 67, χ γ being the stars
δ *
γ χ
in the seat of the chair, and δ being the first one in the back. This star was visible at noonday, and was brighter than any other star in the heavens. In January, 1573, it was less bright than Jupiter; in April it was below the second magnitude, and the last of May it utterly disappeared. It was as variable in color as in brilliancy. During its first two months, the period of greatest brightness, it was dazzling white, then became yellow, and finally as red as Mars or Aldebaran, and so expired.
A bright star was seen very near to the place of the Pilgrim, as the star of 1572 was called, in A.D. 945 and 1264. A star of the tenth magnitude is now seen brightening slowly almost exactly in the same place. It is possible that this is a variable star of a period of about three hundred and ten years, and will blaze out again about 1885.
But we have had, within a few years, fine opportunities to study, with improved instruments, two new stars; On the evening of May 12th, 1866, a star of the second magnitude was observed in the Northern Crown, where no star above the fifth magnitude had been twenty-four hours before. In Argelander's chart a star of the tenth magnitude occupies the place. May 13th it had declined to the third magnitude, May 16th to the fourth, May 17th to the fifth, May 19th to the seventh, May 31st to the ninth, and has since diminished to the tenth. The spectroscope showed it to be a star in the usual condition; but through the usual colored spectrum, crossed with bright lines, shone four bright lines, two of which indicated glowing hydrogen. Here was plenty of proof that an unusual amount of this gas had given this sun its sudden flame. As the hydrogen burned out the star grew dim.
Two theories immediately presented themselves: First, that vast volumes had been liberated from within the orb by some sudden breaking up of the doors of its great deeps; or, second, this star had precipitated upon itself, by attraction, some other sun or planet, the force of whose impact had been changed into heat.
Though we see the liberated hydrogen of our sun burst up with sudden flame, it can hardly be supposed that enough could be liberated at once to increase the light and heat one hundred-fold.
In regard to the second theory, it is capable of proof that two suns half as large as ours, moving at a velocity of four hundred and seventy-six miles per second, would evolve heat enough to supply the radiation of our sun for fifty million years. How could it be possible for a sun like this newly blazing orb to cool off to such a degree in a month? Besides, there would not be one chance in a thousand for two orbs to come directly together. They would revolve about each other till a kind of grazing contact of grinding worlds would slowly kindle the ultimate heat.
It is far more likely that this star encountered an enormous stream of meteoric bodies, or perhaps absorbed a whole comet, that laid its million leagues of tail as fuel on the central fire. Only let it be remembered that the fuel is far more force than substance. Allusion has already been made to the sudden brightening of our sun on the first day of September, 1859. That was caused, no doubt, by the fall of large meteors, following in the train of the comet of 1843, or some other comet. What the effect would have been, had the whole mass of the comet been absorbed, cannot be imagined.
Another new star lately appeared in Cygnus, near the famous star 61—the first star in the northern hemisphere whose distance was determined. It was first seen November 24th, 1876, as a third magnitude star of a yellow color. By December 2d it had sunk to the fourth magnitude, and changed to a greenish color. It had then three bright hydrogen lines, the strong double sodium line, and others, which made, it strongly resemble the spectrum of the chromosphere of our sun. An entirely different result appeared in the fading of these two stars. In the case of the star in the Crown, the extraordinary light was the first to fade, leaving the usual stellar spectrum. In the case of the star in Cygnus, the part of the spectrum belonging to stellar light was the first to fade, leaving the bright lines; that is, the gas of one gave way to regular starlight, and the starlight of the other having faded, the regular light of the glowing gas continued. By some strange oversight, no one studied the star again for six months. In September and November, 1877, the light of this star was found to be blue, and not to be starlight at all. It had no rainbow spectrum, only one kind of rays, and hence only one color. Its sole spectroscopic line is believed to be that of glowing nitrogen gas. We have then, probably, in the star of 1876, a body shining by a feeble and undiscernible light, surrounded by a discernible immensity of light of nitrogen gas. This is its usual condition; but if a flight of meteors should raise the heat of the central body so as to outshine the nebulous envelope, we should have the conditions we discovered in November, 1876. But a rapid cooling dissipates the observable light of all colors, and leaves only the glowing gas of one color.
Movements of Stars.
We call the stars fixed, but motion and life are necessary to all things. Besides the motion in the line of sight described already, there is motion in every other conceivable direction. We knew Sirius moved before we had found the cause. We know that our sun moves back and forth in his easy bed one-half his vast diameter, as the larger planets combine their influence on one side or the other.
The sun has another movement. We find the stars in Hercules gradually spreading from each other. Hercules's brawny limbs grow brawnier every century. There can be but one cause: we are approaching that quarter of the heavens. (See
, Fig. 72.) We are even able to compute the velocity of our approach; it is four miles a second. The stars in the opposite quarter of the heavens in Argo are drawing nearer together.
This movement would have no effect on the apparent place of the stars at either pole, if they were all equally distant; but it must greatly extend or contract the apparent space between them, since they are situated at various distances.
Independent of this, the stars themselves are all in motion, but so vast is the distance from which we observe them that it has taken an accumulation of centuries before they could be made measurable. A train going forty miles an hour, seen from a distance of two miles, almost seems to stand still. Arcturus moves through space three times as fast as the earth, but it takes a century to appear to move the eighth part of the diameter of the moon. There is a star in the Hunting Dogs, known as 1830 Groombridge, which has a velocity beyond what all the attraction of the matter of the known universe could give it. By the year 9000 it may be in Berenice's Hair.
Some stars have a common movement, being evidently related together. A large proportion of the brighter stars between Aldebaran and the Pleiades have a common motion eastward of about ten seconds a century. All the angles marked by α, β, γ, χ Orionis will be altered in different directions; λ is moving toward γ. λ and ε will appear as a double star. In A.D. 50,000 Procyon will be nearer χ Orionis than Rigel now is, and Sirius will be in line with α and χ Orionis. All the stars of the Great Dipper, except Benetnasch and Dubhe, have a common motion somewhat in the direction of Thuban (Fig. 67), while the two named have a motion nearly opposite. In 36,000 years the end of the Dipper will have fallen out so that it will hold no water, and the handle will be broken square off at Mizar. "The Southern Cross," says Humboldt, "will not always keep its characteristic form, for its four stars travel in different directions with unequal velocities. At the present time it is not known how many myriads of years must elapse before its entire dislocation."
These movements are not in fortuitous or chaotic ways, but are doubtless in accordance with some perfect plan. We have climbed up from revolving earth and moon to revolving planets and sun, in order to understand how two or ten suns can revolve about a common centre. Let us now leap to the grander idea that all the innumerable stars of a winter night not only loan, but must revolve about some centre of gravity. Men have been looking for a central sun of suns, and have not found it. None is needed. Two suns can balance about a point; all suns can swing about a common centre. That one unmoving centre may be that city more gorgeous than Eastern imagination ever conceived, whose pavement is transparent gold, whose walls are precious stones, whose light is life, and where no dark planetary bodies ever cast shadows. There reigns the King and Lord of all, and ranged about are the far-off provinces of his material systems. They all move in his sight, and receive power from a mind that never wearies.
XI.
THE WORLDS AND THE WORD.
"The worlds were framed by the word of God."—Heb. xi., 3.
"Mysterious night! when our first parent knew thee
From report divine, and heard thy name,
Did he not tremble for this lovely frame,
This glorious canopy of light and blue?
Yet, 'neath a curtain of translucent dew,
Bathed in the rays of the great setting flame,
Hesperus, with all the host of heaven, came,
And lo! creation widened in man's view.
Who could have thought such darkness lay concealed
Within thy beams, O Sun! Oh who could find,
Whilst fruit and leaf and insect stood revealed,
That to such countless worlds thou mad'st us blind!
Why do we then shun death with anxious strife?
If light conceal so much, wherefore not life?"
BLANCO WHITE.
THE WORLDS AND THE WORD.
Men have found the various worlds to be far richer than they originally thought. They have opened door after door in their vast treasuries, have ascended throne after throne of power, and ruled realms of increasing extent. We have no doubt that unfoldings in the future will amaze even those whose expectations have been quickened by the revealings of the past. What if it be found that the Word is equally inexhaustible?
After ages of thought and discovery we have come out of the darkness and misconceptions of men. We believe in no serpent, turtle, or elephant supporting the world; no Atlas holding up the heavens; no crystal domes, "with cycles and epicycles scribbled o'er." What if it be found that one book, written by ignorant men, never fell into these mistakes of the wisest! Nay, more, what if some of the greatest triumphs of modern science are to be found plainly stated in a book older than the writings of Homer? If suns, planets, and satellites, with all their possibilities of life, changes of flora and fauna, could be all provided for, as some scientists tell us, in the fiery star-dust of a cloud, why may not the same Author provide a perpetually widening river of life in his Word? As we believe He is perpetually present in his worlds, we know He has promised to be perpetually present in his Word, making it alive with spirit and life.
The wise men of the past could not avoid alluding to ideas the falsity of which subsequent discovery has revealed; but the writers of the Bible did avoid such erroneous allusion. Of course they referred to some things, as sunrise and sunset, according to appearance; but our most scientific books do the same to-day. That the Bible could avoid teaching the opposite of scientific truth proclaims that a higher than human wisdom was in its teaching.
That negative argument is strong, but the affirmative argument is much stronger. The Bible declares scientific truth far in advance of its discovery, far in advance of man's ability to understand its plain declarations. Take a few conspicuous illustrations:
The Bible asserted from the first that the present order of things had a beginning. After ages of investigation, after researches in the realms of physics, arguments in metaphysics, and conclusions by the necessities of resistless logic, science has reached the same result.
The Bible asserted from the first that creation of matter preceded arrangement. It was chaos—void—without form—darkness; arrangement was a subsequent work. The world was not created in the form it was to have; it was to be moulded, shaped, stratified, coaled, mountained, valleyed, subsequently. All of which science utters ages afterward.
The Bible did not hesitate to affirm that light existed before the sun, though men did not believe it, and used it as a weapon against inspiration. Now we praise men for having demonstrated the oldest record.
It is a recently discovered truth of science that the trata of the earth were formed by the action of water, and the mountains were once under the ocean. It is an idea long familiar to Bible readers: "Thou coverest the earth with the deep as with a garment. The waters stood above the mountains. At thy rebuke they fled; at the voice of thy thunder they hasted away. The mountains ascend; the valleys descend into the place thou hast founded for them." Here is a whole volume of geology in a paragraph. The thunder of continental convulsions is God's voice; the mountains rise by God's power; the waters haste away unto the place God prepared for them. Our slowness of geological discovery is perfectly accounted for by Peter. "For of this they are willingly ignorant, that by the word of God there were heavens of old, and land framed out of water, and by means of water, whereby the world that then was, being overflowed by water, perished." We recognize these geological subsidences, but we read them from the testimony of the rocks more willingly than from the testimony of the Word.
Science exults in having discovered what it is pleased to call an order of development on earth—tender grass, herb, tree; moving creatures that have life in the waters; bird, reptile, beast, cattle, man. The Bible gives the same order ages before, and calls it God's successive creations.
During ages on ages man's wisdom held the earth to be flat. Meanwhile, God was saying, century after century, of himself, "He sitteth upon the sphere of the earth" (Gesenius).
Men racked their feeble wits for expedients to uphold the earth, and the best they could devise were serpents, elephants, and turtles; beyond that no one had ever gone to see what supported them. Meanwhile, God was perpetually telling men that he had hung the earth upon nothing.
Men were ever trying to number the stars. Hipparchus counted one thousand and twenty-two; Ptolemy one thousand and twenty-six; and it is easy to number those visible to the naked eye. But the Bible said, when there were no telescopes to make it known, that they were as the sands of the sea, "innumerable." Science has appliances of enumeration unknown to other ages, but the space-penetrating telescopes and tastimeters reveal more worlds—eighteen millions in a single system, and systems beyond count—till men acknowledge that the stars are innumerable to man. It is God's prerogative "to number all the stars; he also calleth them all by their names."
Torricelli's discovery that the air had weight was received with incredulity. For ages the air had propelled ships, thrust itself against the bodies of men, and overturned their works. But no man ever dreamed that weight was necessary to give momentum. During all the centuries it had stood in the Bible, waiting for man's comprehension: "He gave to the air its weight" (Job xxviii. 25).
The pet science of to-day is meteorology. The fluctuations and variations of the weather have hitherto baffled all attempts at unravelling them. It has seemed that there was no law in their fickle changes. But at length perseverance and skill have triumphed, and a single man in one place predicts the weather and winds for a continent. But the Bible has always insisted that the whole department was under law; nay, it laid down that law so clearly, that if men had been willing to learn from it they might have reached this wisdom ages ago. The whole moral law is not more clearly crystallized in "Thou shalt love the Lord thy God with all thy heart, and thy neighbor as thyself," than all the fundamentals of the science of meteorology are crystallized in these words: "The wind goeth toward the south (equator), and turneth about (up) unto the north; it whirleth about continually, and the wind returneth again according to his circuits (established routes). All the rivers run into the sea; yet the sea is not full: unto the place from whence the rivers come, thither they return again" (Eccles. i. 6, 7).
Those scientific queries which God propounded to Job were unanswerable then; most of them are so now. "Whereon are the sockets of the earth made to sink?" Job never knew the earth turned in sockets; much less could he tell where they were fixed. God answered this question elsewhere. "He stretcheth the north (one socket) over the empty place, and hangeth the earth upon nothing." Speaking of the day-spring, God says the earth is turned to it, as clay to the seal. The earth's axial revolution is clearly recognized. Copernicus declared it early; God earlier.
No man yet understands the balancing of the clouds, nor the suspension of the frozen masses of hail, any more than Job did.
Had God asked if he had perceived the length of the earth, many a man to-day could have answered yes. But the eternal ice keeps us from perceiving the breadth of the earth, and shows the discriminating wisdom of the question.
The statement that the sun's going is from the end of the heaven, and his circuit to the ends of it, has given edge to many a sneer at its supposed assertion that the sun went round the earth. It teaches a higher truth—that the sun itself obeys the law it enforces on the planets, and flies in an orbit of its own, from one end of heaven in Argo to the other in Hercules.
So eminent an astronomer and so true a Christian as General Mitchell, who understood the voices in which the heavens declare the glory of God, who read with delight the Word of God em bodied in worlds, and who fed upon the written Word of God as his daily bread, declared, "We find an aptness and propriety in all these astronomical illustrations, which are not weakened, but amazingly strengthened, when viewed in the clear light of our present knowledge." Herschel says, "All human discoveries seem to be made only for the purpose of confirming more strongly the truths that come from on high, and are contained in the sacred writings." The common authorship of the worlds and the Word becomes apparent; their common unexplorable wealth is a necessary conclusion.
Since the opening revelations of the past show an unsearchable wisdom in the Word, has that Word any prophecy concerning mysteries not yet understood, and events yet in the future? There are certain problems as yet insolvable. We have grasped many clews, and followed them far into labyrinths of darkness, but not yet through into light.
We ask in vain, "What is matter?" No man can answer. We trace it up through the worlds, till its increasing fineness, its growing power, and possible identity of substance, seem as if the next step would reveal its spirit origin. What we but hesitatingly stammer, the Word boldly asserts.
We ask, "What is force?" No man can answer. We recognize its various grades, each subordinate to the higher—cohesion dissolvable by heat; the affinity of oxygen and hydrogen in water overcome by the piercing intensity of electric fire; rivers seeking the sea by gravitation carried back by the sun; rock turned to soil, soil to flowers; and all the forces in nature measurably subservient to mind. Hence we partly understand what the Word has always taught us, that all lower forces must be subject to that which is highest. How easily can seas be divided, iron made to swim, water to burn, and a dead body to live again, if the highest force exert itself over forces made to be mastered. When we have followed force to its highest place, we always find ourselves considering the forces of mind and spirit, and say, in the words of the Scriptures, "God is spirit."
We ask in vain what is the end of the present condition of things. We have read the history of our globe with great difficulty—its prophecy is still more difficult. We have asked whether the stars form a system, and if so, whether that system is permanent. We are not able to answer yet. We have said that the sun would in time become as icy cold and dead as the moon, and then the earth would wander darkling in the voids of space. But the end of the earth, as prophesied in the Word, is different: "The heavens will pass away with a rushing noise, and the elements will be dissolved with burning heat, and the earth and the works therein will be burned up." The latest conclusions of science point the same way. The great zones of uncondensed matter about the sun seem to constitute a resisting medium as far as they reach. Encke's comet, whose orbit comes near the sun, is delayed. This gives gravitation an overwhelming power, and hence the orbit is lessened and a revolution accomplished more quickly. Faye's comet, which wheels beyond the track of Mars, is not retarded. If the earth moves through a resisting substance, its ultimate fall into the sun is certain. Whether in that far future the sun shall have cooled off, or will be still as hot as to-day, Peter's description would admirably portray the result of the impact. Peters description, however, seems rather to indicate an interference of Divine power at an appropriate time before a running down of the system at present in existence, and a re-endowment of matter with new capabilities.
After thousands of years, science discovered the true way to knowledge. It is the Baconian way of experiment, of trial, of examining the actual, instead of imagining the ideal. It is the acceptance of the Scriptural plan. "If a man wills to do God's will, he shall know." Oh taste and see! In science men try hypotheses, think the best they can, plan broadly as possible, and then see if facts sustain the theory. They have adopted the Scriptural idea of accepting a plan, and then working in faith, in order to acquire knowledge. Fortunately, in the work of salvation the plan is always perfect. But, in order to make the trial under the most favorable circumstances, there must be faith. The faith of science is amazing; its assertions of the supersensual are astounding. It affirms a thousand things that cannot be physically demonstrated: that the flight of a rifle-ball is parabolic; that the earth has poles; that gages are made of particles; that there are atoms; that an electric light gives ten times as many rays as are visible; that there are sounds to which we are deaf, sights to which we are blind; that a thousand objects and activities are about us, for the perception of which we need a hundred senses instead of five. These faiths have nearly all led to sight; they have been rewarded, and the world's wealth of knowledge is the result. The Word has ever asserted the supersensuous, solicited man's faith, and ever uplifted every true faith into sight. Lowell is partly right when he sings:
"Science was Faith once; Faith were science now,
Would she but lay her bow and arrows by,
And aim her with the weapons of the time."
Faith laid her bow and arrows by before men in pursuit of worldly knowledge discovered theirs.
What becomes of the force of the sun that is being spent to-day? It is one of the firmest rocks of science that there can be no absolute destruction of force. It is all conserved somehow. But how? The sun contracts, light results, and leaps swiftly into all encircling space. It can never be returned. Heat from stars invisible by the largest telescope enters the tastimeter, and declares that that force has journeyed from its source through incalculable years. There is no encircling dome to reflect all this force back upon its sources. Is it lost? Science, in defence of its own dogma, should assign light a work as it flies in the space which we have learned cannot be empty. There ought to be a realm where light's inconceivable energy is utilized in building a grander universe, where there is no night. Christ said, as he went out of the seen into the unseen, "I go to prepare a place for you;" and when John saw it in vision the sun had disappeared, the moon was gone, but the light still continued.
Science finds matter to be capable of unknown refinement; water becomes steam full of amazing capabilities: we add more heat, superheat the steam, and it takes on new aptitudes and uncontrollable energy. Zinc burned in acid becomes electricity, which enters iron as a kind of soul, to fill all that body with life. All matter is capable of transformation, if not transfiguration, till it shines by the light of an indwelling spirit. Scripture readers know that bodies and even garments can be transfigured, be made αστραπτων (Luke xxiv. 4), shining with an inner light. They also look for new heavens and a new earth endowed with higher powers, fit for perfect beings.
When God made matter, so far as our thought permits us to know, he simply made force stationary and unconscious. Thereafter he moves through it with his own will. He can at any time change these forces, making air solid, water and rock gaseous, a world a cloud, or a fire-mist a stone. He may at some time restore all force to consciousness again, and make every part of the universe thrill with responsive joy. "Then shall the mountains and the hills break forth before you into singing, and all the trees of the field clap their hands." One of these changes is to come to the earth. Amidst great noise the heaven shall flee, the earth be burned up, and all their forces be changed to new forms. Perhaps it will not then be visible to mortal eyes. Perhaps force will then be made conscious, and the flowers thereafter return our love as much as lower creatures do now. A river and tree of life may be consciously alive, as well as give life. Poets that are nearest to God are constantly hearing the sweet voices of responsive feeling in nature.
"For his gayer hours
She has a voice of gladness and a smile,
And eloquence of beauty; and she glides
Into his darker musings with a mild
And gentle sympathy, that steals away
Their sharpness ere he is aware."
Prophets who utter God's voice of truth say, "The wilderness and the solitary place shall be glad for holy men, and the desert shall rejoice and blossom as the rose. It shall blossom abundantly and rejoice, even with joy and singing."
Distinguish clearly between certainty and surmise. The certainty is that the world will pass through catastrophic changes to a perfect world. The grave of uniformitarianism is already covered with grass. He that creates promises to complete. The invisible, imponderable, inaudible ether is beyond our apprehension; it transmits impressions 186,000 miles a second; it is millions of times more capable and energetic than air. What may be the bounds of its possibility none can imagine, for law is not abrogated nor designs disregarded as we ascend into higher realms. Law works out more beautiful designs with more absolute certainty. Why should there not be a finer universe than this, and disconnected from this world altogether—a fit home for immortal souls? It is a necessity.
God filleth all in all, is everywhere omnipotent and wise. Why should there be great vacuities, barren of power and its creative outgoings? God has fixed the stars as proofs of his agency at some points in space. But is it in points only? Science is proud of its discovery that what men once thought to be empty space is more intensely active than the coarser forms of matter can be. But in the long times which are past Job glanced at earth, seas, clouds, pillars of heaven, stars, day, night, all visible things, and then added: "Lo! these are only the outlying borders of his works. What a whisper of a word we hear of Him! The thunder of his power who can comprehend?"
Science discovers that man is adapted for mastery in this world. He is of the highest order of visible creatures. Neither is it possible to imagine an order of beings generically higher to be connected with the conditions of the material world. This whole secret was known to the author of the oldest writing. "And God blessed them, and God said unto them: Be fruitful, and multiply, and replenish the earth, and subdue it: and have dominion over the fish of the sea, and over the fowl of the air, and over every living thing that moveth upon the earth." The idea is never lost sight of in the sacred writings. And while every man knows he must fail in one great contest, and yield himself to death, the later portions of the divine Word offer him victory even here. The typical man is commissioned to destroy even death, and make man a sharer in the victory. Science babbles at this great truth of man's position like a little child; Scripture treats it with a breadth of perfect wisdom we are only beginning to grasp.
Science tells us that each type is prophetic of a higher one. The whale has bones prophetic of a human hand. Has man reached perfection? Is there no prophecy in him? Not in his body, perhaps; but how his whole soul yearns for greater beauty. As soon as he has found food, the savage begins to carve his paddle, and make himself gorgeous with feathers. How man yearns for strength, subduing animal and cosmic forces to his will! How he fights against darkness and death, and strives for perfection and holiness! These prophecies compel us to believe there is a world where powers like those of electricity and luminiferous ether are ever at hand; where its waters are rivers of life, and its trees full of perfect healing, and from which all unholiness is forever kept. What we infer, Scripture affirms.
Science tells us there has been a survival of the fittest. Doubtless this is so. So in the future there will be a survival of the fittest. What is it? Wisdom, gentleness, meekness, brotherly kindness, and charity. Over those who have these traits death hath no permanent power. The caterpillar has no fear as he weaves his own shroud; for there is life within fit to survive, and ere long it spreads its gorgeous wings, and flies in the air above where once it crawled. Man has had two states of being already. One confined, dark, peculiarly nourished, slightly conscious; then he was born into another—wide, differently nourished, and intensely conscious. He knows he may be born again into a life wider yet, differently nourished, and even yet more intensely conscious. Science has no hint how a long ascending series of developments crowned by man may advance another step, and make man ισαγγελοσ—equal to angels. But the simplest teaching of Scripture points out a way so clear that a child need not miss the glorious consummation.
When Uranus hastened in one part of its orbit, and then retarded, and swung too wide, men said there must be another attracting world beyond; and, looking there, Neptune was found. So, when individual men are so strong that nations or armies cannot break down their wills; so brave, that lions have no terrors; so holy, that temptation cannot lure nor sin defile them; so grand in thought, that men cannot follow; so pure in walk, that God walks with them—let us infer an attracting world, high and pure and strong as heaven. The eleventh chapter of Hebrews is a roll-call of heroes of whom this world was not worthy. They were tortured, not accepting deliverance, that they might obtain a better resurrection. The world to come influenced, as it were, the orbits of their souls, and when their bodies fell off, earth having no hold on them, they sped on to their celestial home. The tendency of such souls necessitates such a world.
The worlds and the Word speak but one language, teach but one set of truths. How was it possible that the writers of the earlier Scriptures described physical phenomena with wonderful sublimity, and with such penetrative truth? They gazed upon the same heaven that those men saw who ages afterward led the world in knowledge. These latter were near-sighted, and absorbed in the pictures on the first veil of matter; the former were far-sighted, and penetrated a hundred strata of thickest material, and saw the immaterial power behind. The one class studied the present, and made the gravest mistakes; the other pierced the uncounted ages of the past, and uttered the profoundest wisdom. There is but one explanation. He that planned and made the worlds inspired the Word.
Science and religion are not two separate departments, they are not even two phases of the same truth. Science has a broader realm in the unseen than in the seen, in the source of power than in the outcomes of power, in the sublime laws of spirit than in the laws of matter; and religion sheds its beautiful light over all stages of life, till, whether we eat or whether we drink, or whatsoever we do, we may do all for the glory of God. Science and religion make common confession that the great object of life is to learn and to grow. Both will come to see the best possible means, for the attainment of this end is a personal relation to a teacher who is the Way, the Truth, and the Life.
XII.
THE ULTIMATE FORCE.
"In the beginning was the Word, and the Word was with God, and the Word was God. The same was in the beginning with God. All things became by him, and without him was not anything made that was made * * * and by him all things stand together."
"O thou eternal one; whose presence blight
All space doth occupy—all motion guide—
Thou from primeval nothingness didst call
First chaos, then existence. Lord, on thee
Eternity had its foundation: all
Sprung forth from thee—of light, joy, harmony,
Sole origin: all life, all beauty thine.
Thy word created all, and doth create;
Thy splendor fills all space with rays divine;
Thou art and wert, and shalt be glorious, great;
Life-giving, life-sustaining Potentate,
Thy chains the unmeasured universe surround—
Upheld by thee, by thee inspired with breath."
DERZHAVIN.
THE ULTIMATE FORCE.
The universe is God's name writ large. Thought goes up the shining suns as golden stairs, and reads the consecutive syllables—all might, and wisdom, and beauty; and if the heart be fine enough and pure enough, it also reads everywhere the mystic name of love. Let us learn to read the hieroglyphics, and then turn to the blazonry of the infinite page. That is the key-note; the heavens and the earth declaring the glory of God, and men with souls attuned listening.
To what voices shall we listen first? Stand on the shore of a lake set like an azure gem among the bosses of green hills. The patter of rain means an annual fall of four cubic feet of water on every square foot of it. It weighs two hundred and forty pounds to the cubic foot, one hundred million tons on the surface of a little sheet of water twenty miles long by three wide. Now, all that weight of falling rain had to be lifted, a work compared to which taking up mountains and casting them into the sea is pastime. All that water had to be taken up before it could be cast down, and carried hundreds of miles before it could be there. You have heard Niagara's thunder; have stood beneath the falling immensity; seen it ceaselessly poured from an infinite hand; felt that you would be ground to atoms if you fell into that resistless flood. Well, all that infinity of water had to be lifted by main force, had to be taken up out of the far Pacific, brought over the Rocky Mountains; and the Mississippi keeps bearing its wide miles of water to the Gulf, and Niagara keeps thundering age after age, because there is power somewhere to carry the immeasurable floods all the time the other way in the upper air.
But this is only the Alpha of power. Professor Clark, of Amherst, Massachusetts, found that such a soft and pulpy thing as a squash had so great a power of growth that it lifted three thousand pounds, and held it day and night for months. It toiled and grew under the growing weight, compacting its substance like oak to do the work. All over the earth this tremendous power and push of life goes on—in the little star-eyed flowers that look up to God only on the Alpine heights, in every tuft of grass, in every acre of wheat, in every mile of prairie, and in every lofty tree that wrestles with the tempests of one hundred winters. But this is only the B in the alphabet of power.
Rise above the earth, and you find the worlds tossed like playthings, and hurled seventy times as fast as a rifle-ball, never an inch out of place or a second out of time. But this is only the C in the alphabet of power.
Rise to the sun. It is a quenchless reservoir of high-class energy. Our tornadoes move sixty miles an hour, those of the sun twenty thousand miles an hour. A forest on fire sends its spires of flame one hundred feet in air, the sun sends its spires of flame two hundred thousand miles. All our fires exhaust the fuel and burn out. If the sun were pure coal, it would burn out in five thousand years; and yet this sea of unquenchable flame seethes and burns, and rolls and vivifies a dozen worlds, and flashes life along the starry spaces for a million years without any apparent diminution. It sends out its power to every planet, in the vast circle in which it lies. It fills with light not merely a whole circle, but a dome; not merely a dome above, but one below, and on every side. At our distance of ninety-two and a half millions of miles, the great earth feels that power in gravitation, tides, rains, winds, and all possible life—every part is full of power. Fill the earth's orbit with a circle of such receptive worlds—seventy thousand instead of one—everyone would be as fully supplied with power from this central source. More. Fill the whole dome, the entire extent of the surrounding sphere, bottom, sides, top, a sphere one hundred and eighty-five million miles in diameter, and everyone of these uncountable worlds would be touched with the same power as one; each would thrill with life. This is only the D of the alphabet of power. And glancing up to the other suns, one hundred, five hundred, twelve hundred times as large, double, triple, septuple, multiple suns, we shall find power enough to go through the whole alphabet in geometrical ratio; and then in the clustered suns, galaxies, and nebulæ, power enough still unrepresented by single letters to require all combinations of the alphabet of power. What is the significance of this single element of power? The answer of science to-day is "correlation," the constant evolution of one force from another. Heat is a mode of motion, motion a result of heat. So far so good. But are we mere reasoners in a circle? Then we would be lost men, treading our round of death in a limitless forest. What is the ultimate? Reason out in a straight line. No definition of matter allows it to originate force; only mind can do that. Hence the ultimate force is always mind. Carry your correlation as far as you please—through planets, suns, nebulæ, concretionary vortices, and revolving fire-mist—there must always be mind and will beyond. Some of that willpower that works without exhaustion must take its own force and render it static, apparent. It may do this in such correlated relation that that force shall go on year after year to a thousand changing forms; but that force must originate in mind.
Go out in the falling rain, stand under the thunderous Niagara, feel the immeasurable rush of life, see the hanging worlds, and trace all this—the carried rain, the terrific thunder with God's bow of peace upon it, and the unfailing planets hung upon nothing—trace all this to the orb of day blazing in perpetual strength, but stop not there. Who made the sun? Contrivance fills all thought. Who made the sun? Nature says there is a mind, and that mind is Almighty. Then you have read the first syllables, viz., being and power.
What is the continuous relation of the universe to the mind from which it derived its power? Some say that it is the relation of a wound-up watch to the winder. It was dowered with sufficient power to revolve its ceaseless changes, and its maker is henceforth an absentee God. Is it? Let us have courage to see. For twenty years one devotes ten seconds every night to putting a little force into a watch. It is so arranged that it distributes that force over twenty-four hours. In that twenty years more power has been put into that watch than a horse could exert at once. But suppose one had tried to put all that force into the watch at once: it would have pulverized it to atoms. But supposing the universe had been dowered with power at first to run its enormous rounds for twenty millions of years. It is inconceivable; steel would be as friable as sand, and strengthless as smoke, in such strain.
We have discovered some of the laws of the force we call gravitation. But what do we know of its essence? How it appears to act we know a little, what it is we are profoundly ignorant. Few men ever discuss this question. All theories are sublimely ridiculous, and fail to pass the most primary tests. How matter can act where it is not, and on that with which it has no connection, is inconceivable.
Newton said that anyone who has in philosophical matters a competent faculty of thinking, could not admit for a moment the possibility of a sun reaching through millions of miles, and exercising there an attractive power. A watch may run if wound up, but how the watch-spring in one pocket can run the watch in another is hard to see. A watch is a contrivance for distributing a force outside of itself, and if the universe runs at all on that principle, it distributes some force outside of itself.
Le Sage's theory of gravitation by the infinitive hail of atoms cannot stand a minute, hence we come back as a necessity of thought to Herschel's statement. "It is but reasonable to regard gravity as a result of a consciousness and a will existent somewhere." Where? I read an old book speaking of these matters, and it says of God, He hangeth the earth upon nothing; he upholdeth constantly all things by the word of his power. By him all things consist or hold together. It teaches an imminent mind; an almighty, constantly exerted power. Proof of this starts up on every side. There is a recognized tendency in all high-class energy to deteriorate to a lower class. There is steam in the boiler, but it wastes without fuel. There is electricity in the jar, but every particle of air steals away a little, unless our conscious force is exerted to regather it. There is light in the sun, but infinite space waits to receive it, and takes it swift as light can leap. We said that if the sun were pure coal, it would burn out in five thousand years, but it blazes undimmed by the million. How can it? There have been various theories: chemical combustion, it has failed; meteoric impact, it is insufficient; condensation, it is not proved; and if it were, it is an intermediate step back to the original cause of condensation. The far-seeing eyes see in the sun the present active power of Him who first said, "Let there be light," and who at any moment can meet a Saul in the way to Damascus with a light above the brightness of the sun—another noon arisen on mid-day; and of whom it shall be said in the eternal state of unclouded brightness, where sun and moon are no more, "The glory of the Lord shall lighten it, and the Lamb is the light thereof."
But suppose matter could be dowered, that worlds could have a gravitation, one of two things must follow: It must have conscious knowledge of the position, exact weight, and distance of every atom, mass, and world, in order to proportion the exact amount of gravity, or it must fill infinity with an omnipresent attractive power, pulling in myriads of places at nothing; in a few places at worlds. Every world must exert an infinitely extended power, but myriads of infinities cannot be in the same space. The solution is, one infinite power and conscious will.
To see the impossibility of every other solution, join in the long and microscopic hunt for the ultimate particle, the atom; and if found, or if not found, to a consideration of its remarkable powers. Bring telescopes and microscopes, use all strategy, for that atom is difficult to catch. Make the first search with the microscope: we can count 112,000 lines ruled on a glass plate inside of an inch. But we are here looking at mountain ridges and valleys, not atoms. Gold can be beaten to the 1/340000 of an inch. It can be drawn as the coating of a wire a thousand times thinner, to the 1/340000000 of an inch. But the atoms are still heaped one upon another.
Take some of the infusorial animals. Alonzo Gray says millions of them would not equal in bulk a grain of sand. Yet each of them performs the functions of respiration, circulation, digestion, and locomotion. Some of our blood-vessels are not a millionth of our size. What must be the size of the ultimate particles that freely move about to nourish an animal whose totality is too small to estimate? A grain of musk gives off atoms enough to scent every part of the air of a room. You detect it above, below, on every side. Then let the zephyrs of summer and the blasts of winter sweep through that room for forty years, bearing out into the wide world miles on miles of air, all perfumed from the atoms of that grain of musk, and at the end of the forty years the weight of musk has not appreciably diminished. Yet uncountable myriads on myriads of atoms have gone.
Our atom is not found yet. Many are the ways of searching for it which we cannot stop to consider. We will pass in review the properties with which materialists preposterously endow it. It is impenetrable and indivisible, though some atoms are a hundred times larger than others. Each has definite shape; some one shape, and some another. They differ in weight, in quantity of combining power, in quality of combining power. They combine with different substances, in certain exact assignable quantities. Thus one atom of hydrogen combines with eighty of bromine, one hundred and sixty of mercury, two hundred and forty of boron, three hundred and twenty of silicon, etc. Hence our atom of hydrogen must have power to count, or at least to measure, or be cognizant of bulk. Again, atoms are of different sorts, as positive or negative to electric currents. They have power to take different shapes with different atoms in crystallization; that is, there is a power in them, conscious or otherwise, that the same bricks shall make themselves into stables or palaces, sewers or pavements, according as the mortar varies. "No, no," you cry out; "it is only according as the builder varies his plan." There is no need to rehearse these powers much further; though not one-tenth of the supposed innate properties of this infinitesimal infinite have been recited—properties which are expressed by the words atomicity, quantivilence, monad, dryad, univalent, perissad, quadrivalent, and twenty other terms, each expressing some endowment of power in this in visible atom. Refer to one more presumed ability, an ability to keep themselves in exact relation of distance and power to each other, without touching.
It is well known that water does not fill the space it occupies. We can put eight or ten similar bulks of different substances into a glass of water without greatly increasing its bulk, some actually diminishing it. A philosopher has said that the atoms of oxygen and hydrogen are probably not nearer to each other in water than one hundred and fifty men would be if scattered over the surface of England, one man to four hundred square miles.
The atoms of the luminiferous ether are infinitely more diffused, and yet its interactive atoms can give four hundred millions of light-waves a second. And now, more preposterous than all, each atom has an attractive power for every other atom of the universe. The little mote, visible only in a sunbeam streaming through a dark room, and the atom, infinitely smaller, has a grasp upon the whole world, the far-off sun, and the stars that people infinite space. The Sage of Concord advises you to hitch your wagon to a star. But this is hitching all stars to an infinitesimal part of a wagon. Such an atom, so dowered, so infinite, so conscious, is an impossible conception.
But if matter could be so dowered as to produce such results by mechanism, could it be dowered to produce the results of intelligence? Could it be dowered with power of choice without becoming mind? If oxygen and hydrogen could be made able to combine into water, could the same unformed matter produce in one case a plant, in another a bird, in a third a man; and in each of these put bone, brain, blood, and nerve in proper relations? Matter must be mind, or subject to a present working mind, to do this. There must be a present intelligence directing the process, laying the dead bricks, marble, and wood in an intelligent order for a living temple. If we do put God behind a single veil in dead matter, in all living things he must be apparent and at work. If, then, such a thing as an infinite atom is impossible, shall we not best understand matter by saying it is a visible representation of God's personal will and power, of his personal force, and perhaps knowledge, set aside a little from himself, still possessed somewhat of his personal attributes, still responsive to his will. What we call matter may be best understood as God's force, will, knowledge, rendered apparent, static, and unweariably operative. Unless matter is eternal, which is unthinkable, there was nothing out of which the world could be made, but God himself; and, reverently be it said, matter seems to retain fit capabilities for such source. Is not this the teaching of the Bible? I come to the old Book. I come to that man who was taken up into the arcana of the third heaven, the holy of holies, and heard things impossible to word. I find he makes a clear, unequivocal statement of this truth as God's revelation to him. "By faith," says the author of Hebrews, "we understand the worlds were framed by the word of God, so that things which are seen were not made of things which do appear." In Corinthians, Paul says—But to us there is but one God, the Father, of whom [as a source] are all things; and one Lord Jesus Christ, by whom [as a creative worker] are all things. So in Romans he says—"For out of him, and through him, and to him are all things, to whom be glory forever. Amen."
God's intimate relation to matter is explained. No wonder the forces respond to his will; no wonder pantheism—the idea that matter is God—has had such a hold upon the minds of men. Matter, derived from him, bears marks of its parentage, is sustained by him, and when the Divine will shall draw it nearer to himself the new power and capabilities of a new creation shall appear. Let us pay a higher respect to the attractions and affinities; to the plan and power of growth; to the wisdom of the ant; the geometry of the bee; the migrating instinct that rises and stretches its wings toward a provided South—for it is all God's present wisdom and power. Let us come to that true insight of the old prophets, who are fittingly called seers; whose eyes pierced the veil of matter, and saw God clothing the grass of the field, feeding the sparrows, giving snow like wool and scattering hoar-frost like ashes, and ever standing on the bow of our wide-sailing world, and ever saying to all tumultuous forces, "Peace, be still." Let us, with more reverent step, walk the leafy solitudes, and say:
"Father, thy hand
Hath reared these venerable columns: Thou
Did'st weave this verdant roof. Thou did'st look down
Upon the naked earth, and forthwise rose
All these fair ranks of trees. They in Thy sun
Budded, and shook their green leaves in Thy breeze.
"That delicate forest flower,
With scented breath and looks so like a smile,
Seems, as it issues from the shapeless mould,
An emanation of the indwelling life,
A visible token of the unfolding love
That are the soul of this wide universe."—BRYANT.
Philosophy has seen the vast machine of the universe, wheel within wheel, in countless numbers and hopeless intricacy. But it has not had the spiritual insight of Ezekiel to see that they were everyone of them full of eyes—God's own emblem of the omniscient supervision.
What if there are some sounds that do not seem to be musically rhythmic. I have seen where an avalanche broke from the mountain side and buried a hapless city; have seen the face of a cliff shattered to fragments by the weight of its superincumbent mass, or pierced by the fingers of the frost and torn away. All these thunder down the valley and are pulverized to sand. Is this music? No, but it is a tuning of instruments. The rootlets seize the sand and turn it to soil, to woody fibre, leafy verdure, blooming flowers, and delicious fruit. This asks life to come, partake, and be made strong. The grass gives itself to all flesh, the insect grows to feed the bird, the bird to nourish the animal, the animal to develop the man.
Notwithstanding the tendency of all high-class energy to deteriorate, to find equilibrium, and so be strengthless and dead, there is, somehow, in nature a tremendous push upward. Ask any philosopher, and he will tell you that the tendency of all endowed forces is to find their equilibrium and be at rest—that is, dead. He draws a dismal picture of the time when the sun shall be burned out, and the world float like a charnel ship through the dark, cold voids of space—the sun a burned-out char, a dead cinder, and the world one dismal silence, cold beyond measure, and dead beyond consciousness. The philosopher has wailed a dirge without hope, a requiem without grandeur, over the world's future. But nature herself, to all ears attuned, sings pæans, and shouts to men that the highest energy, that of life, does not deteriorate.
Mere nature may deteriorate. The endowments of force must spend themselves. Wound-up watches and worlds must run down. But nature sustained by unexpendable forces must abide. Nature filled with unexpendable forces continues in form. Nature impelled by a magnificent push of life must ever rise.
Study her history in the past. Sulphurous realms of deadly gases become solid worlds; surplus sunlight becomes coal, which is reserved power; surplus carbon becomes diamonds; sediments settle until the heavens are azure, the air pure, the water translucent. If that is the progress of the past, why should it deteriorate in the future?
There is a system of laws in the universe in which the higher have mastery over the lower. Lower powers are constitutionally arranged to be overcome; higher powers are constitutionally arranged for mastery. At one time the water lies in even layers near the ocean's bed, in obedience to the law or power of gravitation. At another time it is heaved into mountain billows by the shoulders of the wind. Again it flies aloft in the rising mists of the morning, transfigured by a thousand rain bows by the higher powers of the sun. Again it develops the enormous force of steam by the power of heat. Again it divides into two light flying airs by electricity. Again it stands upright as a heap by the power of some law in the spirit realm, whose mode of working we are not yet large enough to comprehend. The water is solid, liquid, gaseous on earth, and in air according to the grade of power operating upon it.
The constant invention of man finds higher and higher powers. Once he throttled his game, and often perished in the desperate struggle; then he trapped it; then pierced it with the javelin; then shot it with an arrow, or set the springy gases to hurl a rifle-ball at it. Sometime he may point at it an electric spark, and it shall be his. Once he wearily trudged his twenty miles a day, then he took the horse into service and made sixty; invoked the winds, and rode on their steady wings two hundred and forty; tamed the steam, and made almost one thousand; and if he cannot yet send his body, he can his mind, one thousand miles a second. It all depends upon the grade of power he uses. Now, hear the grand truth of nature: as the years progress the higher grades of power increase. Either by discovery or creation, there are still higher class forces to be made available. Once there was no air, no usable electricity. There is no lack of those higher powers now. The higher we go the more of them we find. Mr. Lockyer says that the past ten years have been years of revelation concerning the sun. A man could not read in ten years the library of books created in that time concerning the sun. But though we have solved certain problems and mysteries, the mysteries have increased tenfold.
We do not know that any new and higher forces have been added to matter since man's acquaintance with it. But it would be easy to add any number of them, or change any lower into higher. That is the meaning of the falling granite that becomes soil, of the pulverized lava that decks the volcano's trembling sides with flowers; that is the meaning of the grass becoming flesh, and of all high forces constitutionally arranged for mastery over lower. Take the ore from the mountain. It is loose, friable, worthless in itself. Raise it in capacity to cast-iron, wrought-iron, steel, it becomes a highway for the commerce of nations, over the mountains and under them. It becomes bones, muscles, body for the inspiring soul of steam. It holds up the airy bridge over the deep chasm. It is obedient in your hand as blade, hammer, bar, or spring. It is inspirable by electricity, and bears human hopes, fears, and loves in its own bosom. It has been raised from valueless ore. Change it again to something as far above steel as that is above ore. Change all earthly ores to highest possibility; string them to finest tissues, and the new result may fit God's hand as tools, and thrill with his wisdom and creative processes, a body fitted for God's spirit as well as the steel is fitted to your hand. From this world take opacity, gravity, darkness, bring in more mind, love, and God, and then we will have heaven. An immanent God makes a plastic world.
When man shall have mastered the forces that now exist, the original Creator and Sustainer will say, "Behold, I create all things new." Nature shall be called nearer to God, be more full of his power. To the long-wandering æneas, his divine mother sometimes came to cheer his heart and to direct his steps. But the goddess only showed herself divine by her departure; only when he stood in desolation did the hero know he had stood face to face with divine power, beauty, and love. Not so the Christian scholars, the wanderers in Nature's bowers to-day. In the first dawn of discovery, we see her full of beauty and strength; in closer communion, we find her full of wisdom; to our perfect knowledge, she reveals an indwelling God in her; to our ardent love, she reveals an indwelling God in us.
But the evidence of the progressive refinements of habitation is no more clear than that of progressive refinement of the inhabitant: there must be some one to use these finer things. An empty house is not God's ideal nor man's. The child may handle a toy, but a man must mount a locomotive; and before there can be New Jerusalems with golden streets, there must be men more avaricious of knowledge than of gold, or they would dig them up; more zealous for love than jewels, or they would unhang the pearly gates. The uplifting refinement of the material world has been kept back until there should appear masterful spirits able to handle the higher forces. Doors have opened on every side to new realms of power, when men have been able to wield them. If men lose that ability they close again, and shut out the knowledge and light. Then ages, dark and feeble, follow.
Some explore prophecy for the date of the grand transformation of matter by the coming of the Son of Man, for a new creation. A little study of nature would show that the date cannot be fixed. A little study of Peter would show the same thing. He says, "What manner of persons ought ye to be, in all holy conversation and godliness, looking for and hastening the coming of the day of God, wherein the heavens being on fire shall be dissolved, and the elements shall melt with fervent heat? Nevertheless we, according to his promise, look for a new heaven and a new earth."
The idea is, that the grand transformation of matter waits the readiness of man. The kingdom waits the king. The scattered cantons of Italy were only prostrate provinces till Victor Emanuel came, then they were developed into united Italy. The prostrate provinces of matter are not developed until the man is victor, able to rule there a realm equal to ten cities here. Every good man hastens the coming of the day of God and nature's renovation. Not only does inference teach that there must be finer men, but fact affirms that transformation has already taken place. Life is meant to have power over chemical forces. It separates carbon from its compounds and builds a tree, separates the elements and builds the body, holds them separate until life withdraws. More life means higher being. Certainly men can be refined and recapacitated as well as ore. In Ovid's "Metamorphoses" he represents the lion in process of formation from earth, hind quarters still clay, but fore quarters, head, erect mane, and blazing eye—live lion—and pawing to get free. We have seen winged spirits yet linked to forms of clay, but beating the celestial air, endeavoring to be free; and we have seen them, dowered with new sight, filled with new love, break loose and rise to higher being.
In this grand apotheosis of man which nature teaches, progress lias already been made. Man has already outgrown his harmony with the environment of mere matter. He has given his hand to science, and been lifted up above the earth into the voids of infinite space. He has gone on and on, till thought, wearied amidst the infinities of velocity and distance, has ceased to note them. But he is not content; all his faculties are not filled. He feels that his future self is in danger of not being satisfied with space, and worlds, and all mental delights, even as his manhood fails to be satisfied with the materiel toys of his babyhood. He asks for an Author and Maker of things, infinitely above them. He has seen wisdom unsearchable, power illimitable; but he asks for personal sympathy and love. Paul expresses his feeling: every creature—not the whole creation—groaneth and travaileth in pain together until now, waiting for the adoption—the uplifting from orphanage to parentage—a translation out of darkness into the kingdom of God's dear Son. He hears that a man in Christ is a new creation: old things pass away, all things become new. There is then a possibility of finding the Author of nature, and the Father of man. He begins his studies anew. Now he sees that all lines of knowledge converge as they go out toward the infinite mystery; sees that these converging lines are the reins of government in this world; sees the converging lines grasped by an almighty hand; sees a loving face and form behind; sees that these lines of knowledge and power are his personal nerves, along which flashes his will, and every force in the universe answers like a perfect muscle.
Then he asks if this Personality is as full of love as of power. He is told of a tenderness too deep for tears, a love that has the Cross for its symbol, and a dying cry for its expression: seeking it, he is a new creation. He sees more wondrous things in the Word than in the world. He comes to know God with his heart, better than he knows God's works by his mind.
Every song closes with the key-note with which it began, and the brief cadence at the close hints the realms of sound through which it has tried its wings. The brief cadence at the close is this: All force runs back into mind for its source, constant support, and uplifts into higher grades.
Mr. Grove says, "Causation is the will, creation is the act, of God." Creation is planned and inspired for the attainment of constantly rising results. The order is chaos, light, worlds, vegetable forms, animal life, then man. There is no reason to pause here. This is not perfection, not even perpetuity. Original plans are not accomplished, nor original force exhausted. In another world, free from sickness, sorrow, pain, and death, perfection of abode is offered. Perfection of inhabitant is necessary; and as the creative power is everywhere present for the various uplifts and refinements of matter, it is everywhere present with appropriate power for the uplifting and refinement of mind and spirit.
SUMMARY OF LATEST DISCOVERIES AND CONCLUSIONS.
Movements on the Sun.—The discovery and measurement of the up-rush, down-rush, and whirl of currents about the sunspots, also of the determination of the velocity of rotation by means of the spectroscope, as described ([page 53]), is one of the most delicate and difficult achievements of modern science.
Movement of Stars in Line of Sight ([page 51]).—The following table shows this movement of stars, so far as at present known:
| APROACHING. | RECEDING. | ||||
|---|---|---|---|---|---|
| Map. | Name. | Rate per sec. | Map. | Name. | Rate per sec. |
| Fig. 71 | Arcturus | 55 miles | Fig. 69 | Sirius | 20 miles |
| " 71 | Vega | 50 " | Fr'piece | Betelguese | 22 " |
| " 73 | α Cygni | 39 " | " | Rigel | 15 " |
| " 69 | Pollux | 49 " | Fig. 69 | Castor | 25 " |
| " 67 | Dubhe | 46 " | " 67 | Regulus | 15 " |
Sun's Appearance.—This was formerly supposed to be an even, regular, dazzling brightness, except where the spots appeared. But the sun's surface is now known to be mottled with what are called rice grains or willow leaves. But the rice grains are as large as the continent of America. The spaces between are called pores. They constitute an innumerable number of small spots. This appearance of the general surface is well portrayed in the cut on [page 92].
Close Relation between Sun and Earth.-Men always knew that the earth received light from the sun. They subsequently discovered that the earth was momentarily held by the power of gravitation. But it is a recent discovery that the light is one of the principal agents in chemical changes, in molecular grouping and world-building, thus making all kinds of life possible ([p. 30-36]). The close connection of the sun and the earth will be still farther shown in the relation of sun-spots and auroras. One of the most significant instances is related on page 19, when the earth felt the fall of bolides upon the sun. Members of the body no more answer to the heart than the planets do to the sun.
Hydrogen Flames.—It has been demonstrated that the sun flames 200,000 miles high are hydrogen in a state of flaming incandescence ([page 85]).
Sun's Distance.—The former estimate, 95,513,794 miles, has been reduced by nearly one-thirtieth. Lockyer has stated it as low as 89,895,000 miles, and Proctor, in "Encyclopædia Britannica," at 91,430,000 miles, but discovered errors show that these estimates are too small. Newcomb gives 92,400,000 as within 200,000 miles of the correct distance. The data for a new determination of this distance, obtained from the transit of Venus, December 8th, 1874, have not yet been deciphered; a fact that shows the difficulty and laboriousness of the work. Meanwhile it begins to be evident that observations of the transit of Venus do not afford the best basis for the most perfect determination of the sun's distance.
Since the earth's distance is our astronomical unit of measure, it follows that all other distances will be changed, when expressed in miles, by this ascertained change of the value of the standard.
Oxygen in the Sun.—In 1877 Professor Draper announced the discovery of oxygen lines in the spectrum of the sun. The discovery was doubted, and the methods used were criticised by Lockyer and others, but later and more delicate experiments substantiate Professor Draper's claim to the discovery. The elements known to exist in the sun are salt, iron, hydrogen, magnesium, barium, copper, zinc, cromium, and nickel. Some elements in the sun are scarcely, if at all, discoverable on the earth, and some on the earth not yet discernible in the sun.
Substance of Stars.—Aldebaran (Frontispiece) shows salt, magnesium, hydrogen, calcium, iron, bismuth, tellurium, antimony, and mercury. Some of the sun's metals do not appear. Stars differ in their very substance, and will, no doubt, introduce new elements to us unknown before.
The theory that all nebulæ are very distant clusters of stars is utterly disproved by the clearest proof that some of them are only incandescent gases of one or two kinds.
Discoveries of New Bodies.—Vulcan, the planet nearest the sun ([page 138]). The two satellites of Mars were discovered by Mr. Hall, U. S. Naval Observatory, August 11th, 1877 ([page 161]). "The outer one is called Diemas; the inner, Phobus.
Sir William Herschel thought he discovered six satellites of Uranus. The existence of four of them has been disproved by the researches of men with larger telescopes. Two new ones, however, were discovered by Mr. Lassell in 1846.
Saturn's Rings are proved to be in a state of fluidity and contraction ([page 171]).
Meteors and Comets.—The orbits of over one hundred swarms of meteoric bodies are fixed: their relation to, and in some cases indentity with, comets determined. Some comets are proved to be masses of great weight and solidity ([page 133]).
Aerolites.-Some have a texture like our lowest strata of rocks. There is a geology of stars and meteors as well as of the earth. M. Meunier has just received the Lalande Medal from the Paris Academy for his treatise showing that, so far as our present knowledge can determine, some of these meteors once belonged to a globe developed in true geological epochs, and which has been separated into fragments by agencies with which we are not acquainted.
|
Fig. 82.—Horizontal Pendulum. |
The Horizontal Pendulum.—This delicate instrument is represented in Fig. 82. It consists of an upright standard, strongly braced; a weight, m, suspended by the hair-spring of a watch, B D, and held in a horizontal position by another watch-spring, A C. The weight is deflected from side to side by the slightest influence. The least change in the level of a base thirty-nine inches long that could be detected by a spirit-level is 0".1 of an arc—equal to raising one end 1/2068 of an inch. But the pendulum detects a raising of one end 1/36000000 of an inch. To observe the movements of the pendulum, it is kept in a dark room, and a ray of light is directed to the mirror, m, and thence reflected upon a screen. Thus the least movement may be enormously magnified, and read and measured by the moving spot on the screen. It has been discovered that when the sun rises it has sufficient attraction to incline this instrument to the east; when it sets, to incline it to the west. The same is true of the moon. When either is exactly overhead or underfoot, of course there is no deflection. The mean deflection caused by the moon at rising or setting is 0".0174; by the sun, 0".008. Great results are expected from this instrument hardly known as yet: among others, whether gravitation acts instantly or consumes time in coming from the sun. This will be shown by the time of the change of the pendulum from east to west when the sun reaches the zenith, and vice versa when it crosses the nadir. The sun will be best studied without light, in the quiet and darkness of some deep mine.
Light of Unseen Stars.—From careful examination, it appears that three-fourths of the light on a fine starlight night comes from stars that cannot be discerned by the naked eye. The whole amount of star light is about one-eightieth of that of the full moon.
Lateral Movements of Stars, [page 226-28].
Future Discoveries—A Trans-Neptunian Planet.—Professor Asaph Hall says: "It is known to me that at least two American astronomers, armed with powerful telescopes, have been searching quite recently for a trans-Neptunian planet. These searches have been caused by the fact that Professor Newcomb's tables of Uranus and Neptune already begin to differ from observation. But are we to infer from these errors of the planetary tables the existence of a trans-Neptunian planet? It is possible that such a planet may exist, but the probability is, I think, that the differences are caused by errors in the theories of these planets. * * * A few years ago the remark was frequently made that the labors of astronomers on the solar system were finished, and that henceforth they could turn their whole attention to sidereal astronomy. But to-day we have the lunar theory in a very discouraging condition, and the theories of Mercury, Jupiter, Saturn, Uranus, and Neptune all in need of revision; unless, indeed, Leverrier's theories of the last two planets shall stand the test of observation. But, after all, such a condition of things is only the natural result of long and accurate series of observations, which make evident the small inequalities in the motions, and bring to light the errors of theory."
Future discoveries will mostly reveal the laws and conditions of the higher and finer forces. Already Professor Loomis telegraphs twenty miles without wire, by the electric currents between mountains. We begin to use electricity for light, and feel after it for a motor. Comets and Auroras show its presence between worlds, and in the interstellar spaces. Let another Newton arise.
SOME ELEMENTS OF THE SOLAR SYSTEM
| Name. | Sign. | Masses. | Mean Dist. from Sun. | Mean Diameter in Miles. | Density. = 1. | Axial Revolution. | Gravity at Surface. = 1. | Periodic Time. | Orbital Velocity in Miles per sec. | |
|---|---|---|---|---|---|---|---|---|---|---|
| Earth's Dist. as 1. | Millions of Miles. | |||||||||
| Sun | ![]() | Unity | 860,000 | 0.255 | 25 to 26d | 27.71 | ||||
| Mercury | ![]() | 1/5000000(?) | 0.387 | 35-3/4 | 2,992 | 1.21 | 24h 5m(?) | 0.46 | 87.97d | 29.55 |
| Venus | ![]() | 1/425000 | 0.723 | 66-3/4 | 7,660 | 0.85 | 23h 21m(?) | 0.82 | 224.70d | 21.61 |
| Earth | ![]() | 1/326800 | 1. | 92-1/3 | 7,918 | 1. | 23h 56m 4s | 1. | 365.26d | 18.38 |
| Mars | ![]() | 1/2950000 | 1.523 | 141 | 4,211 | 0.737 | 24h 37m 22.7s | 0.39 | 686.98d | 14.99 |
| Asteroids | (No.) | |||||||||
| Jupiter | ![]() | 1/1047 | 5.203 | 480 | 86,000 | 0.243 | 9h 55m 20s | 2.64 | 11.86yrs | 8.06 |
| Saturn | ![]() | 1/3501 | 9.538 | 881 | 70,500 | 0.133 | 10h 14m | 1.18 | 29.46yrs | 5.95 |
| Uranus | ![]() | 1/22600 | 19.183 | 1771 | 31,700 | 0.226 | Unknown. | 0.90 | 84.02yrs | 4.20 |
| Neptune | ![]() | 1/19380 | 30.054 | 2775 | 34,500 | 0.204 | Unknown. | 0.89 | 164.78yrs | 3.36 |
= 1.






