SHAFT HAULAGE.

Winding Appliances.—No device has yet been found to displace the single load pulled up the shaft by winding a rope on a drum. Of driving mechanisms for drum motors the alternatives are the steam-engine, the electrical motor, and infrequently water-power or gas engines.

All these have to cope with one condition which, on the basis of work accomplished, gives them a very low mechanical efficiency. This difficulty is that the load is intermittent, and it must be started and accelerated at the point of maximum weight, and from that moment the power required diminishes to less than nothing at the end of the haul. A large number of devices are in use to equalize partially the inequalities of the load at different stages of the lift. The main lines of progress in this direction have been:—

a.The handling of two cages or skips with one engine or motor, the descending skip partially balancing the ascending one.
b.The use of tail-ropes or balance weights to compensate the increasing weight of the descending rope.
c.The use of skips instead of cages, thus permitting of a greater percentage of paying load.
d.The direct coupling of the motor to the drum shaft.
e.The cone-shaped construction of drums,—this latter being now largely displaced by the use of the tail-rope.

The first and third of these are absolutely essential for anything like economy and speed; the others are refinements depending on the work to be accomplished and the capital available.

Steam winding-engines require large cylinders to start the load, but when once started the requisite power is much reduced and the load is too small for steam economy. The throttling of the engine for controlling speed and reversing the engine at periodic stoppages militates against the maximum expansion and condensation of the steam and further increases the steam consumption. In result, the best of direct compound condensing engines consume from 60 to 100 pounds of steam per horse-power hour, against a possible efficiency of such an engine working under constant load of less than 16 pounds of steam per horse-power hour.

It is only within very recent years that electrical motors have been applied to winding. Even yet, all things considered, this application is of doubtful value except in localities of extremely cheap electrical power. The constant speed of alternating current motors at once places them at a disadvantage for this work of high peak and intermittent loads. While continuous-current motors can be made to partially overcome this drawback, such a current, where power is purchased or transmitted a long distance, is available only by conversion, which further increases the losses. However, schemes of electrical winding are in course of development which bid fair, by a sort of storage of power in heavy fly-wheels or storage batteries after the peak load, to reduce the total power consumption; but the very high first cost so far prevents their very general adoption for metal mining.

Winding-engines driven by direct water- or gas-power are of too rare application to warrant much discussion. Gasoline driven hoists have a distinct place in prospecting and early-stage mining, especially in desert countries where transport and fuel conditions are onerous, for both the machines and their fuel are easy of transport. As direct gas-engines entail constant motion of the engine at the power demand of the peak load, they are hopeless in mechanical efficiency.

Like all other motors in mining, the size and arrangement of the motor and drum are dependent upon the duty which they will be called upon to perform. This is primarily dependent upon the depth to be hoisted from, the volume of the ore, and the size of the load. For shallow depths and tonnages up to, say, 200 tons daily, geared engines have a place on account of their low capital cost. Where great rope speed is not essential they are fully as economical as direct-coupled engines. With great depths and greater capacities, speed becomes a momentous factor, and direct-coupled engines are necessary. Where the depth exceeds 3,000 feet, another element enters which has given rise to much debate and experiment; that is, the great increase of starting load due to the increased length and size of ropes and the drum space required to hold it. So far the most advantageous device seems to be the Whiting hoist, a combination of double drums and tail rope.

On mines worked from near the surface, where depth is gained by the gradual exhaustion of the ore, the only prudent course is to put in a new hoist periodically, when the demand for increased winding speed and power warrants. The lack of economy in winding machines is greatly augmented if they are much over-sized for the duty. An engine installed to handle a given tonnage to a depth of 3,000 feet will have operated with more loss during the years the mine is progressing from the surface to that depth than several intermediate-sized engines would have cost. On most mines the uncertainty of extension in depth would hardly warrant such a preliminary equipment. More mines are equipped with over-sized than with under-sized engines. For shafts on going metal mines where the future is speculative, an engine will suffice whose size provides for an extension in depth of 1,000 feet beyond that reached at the time of its installation. The cost of the engine will depend more largely upon the winding speed desired than upon any other one factor. The proper speed to be arranged is obviously dependent upon the depth of the haulage, for it is useless to have an engine able to wind 3,000 feet a minute on a shaft 500 feet deep, since it could never even get under way; and besides, the relative operating loss, as said, would be enormous.

Haulage Equipment in the Shaft.—Originally, material was hoisted through shafts in buckets. Then came the cage for transporting mine cars, and in more recent years the "skip" has been developed. The aggrandized bucket or "kibble" of the Cornishman has practically disappeared, but the cage still remains in many mines. The advantages of the skip over the cage are many. Some of them are:—

a.It permits 25 to 40% greater load of material in proportion to the dead weight of the vehicle.
b.The load can be confined within a smaller horizontal space, thus the area of the shaft need not be so great for large tonnages.
c.Loading and discharging are more rapid, and the latter is automatic, thus permitting more trips per hour and requiring less labor.
d.Skips must be loaded from bins underground, and by providing in the bins storage capacity, shaft haulage is rendered independent of the lateral transport in the mine, and there are no delays to the engine awaiting loads. The result is that ore-winding can be concentrated into fewer hours, and indirect economies in labor and power are thus effected.
e.Skips save the time of the men engaged in the lateral haulage, as they have no delay waiting for the winding engine.

Loads equivalent to those from skips are obtained in some mines by double-decked cages; but, aside from waste weight of the cage, this arrangement necessitates either stopping the engine to load the lower deck, or a double-deck loading station. Double-deck loading stations are as costly to install and more expensive to work than skip-loading station ore-bins. Cages are also constructed large enough to take as many as four trucks on one deck. This entails a shaft compartment double the size required for skips of the same capacity, and thus enormously increases shaft cost without gaining anything.

Altogether the advantages of the skip are so certain and so important that it is difficult to see the justification for the cage under but a few conditions. These conditions are those which surround mines of small output where rapidity of haulage is no object, where the cost of station-bins can thus be evaded, and the convenience of the cage for the men can still be preserved. The easy change of the skip to the cage for hauling men removes the last objection on larger mines. There occurs also the situation in which ore is broken under contract at so much per truck, and where it is desirable to inspect the contents of the truck when discharging it, but even this objection to the skip can be obviated by contracting on a cubic-foot basis.

Skips are constructed to carry loads of from two to seven tons, the general tendency being toward larger loads every year. One of the most feasible lines of improvement in winding is in the direction of larger loads and less speed, for in this way the sum total of dead weight of the vehicle and rope to the tonnage of ore hauled will be decreased, and the efficiency of the engine will be increased by a less high peak demand, because of this less proportion of dead weight and the less need of high acceleration.