LECTURE IV

GENERAL SCHEME OF AN INNERVATION MECHANISM—THE WORK OF THE NERVOUS APPARATUS OF THE SALIVARY GLANDS—APPETITE, THE FIRST AND MOST POTENT EXCITER OF THE GASTRIC SECRETION

Constituent parts of a complete innervation mechanism—The special duty of the peripheral terminations of afferent nerves—The specific qualities of nerve cells—Analogy between the innervation mechanism of the salivary glands and that of the deeper-lying glands of digestion—The exciting agencies of the nervous mechanism of the salivary glands; their particular properties—Differences between the exciting agencies of the different salivary glands—Discussion of the sham feeding experiment—Mechanical and chemical stimulation of the cavity of the mouth has no effect on the gastric glands—The experiment of Bidder and Schmidt relative to psychic excitation of the gastric secretion—Conditions for success in this experiment—The passionate longing for food—the appetite—alone brings on the secretory effect in the sham feeding experiment.

Gentlemen,—As you have learned in the last lecture, and also in part have seen by direct experiment, the nervous system can influence the work of our glands in the most diverse ways. The vagus nerve, already burdened with many duties, has, in addition, proved itself to be an undoubted exciter of the gastric glands and of the pancreas. But we must also assign to the sympathetic nerve a similar rôle. This is a matter which cannot be doubted, so far as the pancreas is concerned, and is highly probable as regards the stomach. We also saw good reason for believing that these two nerves contained two different classes of fibres, secretory and trophic, a condition which had already been proved to exist by Heidenhain for the nerves of the salivary glands. As a hypothesis we might even have proceeded a step farther and have divided Heidenhain’s trophic nerves into separate classes of secretory fibres. Lastly, we advanced important experimental evidence to show the existence of special inhibitory fibres to the glands, and these fibres also run in the vagus, the list of whose functions seems almost interminable.

We obtained these results by division and artificial excitation of the nerves which run to the glands. But when, how, and by what means these nerves are thrown into activity during the normal course of physiological events remains a question.

In order to avoid repetition, and at the same time impart the utmost clearness to our representation, it may be useful to bring before your minds at once the plan of innervation of a given organ, all the more since this scheme is seldom completely followed out or adequately described in physiological text-books. Consequently, it is not borne in mind with sufficient precision by the majority of medical men.

A complete innervation mechanism consists of the peripheral endings of the centripetal (afferent) nerves, the centripetal nerves themselves, the nerve cells (a group of nerve cells connected with each other is termed a “nerve centre”), the centrifugal (efferent) nerves, and, lastly, their peripheral terminations. Physiology now accepts it as a settled fact, that nerve fibres serve only as conductors of nervous impulses, which come in from contiguous links of the nervous chain. Only the peripheral endings of nerves and the nerve cells themselves have the power of transforming the external stimulus[29] into a nervous impulse. In other words, in the intact organism these alone constitute the normal receiving apparatus of the nervous system. Whether the peripheral ends of centrifugal (efferent) nerves are likewise able to function as normal sites for the application of external stimuli has still to be answered. Consequently, when any external agency excites the peripheral terminations—the receiving stations—of centripetal nerves in this or that organ, the effect of the stimulus will be conveyed through the centripetal nerves, as through a receiving wire, to the central station—the nerve cells. Here it becomes changed into a definite impulse and now comes back along the centrifugal nerves—the outgoing wires.

The utmost importance is to be attached to the fact that only the peripheral endings of centripetal (afferent) nerves, in contrast to nerve fibres themselves, respond to specific stimuli; that is to say, are able to transform definite kinds of external stimuli into nervous impulses. The function of the end organs with which they are connected is therefore of a purposive nature; in other words, these organs are only called into play by certain definite conditions, and impart the idea of being aware of their purpose, of being conscious of their duty. We have long known that the peripheral endings of sensory nerves are possessed of a high degree of speciality, and cannot therefore have any doubt regarding the specific nature of the end organs of other centripetal nerves. This is a sore point in present-day physiology. But, notwithstanding our knowledge of the separate parts of the animal body, we shall only be able to form a true conception of the motive agencies of the whole complicated machine, when we have established the specific excitability of the end apparatus of every centripetal nerve, and have discovered all the mechanical, chemical, and other factors which throw this or that end apparatus into an active condition. I always look upon it as a period of scientific inadequacy so long as the effects of the most diverse external agencies upon any normal physiological process are admitted to be indistinguishable. As the work of the digestive canal is now represented in the majority of text-books, and consequently presented to the mind of the physician, it bears the impress of this period. To impart to the physician a more correct conception of this matter was my chief object in giving these lectures. I hope, indeed, to furnish you with evidence sufficiently convincing, that the alimentary canal is endowed not with mere general excitability; that is to say, does not respond to every conceivable form of agency, but only to special conditions which are different for the different portions of its length. Just as men and animals in the world are only able to maintain their existence and constantly adapt themselves to changing circumstances by aid of the peripheral endings of their sensory nerves, so every organ, indeed every cell of every organ, can only maintain its place in the animal microcosm, and adapt itself to the activity of innumerable associates, as well as to the general life of the whole, by virtue of the fact that the peripheral end apparatus of its centripetal nerves possesses a specific excitability.

The same applies to the nerve cells: obviously they are endowed with specific sensibility. Irrespective of the excitations which are communicated to them from centripetal nerves, they respond, as originators of nervous impulses, only or at least mainly to definite forms of mechanical, chemical, or other stimuli arising in the organism. This follows not alone from a number of physiological facts but also from various pharmacological data. Thus we learn that various drugs excite or annul the activity of definite portions of the nervous system, at least in the earlier phases of their effects. This specific excitability of nerve cells, just as much as the same property of peripheral end organs, lies at the bottom of the purposive action of these organs.

Hence, our next duty is to endeavour to discover the normal exciting conditions of the centripetal nerves belonging to the glands which we had under consideration in our last lecture, or, more correctly, to find out the conditions which excite the centres, as well as the peripheral endings of the different nerves, which form parts of the nervous apparatus of these glands. We have, therefore, for each phase of the work of secretion, to find out that portion of the nervous mechanism which is for the time being under excitation, and to discover the primary agency by which this condition is elicited. This would include an exact analysis of the stimulating influence which mastication and food exert upon the nervous mechanism of these glands. We shall also be able more fully to comprehend the inner mechanism underlying the facts which formed the subject of the second lecture. This, of course, is an ideal programme which we can only follow out as far as the present state of physiology permits. It may now be instructive, and, for our further conclusions, advantageous, to glance shortly at the nervous control of the salivary glands.

The salivary glands, whose innervation has long ago been investigated, have generally been accepted as types of the deeper-lying digestive glands, and when it became necessary to form a conception of the mode of activity of the latter, medical science resorted to a bold analogy and thought of the nervous apparatus of the salivary glands. But the attempts of investigators to apply rigidly to others the scheme of innervation which holds good for the salivary glands, have done considerable harm to the usefulness of the analogy and have prevented our arriving at a correct idea of the plan of innervation of the abdominal glands. We have already had an example of this nature before us. In the salivary glands we have no clearly marked indications of nervous inhibition, and this circumstance has decidedly retarded the due development of our knowledge of the nervous control of the abdominal glands. Authors naturally expected to see a simple and prompt stimulation-effect from the same conditions of experiment which sufficed for the salivary glands, and the failure of this gave them, as they thought, the right to deny the existence of any extrinsic nervous influence upon the abdominal glands. The error is now obvious; the abdominal glands behave in some ways different from the salivary glands, and for their successful investigation, other conditions of experiment are necessary than those which held good for the former. In the working of the abdominal glands nervous inhibitory processes play a large part, but they are almost wholly absent in the case of the salivary glands. This is an additional warning that one must never push the conclusions drawn from analogy too far, but must constantly bear in mind that the life-functions of all organs are extremely complicated, and that the work of even the most apparently similar organs should be submitted to separate and careful observation. To me it appears that the unjustified analogy drawn between the abdominal and salivary glands has to be credited with another important misapprehension. And precisely for this reason I think it desirable to bring under consideration, if only in brief fashion, the conditions of work of the salivary glands, especially since Dr. Glinski has instituted in the laboratory some easily performed experiments which bear upon the matter.

The experiences of daily life teach us from the outset, that the activity of the salivary glands begins even before the introduction of food into the mouth. With an empty stomach, the sight of food or even the thought of it is sufficient to set the salivary glands at once into activity; indeed, the well-known expression, “to make one’s mouth water,” is based upon this fact. Hence a psychic event, the eager longing for food, must be accepted as an undoubted excitant of the nervous centre for the salivary glands. On the other hand, the same every-day experience, as well as numerous experiments upon animals, teach us that a number of substances, when brought into contact with the mucous membrane of the mouth, are likewise able to call forth a secretion of saliva. One even acquires the impression that everything brought into the mouth may reflexly influence these glands, the only difference being a gradual shading off in the effect, dependent upon the strength of the stimulation which the substance introduced is able to exert, and it appears to me that it is precisely this impression which has driven the idea into the background, that the peripheral end apparatus of the centripetal nerves of the digestive canal are specifically excitable. The facts were here correctly observed, but their indications erroneously interpreted.

The great multiplicity of excitants of salivary secretion, has without doubt, some connection with the complicated physiological functions of the saliva. This is the first fluid encountered by everything which enters the alimentary canal. It must, therefore, in a sense play the part of host to every substance taken in—moisten the dry, dissolve the soluble, envelop the hard and bulky with mucus in order to facilitate its passage down the narrow œsophagus; and submit certain forms of food material, such as starch, to a process of chemical elaboration. Nor is its duty by any means ended here. The saliva is secreted in the first compartment of the alimentary canal, which is at the same time the sorting-room of the organism. Much of what enters the mouth may prove in the testing process to be useless, or even noxious, and must either have its deleterious properties neutralised or be completely rejected. The saliva is secreted in the first instance to obviate injurious effects in some way; thus, for example, a strong acid is to a certain degree neutralised, while other corroding substances may be simply diluted, and by mere reduction of concentration have their harmfulness diminished.

In the second place, when the injurious substances have to be wholly removed, the saliva plays the rôle of a washing-out fluid; otherwise the material, by clinging to the mucous membrane of the mouth, might in longer or shorter time gain entry into the blood and there develop its noxious influence. This last function of the fluid is hardly taken into account at all in physiology, and yet it is evident that the saliva, as a cleansing fluid, must have a wide importance. If you only think of how often we are impelled to expectorate, that is, to wash out the mouth with saliva after something unpleasant, this will be clear. Such a view finds additional support when we reflect that a feeling of disgust produces almost as strong a flow of saliva as the sight of a tasty meal. In both cases the secretion performs the office of forerunner: in the first it prepares for the washing out of the mouth, in the second for the requisite elaboration of the food. Think how often, when something disagreeable enters the mouth, with what rapidity the saliva is poured out, even after the unpleasant substance has been for a considerable time removed, and not a trace more is apparent to the sense of taste. Indeed, long afterwards one has only to recall the circumstances to mind in order to bring on anew the secretion of saliva. Apparently the psychic excitation of the nerves of salivary secretion also ushers in the act of vomiting, which, as is well known, can be called forth by mental influence. Further, the function of the saliva just mentioned is probably the true physiological explanation of the feeling of disgust which many persons experience at the sight of the secretion itself.

Hence I hold that substances which obtain entry to the mouth set up a secretion of saliva only because we have here the seat of a definite physiological sense, and not because the peripheral terminations of the buccal nerves are devoid of specific excitability, and capable of being thrown into action by every desired form of stimulus. In other words, the specific excitability of the peripheral endings of the salivary nerves is very comprehensive and widely extended. This is no picture of the imagination, for it can be supported by facts. To say nothing of the testimony of earlier authors, that the salivary glands have each particular exciting agencies to which they specially respond, we can demonstrate the following facts from the material collected in our laboratory.

Dr. Glinski isolated the orifices of the salivary glands in dogs with portions of the adjoining mucous membrane, brought them out of the oral cavity, and caused them to heal into the edges of the skin wounds. In his first animal the ducts of the submaxillary gland were thus led outwards. By means of a Mendeljeff’s clip, the wide end of a conical funnel of waterproof material was attached to the skin surrounding the orifice. To the narrow end a small test-tube, which served to collect the saliva, was attached by a wire. I now offer such an animal a piece of flesh, and, as you see, the tube fills up at once with saliva. I stop tempting the dog, hang on a new test-tube, and give it a few pieces of flesh to eat; once more a strong secretion of saliva results. A new tube is now attached to the funnel, the dog’s mouth is opened, and a pinch of fine sand thrown in; again there is a flow of saliva. Once more a new test-tube; and now I apply to the buccal mucous membrane, the plume of a feather dipped in acid solution, with the result that I obtain a strong flow of saliva. One may employ a number of substances in this way, when a similar effect is always produced. You see, in this, such a comprehensive excitability of the innervation apparatus of the salivary glands that you might readily interpret it as meaning the power of response to all and sundry forms of stimulation. We now proceed, however, to another dog, whose parotid duct has in a similar manner been diverted outwards. The saliva is collected in the same way. We tempt the dog with a piece of flesh, but to our astonishment no saliva flows, and yet the animal is most eager for the savoury meal offered. Now we give it some raw flesh to eat; again the secretion of saliva is as good as absent; only when I come near can I detect one or two drops of saliva running down the sides of the tube. Probably you will say there is something wrong, either with the method or with the glands of the animal. But wait a little. I now give the dog finely powdered dry flesh, and obtain at once an abundant secretion. Should any one happen to think that the variation in the result is dependent, not on a different specific activity of the glands, but on individual differences in the dogs, I respond that Dr. Glinski has had an animal with double parotid and submaxillary fistulæ, and was able to observe on one and the same dog, a like behaviour on the part of the glands to that which we have just seen in two different individuals. An analogous experiment with bread was also carried out by Dr. Glinski. The eating of fresh moist bread produced no secretion worth mentioning, while dry bread, on the other hand, caused the saliva to flow in large quantities. The results of this experiment permit us to draw extremely instructive conclusions. In the first place, the several salivary glands are, as a matter of fact, very sharply differentiated in the conditions necessary for their activity—that is to say, in respect to the agencies which excite their nervous mechanisms. Secondly, the innervation apparatus of the parotid manifests a very sharp selective power in the choice, so to speak, of an adequate stimulus. The mechanical effect of large pieces of flesh is naturally much greater than that of the finely powdered material, and yet it was precisely to the latter that the glands responded. The stimulus is, therefore, not due to the mechanical, but to some other property of the food. This other property is obviously the dryness of the material. Our example illustrates how that which we may term “purposiveness” comes into play in the working of our glands and also how erroneous is the opinion that the mechanical stimulus is all potent. Indeed, previous authors have already pointed out that dry substances cause a specially free secretion of saliva, and yet physiological opinion throughout the length and breadth of the land, as expressed in text-books, has chosen to recognise a universal instead of a specific excitability. Dr. Wulfson, who is at present carrying on the investigation of salivary secretion in our laboratory, has added a very interesting observation to the results of Dr. Glinski already related. The parotid gland, which is hardly, if at all, excited when one offers fresh meat to the animal, responds with a very active secretion, when dry food (bread or powdered meat) is offered. This phenomenon is all the more surprising since the desire of the animal for eating is much more strongly excited by flesh than by dry bread. I am quite convinced that an exact study of the exciting agencies of the three salivary glands will furnish a number of new data bearing upon the question in hand.

The second reagent which is poured out on the raw material in the digestive canal is the gastric juice. How, in the normal course of events, is the work of the gastric glands, which prepare this juice, called into play? With the first, and manifestly important factor, which has a relation thereto, you are already acquainted, and, indeed, have already seen. I refer to the production of gastric juice in the empty stomach, as a result merely of the swallowing of food in the so-called sham feeding of an œsophagotomised dog. When one takes into consideration the absolute independence of this factor, and the intensity of the effect, which makes itself evident in the secretion of a large quantity of juice of high digestive power, the exciting agency which brings about such secretion must be recognised as one of the most important and effective processes in gastric digestion. But in what does it consist? At first sight it appears—and when I previously drew your attention to the fact I expressed the opinion—that there is here a simple reflex effect from the cavity of the mouth upon the secretory nerves of the stomach, similar to the reflex excitation, e.g., of the parotid gland, by finely powdered flesh thrown into the mouth. Now, however, I assert quite emphatically that this is not the case. We have, it is true, in the activity of the salivary glands an analogous phenomenon to indicate—not, however, that of which we have just spoken. We might apply every conceivable form of stimulus which could possibly come into play in the act of eating, and yet would not obtain the slightest indication of secretory activity in the stomach. In this dog with a gastric fistula, and with also a divided œsophagus, I will try such an experiment, using the most effective chemical stimulus to the buccal mucous membrane, viz., acid solution.

The secretion of saliva begins at once, as you see; the acid is, therefore, effective. From the stomach, however, in spite of continued excitation, no secretion results, although the acid, mixed with the saliva, is swallowed and flows out again from the upper segment of the œsophagus—that is to say, passes along precisely the same path that the food takes in sham feeding.

We could experiment in the same way with a number of other substances: saline, bitters, pepper (strong local excitation), mustard, and so on, and always with the same results; a free secretion of saliva, but perfect quiescence of the gastric glands. We may even, with the same object, employ the soluble constituents of flesh in the form of a decoction, and likewise observe, in most cases at least, no sign of activity on the part of the gastric glands.

With the chemical we may also combine a mechanical stimulus. We can, for example, wipe out the mouth with a sponge soaked in the solution to be experimented with, but always with the same negative result. We may finally give such pieces of sponge, or even smooth stones of considerable size, to the dog to swallow, passing them back behind the anterior pillars of the fauces and allowing them to fall out again, from the upper portion of œsophagus. It may be added that a well-taught dog puts up with all these procedures without the slightest protest. You see that all the manipulations in this case are carried out with bare hands and without instrumental aid. One can easily train a dog to swallow stones which are placed in the anterior part of the buccal cavity. It simply makes a few chewing movements and swallows them down. The dog on which the acid experiment has just been made serves also for the swallowing of the stones. The attendant now places some pebbles in the front part of the mouth, when the animal rolls them round, as if chewing and gnawing them, and then swallows them. The stones fall out, as you see, from the œsophagus, and drop with an audible sound upon the table. This play with the stones has now lasted fifteen or twenty minutes (in the laboratory we have often kept it up for hours), and yet not a drop of gastric juice is to be seen.

In order to prove that the dog is perfectly healthy and normal, we lay aside the stones and proceed to our old experiment of sham feeding. As you see, the first drop of gastric juice makes its appearance precisely at the end of five minutes, and after a further five minutes we have collected more than 15 c.c. of the fluid; consequently there can be no doubt that in this dog both gastric glands and nerves are uninjured and function in normal manner. At one time we even had a dog which voluntarily took the stones out of one’s hand and swallowed them; the sagacious creature had seen our object in previous experiments and learned to perform it of its own accord! But in this case also the result was negative.

Clearly, therefore, neither chemical nor mechanical stimulation of the buccal mucous membrane is capable of reflexly exciting the nerves of the stomach. Further, it is obvious that the excitation of these nerves in sham feeding is not the result of a stimulation coincidently produced; that is to say, the excitement of the chewing and swallowing centres does not imply simultaneous action of the secretory centre of the gastric glands. In what, then, does this influence consist which is intrinsic to the sham feeding, but which we have not been able to reproduce in our analytical investigation? There is only one thing to think of, namely, the eager desire for food, and the feeling of satisfaction and contentment derived from its enjoyment.

It has, indeed, been known for forty years, thanks to the experiments of Bidder and Schmidt, that at times, the offering of food to a hungry dog, in other words, the excitement of a keen desire for it, is sufficient to cause a flow of gastric juice from the empty stomach. We shall presently have occasion to observe the force of this physiological factor. Here I bring before you another dog, likewise having a gastric fistula with divided œsophagus. The stomach has been washed out half an hour ago, and since then not a drop of gastric juice has escaped. We begin to get ready a meal of flesh and sausage before the animal as if we meant to feed it. We take the pieces of flesh from one place, chop them up, and lay them in another, passing them in front of the dog’s nose, and so on. The animal, as you see, manifests the liveliest interest in our proceedings, stretches and distends itself, endeavours to get out of its cage and come to the food, chatters its teeth together, swallows saliva, and so on. Precisely five minutes after we began to tease the animal in this way the first drops of gastric juice appear in the fistula The secretion grows ever stronger and stronger, till it flows in a considerable stream. After the lapse of a few minutes we can count the number of cubic centimetres by tens. The meaning of this experiment is so clear as to require no explanation; the passionate longing for food, and this alone, has called forth under our eyes a most intense activity of the gastric glands. If the experiment be frequently repeated, one can easily observe that the keener and more eager the desire on the part of the dog for the food, the more certain and intense is the secretory effect. In extreme cases there is even a quantitative relationship between this effect and that of the sham feeding.

Here is an experiment of Professor Ssanozki, in which the secretory effect of the mere tempting of the animal with the sight of food is compared with that of sham feeding. A few threads of alkaline mucus had just escaped from the stomach, and then the excitation of the dog with flesh was begun. After six minutes the secretion commenced and continued as follows:

Duration of the flow.Quantity of the juice.
minutesc.c.
810
410
410
1010
1010
810
810
1910
193

Then followed a sham feeding for six minutes.

Duration of the flow.Quantity of the juice.
minutesc.c.
1710
910
810

It is clear that in this case the tempting, instead of being less effective than the sham feeding, on the contrary excelled it.

Consequently, the observation of Bidder and Schmidt was perfectly correct. It cannot, however, be said that it received general recognition in physiology, or that it was sufficiently appreciated. There are authors who could never convince themselves of its reality, and in many physiological text-books it is not once mentioned. By way of explanation, we shall now consider how this matter must be dealt with by those who wish to observe the effect. It is only under certain conditions that it can be seen. Firstly, the animal must be healthy and vigorous; it must have a perfectly uninjured gastric mucous membrane; and this, from the description in the case of many authors who obtained a negative result, was not the case. Secondly, the success of the experiment, as stated above, is dependent upon the intensity of the desire for eating, and this, again, is dependent upon how freely and how long beforehand the dog had eaten, and also upon what it is tempted with, whether with a dish that excites its desire or leaves its interest unawakened. It is known that dogs have very different tastes, just as men have. Thirdly, one may find among the dogs positively careless, indifferent creatures, incapable of being perturbed in this way by anything which has not actually reached their mouths, and patiently waiting till the food is given them. Hence for success in the experiment, eager, impressionable, and excitable animals are necessary. Fourthly, one has to reckon with the sense and cunning of the dog, a factor which is not lightly to be disregarded. Often the animals perceive at once that they are only being teased with the food, become annoyed thereat, and turn away offended at what is being done before them. We must, therefore, so arrange matters as if the animals were not going to be disappointed but fed in reality. If attention be paid to these conditions the experiment of “psychic excitation of the gastric secretion,” as we usually term it, will be found to be as reliable as the experiment of sham feeding. When one is occupied for a length of time with the study of the gastric secretion under different conditions, one becomes convinced of what a dangerous source of error this psychic excitability may become in the different experiments. We must constantly fight, so to speak, against this factor, keep it ever in view, and guard against it. If the dog has not eaten for a long time, every movement,—the going out of the room, the appearance of the attendant who ordinarily feeds the animal—in word, every little triviality may give rise to excitation of the gastric glands. The minutest attention is necessary in order to avoid such sources of error, and we should not be far wrong if we said that much which has been ascribed in former investigations to the effect of this or that agency was in reality a result of unobserved psychic influence. Consequently, in order to verify our own conclusions concerning the effects of this or that condition, we have performed many of our experiments on sleeping animals, having beforehand convinced ourselves by frequent repetition that sleep exercises no restraining influence on the working of the gastric glands.

When we recall to mind the failure of our attempts to obtain a secretion of gastric juice by any stimulation whatever of the buccal mucous membrane, and at the same time see how constant and intense the action of this psychic impression is, we are forced to the inevitable conclusion that in our sham feeding experiment the whole secretory effect is due to the psychic stimulus, that is to say, to the keen desire on the part of the animal for food and the satisfaction of enjoying it.

In view of the importance of the act of eating, which even now is apparent, but which will become still more obvious when the succeeding periods of secretion are investigated, we have spared neither time nor trouble to arrive at a correct explanation of the mechanism of this factor. We have, therefore, taken in hand a number of modifications of the sham feeding experiment, and these investigations have confirmed the opinion at which we had arrived. If, for instance, the dog has been prepared by a long fast of two to three days, a very intense secretion of gastric juice will always be obtained by the sham feeding experiment, no matter what may be given it to eat, whether boiled or raw flesh, bread or coagulated egg-white, etc. The dog, however, which has not fasted, that is to say has been fed fifteen to twenty hours before, will pick and choose amongst the different foods, eating one with great greed, tolerating another, and refusing altogether a third, and, corresponding therewith, the amount and quality of the gastric juice will manifest wide variations. The more eagerly the dog eats the more juice will be secreted and the greater the digestive power which it possesses. The majority of dogs prefer flesh to bread, and correspondingly less juice will be produced by sham feeding with bread than with flesh. Sometimes, however, we find dogs which will devour bread with greater appetite than flesh. In these cases one obtains more and stronger juice in sham feeding with bread than with flesh. Here is a case in point: a dog is given boiled meat which has been cut into pieces of definite size, and the pieces follow each other at regular intervals of time. The animal eats, but soon, from its behaviour, you see that it develops no particular greed for the meal, and this observation is confirmed by the fact that after fifteen to twenty minutes it ceases taking the flesh. The secretion of juice has meanwhile either not begun at all, or only after a longer interval than five minutes, and remains scanty to the end. Now wait till the secretion has stopped and give the same dog raw flesh, either forthwith or next day, in pieces of the same size and at the same rate as before. The raw meat tastes excellently to the dog; it eats for hours at a time; the secretion of gastric juice begins precisely after five minutes and is very active. With another dog which prefers boiled to raw meat exactly the reverse occurs. Broth, soup, milk—towards which dogs are usually more indifferent than towards solid food—often produce in sham feeding either no secretion at all or only very little, although broth, for instance has essentially the same taste as flesh.

It is therefore clear that in sham feeding the psychic effect may readily become an absolute and independent factor. All the conditions which we enumerated above, and which are necessary for the successful production of the psychic effect, hold good in combined form for the sham feeding experiment. The dog eats with greed before one’s eyes; the food which it receives is pleasant; it not only imagines food but actually eats it, and has therefore no reason to feel offended, for naturally the idea does not occur to any of the dogs that all their trouble is in vain.

Consequently, in the sham feeding experiment, by the act of eating, the excitation of the nerves of the gastric glands depends upon a psychical factor which has here grown into a physiological one, that is to say, is just as much a matter of course, and appears quite as regularly under given conditions as any other physiological result. Regarded from the purely physiological side, the process may be said to be a complicated reflex act. Its complexity arises from this, that the ultimate object is attained by the joint working of many separate organic functions. The material to be digested—the food—is only found outside the organism in the surrounding world. It is acquired not alone by the exercise of muscular force, but also by the intervention of higher functions, such as judgment, will, desire. Hence the simultaneous excitation of the different sense organs, of sight, of hearing, of smell and taste, is the first and strongest impulse towards the activity of the gastric glands. This especially applies to the two latter senses, since they are only excited when the food has already entered the organism, or at least has arrived very near it. It is by the establishment of this passionate desire for eating that unerring and untiring nature has linked the seeking and finding of food with the commencement of the work of digestion. That this factor, which we have now carefully analysed, stands in closest connection with an every-day phenomenon of human life, namely, appetite, may easily be predicated. This agency, which is so important to life and so full of mystery to science, becomes here at length incorporated into flesh and blood, transformed from a subjective sensation into a concrete factor of the physiological laboratory.

We are therefore justified in saying that the appetite is the first and mightiest exciter of the secretory nerves of the stomach, a factor which embodies in itself a something capable of impelling the empty stomach of the dog in the sham feeding experiment to secrete large quantities of the strongest juice. A good appetite in eating is equivalent from the outset to a vigorous secretion of the strongest juice; where there is no appetite this juice is also absent. To restore appetite to a man means to secure him a large stock of gastric juice wherewith to begin the digestion of the meal.

LECTURE V

PERIOD OF OCCURRENCE AND IMPORTANCE OF THE PSYCHIC OR APPETITE JUICE IN THE SECRETORY WORK OF THE STOMACH—THE INEFFICIENCY OF MECHANICAL STIMULATION OF THE NERVOUS APPARATUS OF THE GASTRIC GLANDS

The psychic secretion is the normal commencement, in the majority of cases, of secretory activity on the part of the gastric glands. If the meal be subdivided and administered at intervals, the psychic juice appears each time—Demonstration of “appetite juice” in a dog with an isolated gastric cul-de-sac. The work of the gastric glands if appetite juice be avoided by introducing food through a gastric fistula unperceived by the animal—Digestion of flesh by the stomach with and without sham feeding—Duration of the secretory influence of sham feeding—After the cessation of the psychic effect, how is the secretory work of the stomach maintained?—Experiments to prove the ineffectiveness of mechanical stimulation: excitation of the mucous membrane by means of a glass rod, a feather, a puff of sand, and by rhythmic dilatation of an india-rubber ball—Contact between the food and the stomach-wall may indirectly call the activity of the glands into play by awakening or increasing the desire for food.

Gentlemen,—On the last occasion we made ourselves acquainted with the first normal impulse which, in the natural course of events, calls into activity the innervation apparatus of the gastric glands. This impulse is a mental one, and consists in a passionate longing for food, that which in every-day life, and in the practice of the physician, is called “appetite,” and which everybody, both medical and lay, endeavours carefully to promote. We may now venture to say explicitly, APPETITE IS JUICE, a fact which at once displays the pre-eminent importance of the sensation. Medical science endeavours to assist the debilitated stomach by introducing the active constituent of gastric juice—pepsin—from without, or by prescribing other remedies believed to promote its secretion. It is, however, of interest to follow our experimental investigation still farther. What position is to be assigned to the “psychic” or “appetite-juice”[30] in the course of normal gastric digestion? Is any definite rôle to be attributed to it? What course does gastric digestion take when it is absent? Fortunately to all these important questions satisfactory answers are forthcoming by experiment. We have only to regret that these answers come so late.

Let us recall to memory how the secretion of gastric juice proceeded after feeding with flesh or bread in the case of our dog with the isolated miniature stomach. The following are the quantities and digestive capabilities of the first two hourly portions of juice after the administration of 200 grams of flesh or bread (experiments by Dr. Chigin):

Hour.Flesh.Bread.
Quantity
of juice.
Digestive
power.
Quantity
of juice.
Digestive
of juice.
c.c.mm.c.c.mm.
1st12.4 c.c.5.43 mm.13.4 c.c.5.37 mm.
2nd13.53.63>7.4”6.50

You see at once that the secretion of the first hour is identical in the two cases both as regards quantity and digestive power, and only in the second is the secretory work differentiated according to the nature of the food. How are we to explain the secretion which takes place at the commencement? Is it not the same which we have already seen in the sham feeding experiments? Is not this first onrush of the stream of secretion the preliminary psychic juice? Unquestionably, gentlemen, this is the case, and we may convince ourselves of the fact in the most diverse ways. Above all, the following is clear: whatever occurs in the so-called sham feeding cannot wholly be absent in the case of normal feeding, since the former is nothing else than the isolated commencement of normal digestion. This justifiable inference is fully confirmed, if the secretion of the first hours after the administration of flesh and bread be compared with that after simple sham feeding. In the case of feeding with flesh and bread, the identically similar and high digestive power of the first hourly portions is striking, and this power coincides with what we have met in sham feeding. Further, if the quantity of juice from the miniature stomach during the first hour be compared with that produced by the non-resected part of the organ,—to do which we must multiply it by ten, since the resected cul-de-sac is approximately one-tenth of the whole organ,—it is here again found that the quantity approximately corresponds to the mean values obtained by sham feeding. Finally, the depression in digestive power or quantity of juice (with flesh, decrease of digestive power; with bread, decline in the quantity of juice), which sets in soon after the taking of food, indicates that the two conditions are connected with the ingestion of food—i. e., with a transitory factor which soon passes away and gives place to other conditions. Our explanation becomes still more convincing when we take into consideration the effects of other foods. If you give the dog, for example, something else to eat which does not interest it to the same degree as flesh or bread, you will find the initial increase in quantity and strength of juice does not appear. Offer the animal milk, for example, which in sham feeding, especially if it does not last long, calls forth, as a rule, no secretion, or at all events only very little, and the rapid flow of the commencement—the already-mentioned initial rise—absolutely fails to appear. You have already seen the figures which deal with this matter; I think it necessary, however, to bring them forward again in order that you may be better able to compare them with the secretion after flesh and bread.

The dog was given 600 c.c. of milk (experiment by Dr. Chigin).

Hour.Quantity of juice.
c.c.
Digestive power.
mm.
1st4.23.57
2nd12.42.63

We have now begun the analytical examination of the variations of our secretory curve. But owing to the importance of the matter we did not confine ourselves to conclusions which might be drawn from earlier investigations. We turned to new forms of experiment for further proof.

Thus we divided the ordinary ration of flesh given to our dogs—400 grams—into four equal parts, which were administered at intervals of an hour and a half. (Experiments by Privat docent Kotljar and Dr. Lobassoff.) Each time after the dog received its 100 grams of flesh we were able to detect a rise both in the quantity and in the digestive power of the juice. The following table shows the figures in question:

Half-hour
periods.
Quantity
of juice.
Digestive
power.
Remarks.
c.c.mm.grms. flesh given.
1st3.15.13100
2nd5.04.63
3rd4.74.50
4th5.44.88100
5th5.53.38
6th4.72.75
7th6.03.75100
8th5.42.50
9th5.92.50
10th5.43.88100
11th5.33.0
12th4.22.5

In the curve which follows, only the variations of digestive power are represented.

It is clear that the increase, both of digestive power and of juice volume, is connected with the act of taking in food.

Figure 1.—Curve of digestive power constructed from the foregoing table.

It appeared of interest definitely to determine the volume and properties of the secretion called forth by the act of eating in the dog with the isolated stomach. We endeavoured, therefore, at the beginning, to imitate the conditions of sham feeding as they occurred in the case of the dog with divided œsophagus. In addition to the fistular orifice leading into the isolated miniature stomach, another was opened into the main portion of the organ. If we now fed the dog in the ordinary way with small pieces of flesh, these were received back again at the orifice of the latter fistula, covered with saliva. Precisely as in sham feeding, after five minutes the juice began to flow simultaneously, from both the large and small stomachs. The secretion ran a corresponding course in the two cavities and ceased at the same length of time in both after the administration of food was stopped. Here is an instance taken from such an experiment performed by Dr. Lobassoff.

In five minutes the dog had eaten eighty pieces of flesh (weighing 172 grams), all of which soon afterwards dropped out at the fistula. The secretion began in both stomachs after the lapse of seven minutes from the commencement of the feeding, and proceeded as follows:

Hour.Miniature stomach.Main stomach.
Quantity
of juice.
Digestive
power.
Quantity of
juice.
Digestive power.
c.c.mm.c.c.mm.
17.7 83.25.35 mm.
In consequence of a mixture withbile (10-15 c.c.) the digestive power was greatly reduced.
24.56.25 mm58.1
0.68.5

The secretion from both cavities also came to an end at the same time.

This experiment proves to us, first, that the main and miniature stomachs work in perfectly parallel manner with each other. The beginning, the end, and the intermediate variations of the secretion correspond in both cases. Secondly, the digestive power of the secretion coincides in both, and is the same which was observed in the so-called sham feeding. It has here remained at the same height till the cessation of the secretion, without falling to the lower value which we observed from the beginning of the second hour onwards, after normal flesh feeding.

This was also confirmed later, when we performed an œsophagotomy on the dog, and carried out sham feeding in typical form. Here follows one of these experiments taken from Dr. Lobassoff’s article.

The first drop of juice appeared from both cavities during the sixth minute after commencing the feeding, which was kept up for half an hour. The further course of the secretion was as follows:

Hour.Miniature stomach.Main stomach.
Quantity
of juice.
Digestive
power.
Quantity
of juice.
Digestive
power.
c.c.mm.c.c.mm.
1st7.65.8868.255.5
2nd4.75.7541.55.5
3rd1.15.514.05.38
—————————
13.5 (total)5.75 (mean)123.75 (total)5.5 (mean)

The secretion came to an end in both stomachs at the same time.

The above is represented in curves in Figs. 2 and 3, the scale on which that for the main stomach is drawn being ten times less than that for the small. As you see, the progress of secretion is identical in both.

The existence of a fistula leading into the large stomach affords us also the possibility of performing an experiment upon our dog which is exactly the converse of the sham feeding experiment, and which constitutes a real experimentum crucis. While in sham feeding, we had only, so to speak, the beginning of digestion before us, we are now able in our cross experiment to start at the continuation of this beginning. For this purpose it is only necessary to bring the food into the stomach through the fistula, without attracting the dog’s attention. Since in this experiment it is above all necessary not to excite the dog’s appetite, it is best to carry out the procedure on the sleeping animal. I may add at once, however, that the same result can be obtained on the waking animal, only the process must be performed unnoticed, and the animal’s attention must be diverted from thoughts of food.

Figure 2.—Curve of secretion from the miniature stomach.

Figure 3.—The same from the main stomach reduced ten times.

The results of this experiment are striking, and do not in any way resemble the secretion after normal feeding. Some kinds of food, for instance bread and coagulated white of the hen’s egg, when directly introduced into the stomach, do not yield a single drop of juice during the first hour or more afterwards. This holds good both for the small and large stomachs. When a glass rod is introduced into the food contained in the organ it remains dry. Flesh, if introduced at this stage, is able to excite a secretion, but the appearance of the juice is considerably retarded. It begins from fifteen to forty-five minutes after the feeding, instead of from six to ten, is under normal circumstances extremely scanty during the first hour (3 c.c. to 5 c.c. instead of 12 c.c. to 15 c.c.), and possesses a very low digestive power.

Here is an experiment by Dr. Lobassoff:

400 grms. of flesh were brought into the stomach.
Hour.Quantity of juice.
c.c.
Digestive power.
mm.
1st3.72.0
2nd10.61.63
3rd9.21.5
4th7.01.88
5th5.62.25
6th6.62.63
7th7.51.88
8th5.32.0
9th3.05.0
10th0.2

The secretion began twenty-five minutes after introducing the food. I now ask you to compare the following tables:

Hour.Fed with 200 grms.
of flesh (Chigin).
Flesh (150 grms.) brought
into stomach (Lobassoff).
Sham feeding
(Lobassoff).
Total quantity
of juice in two
experiments
Quantity
of juice.
Digestive
power.
Quantity
of juice.
Digestive
power.
Quantity
of juice.
Digestive
power.
c.c.mm.cc.mm.cc.mm.cc.
1st12.45.435.02.57.76.412.7
2nd13.53.637.82.754.55.312.3
3rd7.53.56.43.750.65.757.0
4th4.23.125.03.755.0

The progress of juice secretion in the above is also represented in the following curves:

Figures 4-7.—A. Ordinary curve of gastric secretion (200 grms. flesh). B. Curve from direct introduction of food (150 grms. flesh). C. Sham feeding with same. D. Summation of B and C.

As you see, the curve which represents the results of the direct introduction of flesh ascends much more slowly and does not attain anything like the height of that caused by normal feeding with the same food. But if the quantities obtained by direct introduction of the flesh be added to those of sham feeding, the resulting curve is almost identical with the normal.

In like manner the digestive power of the secretion in the foregoing experiments can be dealt with, and with the same result. It is a good instance of how a secretion curve can be synthetically constructed from its constituent factors.

Finally, I am able to demonstrate to you the following instructive experiment. In the presence of some of my listeners, whom I had invited to attend an hour before the lecture, I carried out the following procedures on two dogs, both of which had ordinary gastric fistulæ and were, besides, œsophagotomised. Into the stomach of one, while its attention was distracted by patting and speaking kindly to it in order to avoid arousing any thoughts of feeding, a definite number of pieces of flesh were introduced through the fistula. The morsels were threaded on a string, the free end of which was fastened to the fistular cannula by inserting a cork. The dog was then brought into a separate room and left to itself. A like number of pieces was introduced into the stomach of the other dog in the same way, but during the process a vigorous sham feeding was kept up, the animal being afterwards left alone. Each dog received 100 grams of flesh. Since then an hour and a half have elapsed, and now we may draw the pieces of flesh out by means of the thread and weigh them. The loss of weight, and consequently the amount of flesh digested, is very different in the two cases. In that of the dog without sham feeding the loss of weight amounts to merely 6 grams, while the flesh withdrawn from the stomach of the other dog weighs only 70 grams, that is to say, was reduced by 30 grams. This, therefore, represents the digestive value of the passage of food through the mouth, the value of an eager desire for food, the value of an appetite.

I give also a series of figures obtained by Dr. Lobassoff in analogous experiments. Into the dog’s stomach 25 pieces of flesh (100 grams) were brought. The flesh remained two hours in the cavity. Without sham feeding 6.5 per cent, with eight minutes’ sham feeding 31.6 per cent, of the quantity was digested.

Again: the flesh remained an hour and a half in the stomach; without sham feeding 5.6 per cent, with five minutes’ sham feeding 15 per cent, was digested.

Once more: the flesh remained five hours in the stomach; without sham feeding 58 per cent, with sham feeding 85 per cent, was digested, the balance of undigested food being 42 per cent in the one case and 15 per cent in the other.

I must, however, add that from the nature of this experiment it is not well adapted for class demonstration, and may often fail. On the one hand, it is not at all easy to conceal the introduction of the flesh from the dog; on the other, the unusual and distracting surroundings of the animal often causes a short period of sham feeding to have less effect than would otherwise pertain. In order to avoid such failures it is better before an audience to carry out this experiment only on dogs accustomed to appear in the lecture theatre, and of whose temperament the experimenter is well assured.

I hope you have now been convinced of the great importance which is to be attached to the passage of food through the mouth and œsophagus, or, in other words—and this, according to our former experiences, means the same thing—to the eager desire for food. Without this longing, without the assistance of appetite, many forms of food-stuffs which gain entry to the stomach remain wholly devoid of gastric juice. Others, it is true, excite a secretion, but the juice poured out is scanty and weak.

It is only later, when we have still more fully recognised the conditions upon which the secretory work of the gastric glands depends, that we shall be able to grasp the meaning of these facts in a more comprehensive manner. For instance, why does bread brought unnoticed into the stomach of the dog cause no secretion for hours, while flesh tolerably soon (after twenty to forty minutes) provokes this act? This will be explained in the next lecture; now, however, we must consider other questions.

How long does the after-effect, the echo of the first impulse to the secretory nerves of the stomach, continue to last? How long does appetite juice continue to flow after the normal act of eating, which, especially in the case of animals, is not of long duration? We have already determined many times, not only on our dog with the isolated stomach, but also on other animals, how long the after-effect of sham feeding is continued.

Here, for example, is an experiment from the article of Professor Ssanozki which deals with the point. The dog had a gastric fistula and also an opening leading into the œsophagus. After a sham feeding of five minutes the secretion began, and was continued as follows:

Time in
minutes.
Quantity.Digestive
power.
c.c.mm.
1025.58.1
1020.08.0
1013.56.8
1011.07.5
108.58.1
106.59.0
2013.57.4
2011.07.2
207.07.2
2011.56.8
2011.06.5
306.57.6
205.57.2

The effect, therefore, even after a short period of sham feeding, stretches over a length of time. Naturally the same holds good for the taking of food in the normal way. One must, however, bear in mind that in sham feeding, with all the force and reality of a hunger sensation not satisfied, the eager desire for food, the effective agency, becomes more and more accentuated, and therefore the secretory influence is prolonged and more powerful. In normal feeding, however, the quelling of the longing, the feeling of satisfaction which, as is well known, sets in long before the termination of the digestive period from the mere filling and distension of the stomach, must diminish the desire for food, and, consequently, bring the secretory effect to an end.

It is, therefore, improbable that the whole secretory process in the stomach, which, in the case of certain kinds and quantities of food, lasts from ten to twelve hours, is dependent on the factors which we have up to the present investigated. This is all the more obvious since a sham feeding of five minutes, even under the most favourable circumstances, does not call forth a secretion for longer than three to four hours. We must, therefore, seek for other exciting agencies of the innervation apparatus of the gastric glands.

Why and wherefore is the secretion instituted by psychic influence maintained? What would first occur to all your minds is naturally the immediate influence which the food exerts upon the walls of the stomach. And this is true, but it does not happen in the simple, direct fashion current in the minds of many physiologists and physicians. When I said that bread or boiled white of egg, introduced directly into the stomach, may not for hours produce a trace of secretion, probably many of my hearers may have asked themselves with natural astonishment, “How, then, is the effect of the forced feeding of phthisical and insane patients, and the artificial feeding of those with gastric fistulæ (performed on account of stricture of the œsophagus) to be explained?” I will introduce my answer by a very unexpected pronouncement relative to the assertion that mechanical stimulation of the stomach wall by food constitutes a reliable and effective means of calling forth the secretory work of the glands. This assertion, which is so categorically set forth in many text-books of physiology, and which consequently has gained hold of the mind of the physician, is nothing else than a sad misconception degenerated into a stubborn prejudice. My own statement, repeated in many published articles, and at the meetings of various medical societies, that this dictum is only a picture of the imagination, has met, for the most part, either with an unbelieving shake of the head or else with a direct avowal that “it cannot be so.” I regret exceedingly that these steadfast unbelievers are not here, so that we might together bring the matter before the tribunal of fact, to the demonstration of which we will now proceed. To this matter I attribute very great importance. It is on this ground, according to my opinion, that the whole battle must be fought out between the generally accepted view that every agency is capable of exciting the gastric mucous membrane and the theory that it is only excitable by specific and selected stimuli. If once the defenders of the old opinion are driven from their position and obliged to admit the inefficiency of mechanical stimulation, there would be nothing further left for them than to build up new theories and search out old facts concerning gland work which have hitherto been rigidly kept in the shade. We may take it that it is mainly because people were so seized with the belief in the direct and simple mechanical explanation that Bidder and Schmidt’s experiment of the excitation of gastric secretion by mental effect has been so little taken into consideration, notwithstanding that it appeared so thoroughly reliable and convincing.

I will now repeat the experiment of mechanical stimulation of the gastric mucous membrane before you in the well-known, traditional, and classic manner. Here is a dog with a gastric fistula on which a cervical œsophagotomy has in addition been performed. I open the fistula; as you see, nothing flows out of the stomach; it was washed out clean with water an hour ago. We take the celebrated feather and also a tolerably strong glass rod. Folds of blotting-paper saturated with red and blue tincture of litmus are placed at hand. I now ask my assistant to continuously move the feather and glass rod, alternately, in all possible directions in the stomach, changing from one to the other every five minutes. On removal from the stomach each is carefully dried with red and blue blotting-paper. You have all seen, gentlemen, that this procedure has now been kept up for half an hour. From the fistular orifice not even a single drop has escaped, and, moreover, the drops of moisture on all the pieces of red blotting-paper I have been able to hand to you have assumed a distinct blue tinge, caused by the moisture of the alkaline mucous membrane. The blue pieces, however, have merely been made wet without altering their colour. Consequently, with the most thorough mechanical stimulation of the whole cavity of the stomach, we have not been able to find a single spot possessing a noticeable acid reaction. Where, then, are the streams of pure gastric juice of which we read in text-books! What objection can be raised against the conclusiveness of this experiment? In my opinion only one: that we are dealing with a dog out of health, whose gastric glands from some possible cause are unable to react normally. This single objection can be set aside before your eyes. After failing with the mechanical stimulation, we proceed forthwith to the sham feeding of the same animal. The dog takes the food offered it with keen appetite, and you see that, exactly five minutes after beginning the feeding, the first drops of juice appear from the stomach, followed by others faster and faster. I catch a couple of drops on the blue litmus paper, and you see that they produce bright red specks on the blue sheet. After thirty minutes’ sham feeding we have collected 150 c.c. of juice, which, without filtering, looks as clear and transparent as water.

We cannot, therefore, possibly doubt that, when the proper stimulus is used, the gastric glands react to it in a perfectly normal fashion, furnishing a healthy gastric juice. From this it irrefutably follows that only one explanation is to be found for the negative result in the first half of our experiment, viz., that the mucous membrane of the stomach, so far as secretory activity goes, is perfectly indifferent to mechanical excitation. And yet this mechanical stimulus is demonstrated as an exciting agency in the physiological lecture theatre. I venture to think that this lecture experiment from now onwards will quit the field, and give place to the one I have just shown you. This apparently simple experiment of mechanical stimulation can, however, only be successfully performed when certain very obvious rules are followed. These, however, physiologists have not observed, probably on account of a preconceived belief in the effectiveness of the mechanical stimulus. These rules are two. First, it is necessary that the stomach should be clean, and that nothing shall gain entry to it from without. Such conditions were not formerly fulfilled. It is true the stomach was emptied by removing the stopper from the fistular cannula, but it was not washed out till an acid reaction was no longer given, and consequently preformed gastric juice was left behind between the folds of the mucous membrane. At the same time saliva from the cavity of the mouth could gain entry, which quickly became acidified in the incompletely emptied and imperfectly washed-out organ. It is, therefore, not surprising that the glass tube, by setting up contractions of the stomach, was the means of expressing small quantities of acid fluid from the fistula-tube. (The relationship between mechanical stimulation and the motor functions of the stomach is not to be confounded with what we are here speaking of.) That matters are as I state, and that the facts correspond to the explanation is proved by this; namely, that nobody till now has obtained genuinely pure gastric juice of an acidity amounting to 0.5 or 0.6 per cent. It is only necessary to call to mind that Heidenhain, when determining the acidity of the juice first obtained from the resected stomach, was placed in no little doubt as to whether his results (0.5 to 0.6) were correct, and his assistant at the time (Gscheidlen) was set to verify the correctness of his standard solutions. The acidity of the “purest” juice known at that time was scarcely 0.3 per cent. As a further proof that none of the older observers ever really obtained a secretion from mechanical stimulation pure and simple, we may adduce the fact that none of them made mention of the constant and precise period of five minutes’ latency. To overlook this was not possible if a genuine excitation of the glands had been obtained.

Of no less importance is the second condition when we wish to perform the experiment of mechanical stimulation in the correct way. It is very necessary that the gastric glands be not already in activity at the beginning of the experiment, and also that during the experiment no impulse comes into play, which of itself, apart from mechanical excitation, could excite the glands to secretion. Nor have we any proof that observers formerly waited for hours before commencing the experiment and convinced themselves that the gastric glands had ceased working. On the contrary, we have not the slightest evidence to indicate that the authors had attempted to guard against accidental psychical stimulation of the glands—a matter which we have seen is of considerable difficulty. And some dogs are so easily excited in this way that it is almost impossible to bring their glands to rest, or at least it is necessary to wait for hours. The experimenter must strain his whole attention to preserve such an experiment free from objection. It is only necessary that some food be near the dog, or that the hands of the attendant who has prepared the food should smell of it, or that some other similar circumstance should come into play, and the glass tube, quite undeservedly, will be made answerable for the excitation of the gastric glands. As you have just seen, both of our conditions have been fulfilled on the dog before you, and the result of the experiment stands in irreconcilable contradiction to those of the laboratory and lecture experiment of former times.

The importance of the experiment, which I have already dwelt upon, justifies me in making still further demands upon your attention in order to show you two modifications of it. Nobody has as yet said, with regard to mechanical stimulation, that in order to obtain results the mechanical agency must simultaneously come into contact with numerous points of the inner surface of the stomach. But in order to meet this possible objection I will now show you two new modifications. Again a similar dog is used, that is to say, one on which both gastrotomy and œsophagotomy have been performed. The stomach has been washed out clean and is at present in a state of complete rest. Into the fistula I bring a thick glass tube containing a number of small openings (2 to 3 mm. diameter) at its rounded end. The other end of the tube is connected with a glass ball containing tolerably coarse sand. Leading into the ball is a second tube, with which an india-rubber pump can be connected and a blast of sand blown through. By rhythmic compression of the india-rubber ball I inject sand with considerable force into the stomach, and this play is kept up for ten to fifteen minutes; nevertheless, we see no trace of gastric juice. The sand falls out again between the side of the cannula and the glass tube, and it is either dry or scarcely moistened, but in no case is it able to turn blue litmus red. And yet we are here dealing with a strong and widely diffused stimulus. Look for a moment at the performance of the bellows outside the stomach. From every opening of the tube—numbering considerably more than ten—a strong stream of sand is ejected. If you hold your hand against it, you feel quite distinctly that the grains of sand strike with considerable force. And now, when our experiment is ended, we may convince ourselves by sham feeding, in easy and unquestionable fashion, that the innervation of the dog’s stomach is perfectly normal.

Yet another experiment on a similar dog. Into its empty and resting stomach an india-rubber ball is introduced. This is distended with air by means of a syringe till it is as large as a child’s head and maintained in this condition for a time, afterwards being allowed to collapse. The procedure is kept up for ten to fifteen minutes. During this time not a single drop of juice has appeared from the stomach. The surface of the ball taken out of the organ is everywhere alkaline. And here also subsequent sham feeding shows that the dog is in a suitable condition for the experiment. I must add that in making this observation the dog must not be too hungry, that is to say, must have been fed within ten to twelve hours before, otherwise a psychic excitation of the secretion can readily be induced.

If one dispassionately regards this question, and if any of our methods for the study of gastric secretion are reliable, one must be convinced step by step in the laboratory of the uselessness of mechanical stimulation. In the case of dogs with an ordinary gastric fistula, and failing some special reason, not a drop of gastric juice ever escapes from the stomach other than during the digestive period. How could this be the case if the mechanical stimulus were effective, since the inner rim of the fistula-tube is continuously in contact with the gastric mucous membrane? The same holds good for the dog with resected stomach. During the experiment a glass or india-rubber tube is brought sufficiently far into the cul-de-sac to catch the juice, and yet not a drop flows through the tube, nor does its inner surface ever become acid, so long as true secretory conditions are absent. Moreover, the tube has tolerably often to be taken out and set right.

In the ordinary gastric fistula in dogs, when the operation has lasted a long time—over a year—folds of mucous membrane are often formed in the neighbourhood of its inner orifice which completely close the tube. In these cases a long, thick, perforated metal tube has to be passed in deeply, and yet the manipulation of itself never calls forth a secretion. Further, it is a daily occurrence to find in the stomach of the dog thick rolls of hair, and yet their presence in no way hinders the arrest of the secretion, which occurs when digestion has ceased. Such an occurrence would have been specially obvious in our dog with the isolated stomach, since it was bedded with sawdust in order to guard against maceration of the wound by juice trickling out. Very often we found enormous quantities of sawdust in the stomach, as much as half a pound weight; obviously the dog had licked the wound from adherent sawdust, which it then swallowed, together with that sticking to its nose. And yet these particles of sawdust of themselves, which certainly acted as mechanical stimuli, never caused a secretion. It appears to me that this long series of facts ought to suffice to carry the supposition to its grave that by direct mechanical stimulation one is able to set the neuro-secretory apparatus of the stomach into activity.

And yet the feather and the glass tube continue the even tenor of their ways to this moment and function in some text-books, yea, even in articles which specially treat of gastric secretion as exciters of the gastric glands. There are, it is true, a few physiologists who hold mechanical stimulation, in relation to gastric secretion, not to be very effective, and give it a subordinate position in the series of exciting agencies, but as yet I know of no other physiologist who has wholly denied its influence, and who has not held it possible to obtain at least some juice by it.

To conclude this lecture, we will take into consideration a question connected with the matter we have just discussed. Since the contact of food with the gastric mucous membrane has no direct influence on the secretion, is its entry into the stomach devoid of all connection with the secretory process?

It can hardly be doubted that, under normal conditions, the stomach is the seat of certain definite sensations, that is to say, its surface has a certain degree of tactile sensibility. This sensation is, as a rule, very weak, and the majority of people become accustomed to pay no heed to it in the normal course of digestion. They obtain their sensations of general well-being, and especially of satisfaction from the enjoyment of food, without taking cognisance of the factors contributing to them. The feeling of general hunger, however, is referred solely to the stomach.

On the other hand, all of us have met with men who could describe exactly, and with gusto, how they were able to follow a special tit-bit, or a mouthful of a favourite wine, the whole way through the œsophagus down to the stomach, especially when the latter happened to be empty. Naturally the gourmand, who directs his attention continuously to the act of eating, can in the end distinctly perceive sensations, and even call them up to the consciousness, which in other people are normally masked by other sensations and impressions. We may therefore take it that the satisfaction derived from eating is caused not only by stimulation of the mouth and throat, but also by impulses awakened by the passage of the food along the deeper portions of the œsophagus and by its entry into the stomach. In other words, food which merely passes through the mouth and throat produces less enjoyment and excites, therefore, a less feeling of appetite than the food which passes the whole way into the stomach. The appetite, the eager craving after food, is, indeed, a very complex sensation, and often not merely the need of the organism for food material is necessary for its excitement, but also a condition of thorough well-being, together with a normal healthy feeling in all parts of the digestive tract. For this reason it is easy to understand how patients who have diseased sensations in these organs, and who have no feeling of appetite, no desire for food, remember the sensations, whether consciously or unconsciously, even when they are no longer present. Cases are known to neuro-pathologists where people with gastric anæsthesia suffered from this loss of appetite. Such patients are no longer conscious of having stomachs, and dislike the idea of eating because the food, as they express it, appears to fall into a strange empty sack. In this way one can also conceive how the appetite becomes lost in cases of long-continued obstruction of the alimentary tube. The patients forget their stomachs, and in such instances direct introduction of food into the organ, after an operation, may suddenly bring back the appetite.

As a further illustration, I may be permitted to give an instance from my own personal experience. After an illness with which a transient but high fever was associated, although otherwise fully recovered, I had lost all desire for food. There was something curious in this complete indifference towards eating. Perfectly well, I only differed from others in that I could with ease abstain from all food. Fearing that I should collapse, I resolved on the second or third day to endeavour to create an appetite by swallowing a mouthful of wine. I felt it quite distinctly pass along the œsophagus into the stomach, and literally at that moment perceived the onset of a strong appetite. This observation teaches that the tactile sensation of the stomach at the moment of entry of food is capable of awakening or increasing the appetite. It is known that withholding food from the organism, or in other words the creation of a necessity for food, does not lead immediately, nor in all cases, to the production of an appetite, to a passionate craving for food. How often does it happen that the ordinary hour for a meal has struck, and yet, owing to some keenly interesting occupation, not the least desire for food is felt? It is known to everybody, indeed it has become a proverb, that real appetite first sets in with eating. If this be true, the initial impulse towards awakening an appetite may originate in the stomach and not in the buccal cavity. When we spoke above of the desire for food being the excitant of the secretory nerves of the stomach, we naturally meant the passionate and conscious longing for food, that which is called “appetite,” and not the latent need of the organism for nourishment, the lack of nutrition, which has not yet been transformed into a concrete passionate desire. A good example which enables us to differentiate between these two factors is furnished by our dogs with sham feeding. The necessity for food exists in such cases even before the experiment; the juice, however, only begins to flow as soon as this need has taken the form of a passionate longing. It is therefore quite possible that in the case of some dogs, and at a certain stage of hunger, the touching of the gastric mucous membrane with any object at hand, its mechanical excitation, its distension by the food mass, may give the impulse which excites the appetite, and when the appetite is awakened the juice flows. This is possibly a third reason why, in the old experiment, the mechanical stimulus came to be considered effective. Viewed from this point it may, to a certain degree, lead to a reconciliation between my assertion concerning the inefficiency of the mechanical stimulus and the generally prevailing belief. I further also admit that mechanical excitation will at times call into play the work of the gastric glands, not however directly by means of a simple physiological reflex, but indirectly, after it has first awakened and enlivened the idea of food in the dog’s consciousness, and thereby called forth the passionate desire. I hope that the foregoing will in no way lead to a confusion of ideas in your minds, but will assist you to an exact and concrete analysis of the previous simple explanation of the facts. This representation, which bears more or less of a hypothetical character, could, of course, be submitted to experimental proof. For such it is only necessary to compare the influence which sham feeding exercises in an œsophagotomised dog with that in one having a simple gastric fistula.

LECTURE VIII
PHYSIOLOGICAL ACTION AND THE TEACHING OF INSTINCT: EXPERIENCES OF THE PHYSICIAN

It would be desirable, in the interests of medicine, that the methods described in these lectures should be employed in experimental investigations into the pathology and therapeutics of the digestive canal on the lines laid down—The fact that the beginning of the secretory work in the stomach depends upon a psychic effect harmonises with the experiences of every-day life, namely, that food should be eaten with attention and relish—To restore the appetite has from all ages been the endeavour of the physician—The indifference of the present-day physician towards appetite—Probable causes of this—Curative remedies based upon a restoration of appetite—The therapeutic effects of bitters depend upon the excitation of appetite—The usages of the mid-day meal are in agreement with physiological requirements—Physiological reasons for certain instinctive customs and empirical regulations—Importance of an acid reaction of the food—Dietetics of fat and its therapeutic application—The peculiar position of milk among food-stuffs is based on physiological reasons—Explanation of the curative effects of sodium bicarbonate and sodium chloride—The causes of individual differences in the work of the digestive glands—Participation of the inhibitory nerves of secretion in the production of pathological effects.

Gentlemen,—To-day we shall endeavour to bring the previously communicated results of our laboratory investigations into reconciliation with the customs observed in the ingestion of food, and with the regulations prescribed by the physician in disorders of the digestive apparatus. To bring our knowledge to full fruition, and so secure for it the most useful application, the same methods should be applied from the same standpoint to the experimental investigation of the pathology and therapeutics of the alimentary canal. Nor should we be likely to encounter insuperable difficulties. Thanks to the advances of bacteriology, many of the pathological processes can now be experimentally produced in the laboratory. Moreover, we would, in a sense, have to deal with external ailments, since our present methods enable us to obtain access to any desired part of the inner surface of the digestive canal. In such pathological animals the functional diseases of the apparatus could be studied in a precise and detailed manner; that is to say, the alterations of secretory activity, the properties of the fluids, and the conditions under which they appear could be examined. On such animals therapeutic remedies could also be tested, the whole process of healing and the final result experimentally observed, while the conditions of secretory activity during every phase of the healing process could be investigated. It can hardly be doubted that scientific, that is to say ideal, medicine, can only take its proper position as a science when, in addition to an Experimental Physiology and Pathology, there has also been built up an Experimental Therapeutics. A proof that this is possible is furnished by the recent vigorous strides made by the science of bacteriology.

I have already described one of such pathological therapeutic experiments; namely, on the dog whose vagi nerves were divided in the neck. Other similar cases I can also call to mind. Our dog with the two stomachs suffered at one time from a slight and transitory gastric catarrh. It was then very interesting to observe that the pathological process (which we were usually able to wholly guard against) spread from the large to the small stomach. It manifested itself here in an almost continuous slimy secretion of very slight acidity, but of strong digestive power. At the beginning of the ailment, indeed before it became fully established, the psychic stimulation was remarkably effective (that is to say, still furnished juice in appropriate quantity), while local excitants almost completely failed. One may conceive that the deeper layers of the mucous membrane with the gastric glands were still healthy, and thus easily thrown into activity by central impulses, whilst the surface of the membrane with the end apparatus of the centripetal nerves was already distinctly damaged. I mention these, which I may call impressions rather than precise observations, because I wish to point out what a fruitful field awaits the investigator who wishes to study, with the aid of our present methods, the pathological conditions of the digestive organs and their treatment. Such an investigation is all the more desirable because clinical study of the same subject (notwithstanding the zeal devoted to it during the last ten years and the results derived therefrom) has to contend with serious difficulties. We must not forget that the sound or stomach-tube, the chief clinical instrument, is more uncomfortable than the ordinary form of gastric fistula which was previously practised on animals, and yet the physiology of the stomach, even with the aid of the latter, made no material progress for many long years. Nor is this difficult to understand. The investigator obtained through the fistula a mixture of substances from which it was difficult, or even at times impossible, to decide anything.

Hence the exact scientific study of therapeutic questions in this region still belongs to the future. But this does not exclude the probability that the newer acquirements of physiology may fruitfully influence the work of the physician. But physiology naturally can make no pretence to guide the field of medicine, since the knowledge at its disposal is incomplete and is much more restricted than that of the broad world of clinical reality. As a recompense for this, however, physiological knowledge is often able to explain the causation of an illness and the meaning of empirical curative methods. To employ a remedy the mode of action of which is not clear is quite a different thing from knowing precisely what we are doing. In the latter case the treatment of the diseased organ will be more effective because it will be better adapted to the special needs of the case. It is thus that medicine, being daily enriched by new physiological facts, will at length grow into what it ideally must become; namely, the art of repairing the damaged machinery of the human body, based upon exact knowledge, or, in other words, applied physiology.

We may now return to our subject. If it be at all admitted that human instinct is the outcome of an every-day experience, which has led to the unconscious adoption of the most favourable conditions for life, it is particularly so with regard to the phenomena of digestion. The expression that physiology merely confirms the precepts of instinct is justified here more than anywhere else. It appears to me also that, in relation to the foregoing facts, instinct has often made out a brilliant case when brought before the tribunal of physiology. Perhaps the old and empirical requirement, that food should be eaten with interest and enjoyment, is the most imperatively emphasised and strengthened of all. In every land the act of eating is connected with certain customs designed to distract from the business of daily life. A suitable time of day is chosen, a company of relatives, acquaintances, or comrades assemble. Certain preparations are carried out (in England a change of raiment is usually effected, and often a blessing is asked upon the meal by the oldest of the family). In the case of the well-to-do a special room for meals is set apart, musical and other guests are invited to while away the time at meals—in a word, everything is directed to take away the thoughts from the cares of daily life, and to concentrate them on the repast. From this point of view it is also plain why heated discussions and serious readings are held to be unsuitable during meal-times. Probably this also explains the use of alcoholic beverages at meals, for alcohol, even in the lighter phases of its action, induces a mild narcosis, which contributes towards distraction from the pressing burden of the daily work. Naturally this highly developed hygiene of eating is only found in the intelligent and well-to-do classes, first, because here the mental activity is more strained and the various questions of life more burning; and secondly, because here also the food is served in greater quantity than is required for the wants of the organism. In the case of the poorer classes, where mental activity is less highly developed, the greater amount of muscular activity and the constant lack of more than sufficient nourishment insure a strong and lively desire for food in a normal manner, without recourse to any special regulations or customs. The same conditions explain why the preparation of food is so choice in the case of the upper classes and so simple in that of the lower. Further, all the accessories of the meal, which are foretastes of the actual repast, are obviously designed to awaken the curiosity and interest, and to augment the desire for food. How often do we see that a person who begins his customary meal with indifference afterwards enjoys it with obvious pleasure when his taste has been awakened by something piquant or, as we say, appetising. It was here only necessary to give an impulse to the organs of taste, that is, to excite them, in order that their activity might be later maintained by less powerful excitants, for a person who feels hungry such extra inducements are, of course, not necessary. The quelling of hunger in his case affords of itself sufficient enjoyment. It is not, therefore, without reason that it is often said that “Hunger is the best sauce.” This dictum, however, is only right up to a certain point, for some degree of appetising taste is desired by everybody, even by animals. Thus, a dog which has not fasted for more than some hours will not eat everything with equal pleasure which dogs usually eat, but will seek out the food which it relishes best. Hence the presence of a certain kind of spice is a general requirement, although naturally individual tastes differ.

This short discussion as to how different people behave with regard to the act of eating is of itself testimony that care should ever be taken to keep alive the attention and interest for food and to promote enjoyment of the repast—that is to say, that care should be taken of the appetite. Every one knows that a normal, useful food is a food eaten with appetite, with perceptible enjoyment. Every other form of eating, eating to order or from conviction, soon becomes worse than useless, and the instinct strives against it. One of the most frequent requests addressed to the physician is to restore the appetite. Medical men of all times and of every land have held it to be a pressing duty, after overcoming the fundamental illnesses of their patients, to pay special attention to the restoration of the appetite. I believe that in this they are not only animated by an endeavour to free their patients from troublesome symptoms, but also by the conviction that the return of appetite of itself will favour the restitution of normal digestive conditions. It may be said that to the same extent to which the patient wishes back his appetite the physician has effectively employed measures to restore it. Hence we have not a few remedies which are specially named “gastric tonics,” and whose action is to promote appetite. Unfortunately medical science has latterly deviated from this, the correct treatment of the appetite, and that which corresponds to the real conditions. If one reads current text-books on disorders of digestion, it is remarkable how little attention is paid to appetite as a symptom or to its special therapy. Only in a few of them is its importance indicated, and then merely in short, parenthetic phrases. On the other hand, one may meet statements in which the physician is recommended to adopt no special means for counteracting so unimportant a subjective symptom as a bad appetite! After what I have said and demonstrated to you in these lectures, one can only designate such views as gross misconceptions. If anywhere, it is precisely here that symptomatic treatment is essential. When the physician finds it necessary, in disorders of digestion, to promote secretory activity by different remedies, this object can most certainly and completely be achieved by endeavouring to restore the appetite. We have already seen that no other excitant of gastric secretion, so far as quantity and quality of the juice are concerned, can compare with the passionate craving for food.

To a certain degree we can understand—and this contributes to an explanation of matters—how medical science of our time has come to regard so lightly the loss of appetite as a special object for treatment. Now, however, the experimental method has penetrated more and more into medical science, with the result that many pathological factors and therapeutic agents are judged of according to whether they hold good in the laboratory or not—that is to say, they are valued only in so far as they can be verified by laboratory experiments. Naturally we do not doubt that a movement in this direction indicates a great advance, but even here, as with every undertaking of mankind, things do not proceed without mistakes and exaggerations. We must not consider an event to be a mere picture of the imagination because it is not realisable under given experimental conditions. We often do not know all the essential conditions for the production of the phenomenon in question, nor are we yet able to grasp the connection between all the separate functions of life as fully as may be desired. Thus in the clinical treatment and pathology of digestion assistance was sought for in the laboratory, but nothing was there met with which had a relation to appetite, and consequently this factor was overlooked in medical practice. As stated above, the psychic gastric juice obtained only cursory mention in physiology, and this not even by all authors; and when it was noticed it was related more as a curiosity. Great importance was, on the other hand, assigned to the mechanical stimulus, the efficiency of which, now that our knowledge is more complete, has been shown to be purely imaginary. Each of the contending factors has at length been assigned its proper place, and if clinical medicine maintains her worthy desire of following out the experimental investigation of her problems, she must in actual practice accord to appetite its old claim for consideration and treatment.

But notwithstanding the indifference of physicians to appetite in itself, many therapeutic measures are based on the promotion of it. And in this the truth of empiricism makes itself irresistibly felt. When the patient is enjoined to eat sparingly, or when he is restrained from eating at all till the physician expressly permits, or again, when he is (for instance, during convalescence) removed from his ordinary surroundings and sent to an establishment where the whole life, and particularly the eating, is regulated according to physiological needs—in all these cases the physician seeks to awaken appetite, and relies upon it as a factor in the cure. In the first case, where the food is prescribed in small portions, in addition to preventing the overfilling of a weak stomach, the oft-recurrence of appetite juice, which is so rich in quantity and so strong in digestive power, is of great importance. I ask you here to call to mind one of our experiments in which food was given in small portions to a dog, and thus led to a secretion of much stronger juice than if the whole ration had been eaten at once. This was an exact experimental reproduction of the customary treatment of a weak stomach. And such a regulation of diet is all the more necessary, since, in the commonest disorders of the stomach, only the surface layers of the mucous membrane are affected. It may, consequently, happen that the sensory surface of the stomach, which should take up the stimulus of the chemical excitant, is not able to fulfil its duty, and the period of chemical secretion, which ordinarily lasts for a long time, is for the most part disturbed, or even wholly absent. A strong psychic excitation, a keen feeling of appetite, may evoke the secretory impulse in the central nervous system and send it unhindered to the glands which lie in the deeper as yet unaffected layers of the mucous membrane.

An instance of this, taken from the pathological material of the laboratory, I have already related at the beginning of this lecture. It is obvious in these cases that the indication is to promote digestion by exciting a flow of appetite juice, and not to rely upon that excited by chemical stimuli. From this point of view the meaning of removing a patient, the subject of chronic weakness of the stomach, from his customary surroundings is also plain. Take, for instance, a mentally overstrained individual, or a responsible official; how often does it happen that he cannot for a moment distract his thoughts from his daily work. He eats without noticing it, or eats and carries on his work at the same time. This often happens, particularly in the case of people who live in the midst of the incessant turmoil of great cities. The systematic inattention to the act of eating prepares the way for digestive disturbances in the near future, with all their consequences. There is no appetite juice, no “igniting juice,” or, at most, very little. The secretory activity comes slowly into play; the food remains much longer in the digestive canal than is necessary, or passes, for want of sufficient digestive juices, into a state of decomposition which irritates the mucous membrane of the alimentary canal and brings it into a condition of disease. No medicinal treatment can help such a patient while he remains surrounded by his old conditions. The fundamental cause of his illness still continues in progress. There is only one course to pursue; namely, to take him completely away, to free him from his occupation, to interrupt the interminable train of thought, and to substitute for a time, as his only object in life, the care of his health, and a regard for what he eats. This is attained by sending the patient to travel, or by placing him in a hydropathic establishment. It is the duty of the physician to regulate not only the life of individual patients according to such rules, but also to have a care that in wider circles of the community a due conception of the importance of eating should be disseminated. This is particularly so with the Russian physician. It is precisely in the so-called intelligent classes of Russians that a proper conception of life generally is often found wanting, and where an absolutely unphysiological indifference towards eating often exists. More methodical nations, like the English, have made a species of cult of the art of eating. It is, of course, degrading to indulge excessively and exclusively in culinary enjoyments, but, on the other hand, a lofty contempt for eating is also reprehensible. As so often is the case, the best course here also lies between the two extremes.

With the establishment of mental effect upon the secretion of juice the influence of condiments enters upon a new phase. The conclusion had already been empirically arrived at that it was not alone sufficient for the food to be composed exclusively of nutrient substances, but that it should also be tasty. Now, however, we know why this is so. For this reason the physician, who has often to express an opinion upon the suitability of the dietaries of different persons, or even of whole communities, should constantly bear in mind the question of psychic secretion; that is to say, he should inquire after and learn how the food has been eaten, whether with or without enjoyment. But how often do the people who have charge of the commissariat pay attention solely to the nutritive value of the food, or place a higher value on everything else than taste? We must, further, in the interest of the public weal, direct attention especially to the feeding of children. If this or that inclination of the taste ultimately determines the relation of grown-up individuals towards food, a matter with which the commencing phase of digestion is closely linked, it would seem undesirable to habituate children solely to a nicety and uniformity of gustatory sensations. Such might effect their capabilities of adapting themselves to other conditions in after life.

The question of the therapeutic influence of the so-called bitters, it appears to me, bears the closest connection with that of appetite. After a long period of high repute these substances have been almost expelled from the list of pharmaceutic remedies. When tested in the laboratory, they were unable to justify their old and valued reputation; when directly introduced into the stomach, many of them were unable to produce a flow of gastric juice. Consequently, in the eyes of the clinician, they became greatly discredited, so that many were quite ready to discard their use altogether. Obviously, the simple conclusion was drawn that a weak digestion could only be assisted by a remedy which directly excites secretory activity. In this, however, it was forgotten that the conditions of the experiment possibly had not corresponded with the actual state of affairs. The whole question of the therapeutic importance of the bitters, however, acquires a different significance when we link it with another question, such, for instance, as how do bitters affect the appetite? It is the universal opinion of the earlier and later physicians that bitters increase the appetite, and if this be so everything is said. They are, in consequence, real secretory stimulants, since the appetite, as has many times been repeated in these lectures, is the strongest of all stimuli to the digestive glands. It is, however, not by any means strange that this had not previously been observed in the laboratory. The substances were either introduced directly into the stomachs of normal dogs or else injected into the circulation. But their action is chiefly bound up with their effect upon the gustatory nerves, and it was not, therefore, without some reason that this large group of remedies, consisting of substances of the most varied chemical composition, were grouped together mainly on account of a certain bitter taste common to them all. A person who suffers from digestive disturbance has, moreover, a blunted taste, a certain degree of gustatory indifference. The ordinary foods, which are agreeable to other people, and also to himself when in health, now appear tasteless. They not only arouse no desire for eating, but may even cause a feeling of dislike; there is no sense of taste, or at best a perverse one. It is necessary, therefore, that the gustatory apparatus should receive a strong stimulus in order to restore a normal sensation. As experience teaches, this object is most quickly attained by exciting sharp, unpleasant, gustatory impressions, which by contrast awaken the idea of pleasant ones. In either case there is no longer indifference, and this is the foundation upon which an appetite for this or that kind of food may be awakened, and here a general physiological law is illustrated. The light appears brighter after darkness, a sound louder after silence, the enjoyment of blithesome health more intense after illness, and so on. This explanation of the appetising effects of bitters proceeding from the mouth does not exclude the possibility of some such similar influence coming also from the stomach. As has been already stated in the fifth lecture, there is some reason for believing that certain impulses from the cavity of the stomach are likewise necessary for the excitation of appetite. It is possible that bitters not only act directly on the gustatory nerves in the mouth, but that they also act on the mucous membrane of the stomach in such a way that sensations are generated which contribute to the passionate craving for food. As a matter of fact, it has been confirmed by many clinicians that after the administration of bitters some such special sensations do arise in the stomach. The effect of these remedies consists, therefore, not merely in the generation of a simple reflex, but in the production of a certain psychic effect, which indirectly excites a physiological secretory activity. The same probably applies to other substances, such as condiments. In any case, whether our explanation corresponds to the actuality or not, the question of the therapeutic effect of bitters is settled in the affirmative the moment we acknowledge that these substances awaken appetite. The problem, therefore, of an experimental investigation of bitters consists in establishing the fact that they have an effect upon the appetite. The question is a difficult one, and has not hitherto been attempted in the laboratory. It is not sufficient to hand over clinical observations to the laboratory as experimental proofs. One must have, in addition, the assurance that the investigation has been correctly carried out; that is to say, that it dealt exactly with the point under consideration. It is interesting to observe that the connection between appetite and gastric juice is by many physicians, and in many text-books of medicine, exactly reversed. Thus it is represented that some medicinal remedy calls forth a secretion of gastric juice, and this, by its presence in the stomach, awakens an appetite. Here we have to deal with a false explanation of a true fact, and that because it was not recognised that a psychic effect could by any possibility be a powerful excitant of secretory nerves. The customs of the chief meal of the day also correspond with our physiological results. After this or that hors d’œuvre, perhaps also with a liqueur of brandy (especially customary in Russia), both of which are designed to awaken the appetite, the repast proper begins, and, in the majority of cases, with something hot, consisting mostly of meat broth (bouillon, different soups, and so on). After this comes the really nourishing food—meat of different kinds served in various ways, or, in the case of poorer people, stews made with vegetables, and therefore rich in carbohydrate material. This sequence of foods, from the standpoint of physiology, is quite rational. Meat broth, as we have already seen, is an important chemical excitant of gastric secretion. An attempt is therefore made in two ways to secure a free secretion of gastric juice to act on the chief food; first, in the excitement of the appetite juice by the hors d’œuvre, and secondly, in the promotion of the flow by the action of the meat broth. It is in this way that human instinct has made provisions for the digestion of the chief meal. A good meat broth can only be afforded by well-to-do people, and consequently with the poorer classes a less expensive, and, indeed, also a less effective, chemical excitant is used for awakening the early secretion. For example, kwas[31] serves in this way with the Russian population, while in Germany, where the price of meat is high, different kinds of soups are used, consisting of water mixed with flour, bread, etc. It is further to be borne in mind that the quantity of the digestive juices in general stands in close connection with the content of water in the organism. This has been shown by the experiments of Dr. Walther for the pancreatic juice, and by my own for the gastric juice. If this sequence of foods, therefore, holds good for healthy people, it must be even more strictly adhered to in pathological conditions. Thus, when a person has no appetite, or only a weak one, he has no psychic juice or only very little; consequently, the meal must in every case be begun with a strong chemical excitant—for example, with a solution of the extractives of flesh. Otherwise solid foods, particularly if they do not consist of meat, would remain long in the stomach without any digestion whatever. It is, therefore, in every way desirable to prescribe meat juice, strong broth, or meat extract to people who have no appetite. The same applies also to forced feeding, for instance, of the insane. It is true that the method of introduction in this case necessarily secures the presence of a chemical excitant, since the food can only be introduced in a fluid form. In any case the addition of meat extract would be very useful. If one arranged the ordinary fluid foods in descending order, according to the influence of the chemical excitants, the following would be the series: first, the preparations of the flesh, such as meat juice and the like; secondly, milk; thirdly, water.

The usual termination of the repast is also, from the physiological standpoint, easy to be understood. The chief meal is generally ended with something sweet, and everybody knows that sweets are pleasant. The meaning of this is easy to guess. The repast, begun with pleasure, consequent on the pressing need for food, must also, notwithstanding the stilling of hunger, be terminated with an agreeable sensation. At the same time the digestive canal must not be burdened with work at this stage; it is only the gustatory nerves which should be agreeably excited. After thus dealing in general with the usual arrangement of our meals, we may now speak of some special points.

Above all comes the acid reaction of the food. It is apparent that acidity enjoys a special preference in the human taste. We use quite a number of acid substances. Thus, for example, one of the commonest seasoning substances is vinegar, which figures in a number of sauces and such like. Further, many kinds of wine have a somewhat acid taste. In Russia, kwas, especially in the acid form, is consumed in great quantities. Moreover, acid fruits and green vegetables are used as food, and they are either of themselves acid, or made so in the preparation. In medicine this instinct is likewise often made use of, and acid solutions, especially of hydrochloric and phosphoric acids, are prescribed in digestive disturbances. Finally, Nature itself constantly endeavours to prepare lactic acid in the stomach in addition to the hydrochloric acid. The former arises from the food introduced, and is consequently always present. These facts are all physiologically comprehensible when we know that an acid reaction is not only necessary for an efficient action of the peptic ferment, but is at the same time the strongest excitant of the pancreatic gland. It is even conceivable that in certain cases the whole digestion may depend upon the stimulating properties of acids, since the pancreatic juice exerts a ferment action upon all the constituents of the food. In this way acids may either assist digestion in the stomach where too little gastric juice is present, or bring about vicarious digestion by the pancreas where it is wholly absent. It is easy, therefore, to understand why the Russian peasant enjoys his kwas with bread. The enormous quantity of starch which he consumes, either as bread or porridge, demands a greater activity upon the part of the pancreatic gland, and this is directly brought about by the acid. Further, in certain affections of the stomach, associated with loss of appetite, we make use of acids, both from instinct as well as medical direction, the explanation being that they excite an increased activity of the pancreatic gland, and thus supplement the weak action of the stomach. It appears to me that a knowledge of the special relations of acids to the pancreas ought to be very useful in medicine, since it brings the gland—a digestive organ at once so powerful and so difficult of access—under the control of the physician. We could, for instance, intentionally discard digestion in the stomach, and thus transfer it to the bowel, by prescribing substances which do not excite the gastric glands. On the other hand, by lessening the acidity of the gastric juice we could reduce the activity of the pancreas, and these are matters which might be made use of in various special diseases, or even in some general disturbances of the digestive apparatus.

No less instructive is a comparison of the results of our experiments upon fat, with the demands of instinct and also with the precepts of dietetics and therapeutics. Everybody knows that fatty foods are heavy, that is, difficult of digestion, and in the case of weak stomachs they are usually avoided. We are now in a position to understand this physiologically. The existence of fat in large quantities in the chyme restrains in its own interest the further secretion of gastric juice, and thus impedes the digestion of proteid substances; consequently, a combination of fat and proteid-holding foods is particularly difficult to digest, and can only be borne by those who have good stomachs and keen appetites. The combination of bread and butter is less difficult, as might a priori be inferred from its wide employment. Bread requires for itself, especially when calculated per unit, but little gastric juice and but little acid, while the fat which excites the pancreatic gland insures a rich production of ferment both for itself and also for the starch and proteid of bread. Fat alone does not count by any means as a heavy food, as may be seen from the fact that large quantities of lard are consumed in certain districts of Russia with impunity. This also is comprehensible, since the inhibitory influence of the fat in this case does not prevent the digestion of any other food-stuff, and is conducive to the assimilation of the fat itself. There is no struggle in this case between the several food constituents, and therefore no one of them suffers. In harmony also with daily experience the physician, in cases of weakness of the stomach, totally excludes fatty food and recommends meat of a fat-free kind; for example, game, etc. In pathological cases, however, where an excessive activity of the gastric glands is manifested, fatty food, or fat as emulsion, is prescribed. And here medicine has empirically brought to its aid the restraining action of fat, which we have so strikingly seen in our experiments.

Amongst all the articles of human food, milk takes a special position, and this is unanimously recognised, both in daily experience and in the practice of medicine. By everybody milk is considered a light food, and is given in cases of weak digestion as well as in a whole series of severe illnesses; for example, in heart and kidney affections. The extreme importance of this substance, a food prepared by Nature itself, we can now well understand. There are three properties of milk which secure it an exceptional position. As we already know, in comparison with nitrogenous equivalents of other foods, the weakest gastric juice and the smallest quantity of pancreatic fluid are poured out on milk; consequently, the secretory activity requisite for its assimilation is much less than with any other food-stuff. In addition, milk possesses a further important property. Thus, when it is introduced unobserved into the stomach of an animal it causes a secretion both in the stomach and also one from the pancreas; consequently, it appears to be an independent chemical excitant of the digestive canal; and in this action it is remarkable that we perceive no essential difference in the effect when the milk is brought unnoticed into the stomach from that which occurs when it is given to the animal to lap. Although flesh is a better chemical excitant, it is by no means a matter of indifference how it gets into the stomach. It must, therefore, be accepted that milk excites not only a really effective, but at the same time a very economic, secretion, and also that the appetite is unable to stimulate this secretion into a more active or abundant flow. The secret of the relation of milk to the secretion of the digestive juices can, unfortunately, at present be submitted to no further analysis or investigation. We are at liberty, however, to suppose that the fat on the one hand is of importance for the inhibition of the gastric glands, and the alkalinity on the other for the restraint of the pancreas. Thus the gastric glands and the pancreas, notwithstanding the presence of excitants, are maintained by milk at a certain but not too high degree of activity, a matter which is in every way desirable in consideration of the easy digestibility of its constituents. Finally, the third characteristic which is observed to belong to milk, and which is probably only an expression of the first, consists in the following. When one administers to an animal equivalent quantities of nitrogen, in the one case as milk, in the other as bread, and afterwards estimates the hourly output of nitrogen in the urine, it results that the increase during the first seven to ten hours after the milk (compared with the excretion beforehand) amounts only to from 12 per cent to 15 per cent of the nitrogen taken in, while after bread it amounts to 50 per cent. If the hourly rate of absorption and the extent to which milk and bread are respectively used up be taken into consideration, it has to be admitted that these augmentations of urinary nitrogen which appear soon after feeding must be expressions of the functional activity of the digestive canal itself, and that this activity in the case of bread is three or four times greater than in the case of milk (Experiments of Prof. Rjasanzew); consequently, in the case of milk a much larger fraction of its nitrogen is free to be used up by the organism at large (irrespective of the organs of digestion) than in that of any other kind of food. In other words, the price which the organism pays for the nitrogen of milk, in the form of work on the part of its digestive apparatus, is much less than that for other foods. How admirably, therefore, the food prepared by Nature distinguishes itself when compared with all others!

The facts just related bring forward a new aspect from which the relative nutritive values of different foods may be judged. The older criteria must frankly make room for the new or else be displaced by them. Experiments upon the utilisation of food-stuffs, in which what remains undigested is determined as well as what is absorbed into the body fluids, cannot alone be trusted to solve the question in a satisfactory manner. Suppose, for instance, that in the digestion of a given food the alimentary canal has been given a certain work to perform; if it be in health the work will be accomplished in the best possible manner—that is to say, with complete abstraction of everything nutrient. You will thus learn how much nutrient material was contained in the food, but the question of its digestibility remains as obscure as before. In your experiment you do not know how great an effort it has cost the alimentary canal to extract all the nourishment from the food. Nor can artificial digestion experiments settle the question of digestibility, for experiments in which food is normally partaken of are quite different from those in the test-tube, where we have to deal with only one juice, and not with the interaction of different juices and different food constituents. That one must here, as a matter of fact, make a distinction is clear from the observation of Dr. Walther in our laboratory. Fibrin, which is regarded by all as the most easily digested proteid, proved, when compared with a nitrogen equivalent of milk, to be a much stronger excitant of the pancreas, although milk contains, in addition to nitrogenous substances, a good deal of other non-nitrogenous material. The digestibility and nutritive value of foods must obviously be decided by an estimation of the real work which they entail upon the digestive apparatus, both in regard to the quantity and quality of the juices poured out on a given amount of nutrient material. The energy used up in gland metabolism must be deducted from that of food taken in. The remainder will then indicate the value of the food to the organism; that is to say, will give the amount available for use by all the other organs exclusive of the digestive apparatus. From this point of view those materials must be taken as less nourishing and less digestible which are in large part used up to make good the expenditure entailed by their digestion on the part of the alimentary canal; that is to say, those food-stuffs are less useful whose nutritive value little more than covers the cost of their digestion; consequently, it is of great practical importance to compare from this aspect the same foods differently prepared—for example, boiled and roast meat, hard and soft boiled eggs, boiled and unboiled milk, etc.

A discussion of some further medical questions may here be taken up. The first concerns the therapeutic use of the neutral and alkaline salts of sodium. In clinical, pharmacological, and physiological text-books it is stated now, as ever, that these salts promote a flow of gastric juice. We may look in vain, however, for any experimental foundation to support this doctrine. The experiments brought forward cannot be regarded as conclusive. When Blondlot sprinkled sodium bicarbonate upon flesh, or Braun and Grützner introduced sodium chloride solutions directly into the blood, they began with methods either false in themselves or far removed from normal conditions. In this case, however, the gaps in the experiment were happily made good by the clinician, for the experiment appeared to be confirmatory of clinical experience. That sodium salts (the chloride and bicarbonate) are useful in disorders of the digestive apparatus there can be no doubt. How do they act, however? It appears to me that here, as in some other cases, medical science has fallen into error. When we know that an effect takes place it does not by any means imply that we know the mechanism by which it occurs; and although medicine is broad enough and comprehensive enough to make free use of empiricism in practice, yet it often thinks in narrow grooves when it turns to the explanation of facts. It frequently tries to explain complicated healing processes in the simplest way, on supposed physiological data. And this is true in the present case, which affords an example of prevalent medical reasoning; the alkalies work favourably in digestive disturbances—therefore they are succagogues. Naturally the stomach, under the influence of alkalies, sometimes begins to secrete a greater quantity of juice. This means, however, that it has recovered from a disordered state and has returned to normal conditions. Consequently, the effect is due to the fact of recovery, and not to a direct influence of the alkalies. This latter, however, must be specially proved. The assistance afforded by the alkalies to the organism might be capable of another explanation; for example, that which is ordinarily given. In this case, however, I venture to offer a reason for the effects of sodium chloride, and of the alkaline salts of sodium, which is exactly the opposite of that generally accepted. We were unable to convince ourselves of any succagogue influence on the part of these salts. Indeed, both on the stomach and pancreas they proved in our hands to have an inhibitory effect. In addition to the experiments which I previously brought forward concerning the relation of alkalies to gastric and pancreatic juice, I may relate the following observation. A dog which fortunately had survived the performance, one after the other, of a gastric fistula, a pancreatic fistula, and an œsophagotomy, received daily during the course of several weeks an addition of soda to its food. The animal enjoyed good health and had an excellent appetite. When the first sham feeding experiment was carried out, the relatively small effect of this otherwise very active juice-exciting procedure at once struck us. At the same time we observed that the pieces of flesh which fell from the upper end of the œsophagus, contrary to the ordinary rule, were hardly at all insalivated. In this dog, therefore, a greatly lowered activity of several digestive glands—viz., of the gastric, pancreatic, and salivary glands—simultaneously existed. With regard to the salivary glands the circumstance was naturally submitted to closer investigation. I believe that the inhibitory influence of the alkalies on the digestive glands, which was here proved experimentally, may furnish a basis for the following representation of their mode of action in producing healing effects. Catarrhal affections of the stomach are characterised by an incessant or very protracted secretion of slimy, weakly acid gastric juice. Further, in many cases the affection begins with a hypersecretion, that is an abnormal excitability, of the secretory apparatus which makes itself evident in a superfluous and useless flow. The same must be conceived to happen in disorders of the pancreatic gland; at least such a condition sets in after operations performed for physiological purposes. It is, further, justifiable to suppose that, when an affection is once set up by this or that cause, it may later maintain itself independently; for continuous activity has undoubtedly a harmful influence on the glands. The due nourishment, and the restoration of organs after activity, proceeds best during rest. In the normal course of events, after a period of active work follows a pause, during which the latent work of restoration is accomplished. When, therefore, a remedy effectively restrains the excessive work of a diseased organ, it may in this way contribute to the removal of the pathological condition, and thus to a restoration of the normal state. In this consists, in my opinion, the healing effects of the alkalies. One might draw a parallel between the action of these substances in digestive disturbances and that of digitalis in compensatory disturbances of the heart. An uncompensated heart beats rapidly, and thereby only aggravates its condition. Its time of rest, that is of recovery, of restitution of the organ, is shortened. A vicious cycle is set up. The weak action of the heart lowers blood pressure; the lowering of this leads (from known physiological causes) to an increase in the number of beats; the quickening leads to weakening of the organ. Without doubt the digitalis aids by breaking through this vicious cycle, in that it greatly slows the pulse, and thereby gives new power to the heart. With our explanation of the action of the alkalies harmonises the further circumstance that, with the use of the salts in question, a strict diet is generally prescribed, which means that a certain amount of rest is secured for the digestive glands. It is interesting that in clinical investigations with the stomach-tube, after a period when the alkalies were looked upon as succagogues, a new phase has also set in, mention being now more frequently made of a restraining effect.

The cause of the erroneous belief that alkalies promote a flow of juice obviously lies in this, that people omitted to compare the effects of the saline solutions with those of like quantities of water (Dr. Chigin).

The second point which we may consider is the following. The chief difficulty of the physician who wishes to regulate the diet of patients when they suffer from digestive disturbances consists in the fact that idiosyncrasy plays a very important rôle. In one and the same illness, different patients react to the same diet in wholly different ways. That which is agreeable to one, and is well borne and useful, may be rank poison to another. Consequently, the golden rule in dietetics is to give no directions with regard to food till one has made inquiries concerning the inclinations and habits of the patient. What does all this indicate? Till now physiology had no experimental answer to the question. But our facts, it appears to me, contribute to a clearing up of the situation. Every food determines a certain amount of digestive work, and when a given dietary is long continued, definite and fixed types of glands are set up which can only slowly and with difficulty be altered. In consequence, digestive disturbances are often instituted if a change be suddenly made from one dietetic régime to another, especially from a sparse to a rich diet; such, for instance, as happens after the long Russian fasts. These disturbances are expressions of the temporary insufficiency of the digestive glands to meet the new demands made upon them.

Finally, it may be of some use to relate the following here. There are often cases of sudden and unaccountable digestive disturbances. From the standpoint of modern physiology they might be explained by an activity of the secreto-inhibitory nervous system, which from some cause or other has been excessively and abnormally stimulated. In any case this system is now a factor of which the physician has to take due account.

SWALLOWING AND MOVEMENTS OF THE STOMACH AND INTESTINES
By W. B. Cannon, M.D.
Of the Physiological Laboratory of the Harvard Medical School Boston, Mass., U. S. A.

[Note.—In the beginning of 1896 Dr. Professor Henry Pickering Bowditch, one of our Board of Scientific Assessors in the Nutrition Case suggested the use of the Röntgen ray as a means of learning more than was then known about the mechanism of swallowing. There was much difference of opinion among research physiologists about this important function, and the question was far from settled. Magendie published a theory of deglutition, in Paris, in 1836, which was practically accepted until 1876, when Dr. Professor Angelo Mosso, of the University of Turin, Turin, Italy, established the theory of sole peristaltic assistance in swallowing. Again in 1880 Dr. Professor Kronecker, of Berne, Switzerland, in connection with Dr. Falk, and later in connection with Dr. Meltzer, of New York, produced evidence to prove a more complicated process in deglutition than that of peristalsis alone. But even Kronecker and Meltzer found, as they went on, evidence to modify their earlier beliefs, and hence the subject was not cleared up to a point of general agreement.

The suggestion made by Dr. Bowditch was taken up in the Harvard Physiological Laboratory and formed the beginning of a series of studies of the mechanical factors in digestion. The reports of these studies, presented by Dr. W. B. Cannon and collaborators, in the American Journal of Physiology, in the volumes of 1898 and 1903, are so understandable, even to the layman ignorant of physiological nomenclature, that we are prompted to give them, almost entire, leaving out only the technical description of the methods employed, which are only interesting to research students who have access to the Journal.

It will be noted that three of the professors of physiology mentioned in connection with this preliminary study of the nutrition problem—Bowditch, Mosso, and Kronecker—are members of our presently organised Board.—Horace Fletcher.]

THE MOVEMENTS OF THE FOOD IN THE ŒSOPHAGUS
By W. B. Cannon and A. Moser
From the Laboratory of Physiology in the Harvard Medical School
Extracts from American Journal of Physiology, 1898

The movements of deglutition, in common with many other physiological processes, were explained by the older physiologists on anatomical grounds. Thus, Magendie divided the act into three parts, corresponding to the anatomical regions of the mouth, pharynx, and œsophagus. The muscles of each of these divisions were considered the active agents in propelling the food onward. The function of moving the mass to the pharynx was variously ascribed to the tongue itself, to the mylohyoid muscles, and to gravity. For the second part, the movement through the pharynx, there was more unanimity of opinion, since the constrictors, especially the middle and lower, were evidently concerned.

Direct observations on the movement of swallowed masses in the œsophagus were first made by Mosso. The œsophagus of a dog was laid bare, and a transverse incision made through it, or a piece of it excised. A small wooden ball was placed in the canal below the excised part, and the animal was then stimulated to swallow. One or two seconds after the contraction of the pharyngeal muscles a peristaltic wave began to traverse the œsophagus. This wave did not stop at the point of excision, but in due time reappeared below, and carried the ball to the stomach. Thus the act was shown to be controlled by the central nervous system. Peristalsis was so plainly the motive power that the action was never doubted. Yet this belief was soon to be questioned.

In 1880 Falk and Kronecker studied the movements in the mouth and pharynx, and advanced the theory that deglutition was accomplished by the rapid contraction of the muscles of the mouth. During the act of swallowing the air-tight buccal cavity shows a manometric pressure of twenty centimetres of water. The same pressure was demonstrated to be present also in the œsophagus, but not in the stomach. This pressure was considered sufficient to force food through the œsophagus before the peristaltic wave traversed it. Another argument for rapid descent was found in the fact that cold water can be felt in the epigastric region almost immediately after being swallowed. Further, when strong acids pass through the gullet, they corrode but small parts of it, and not the entire mucous membrane, as would be the case were the acid carried to the stomach by peristalsis.

Over a year and a half ago it was suggested by Prof. H. P. Bowditch that if some substance opaque to the Röntgen rays were swallowed, it could be seen in its passage to the stomach, and the nature of its movement thus determined. Anæsthesia could be dispensed with,—a desirable condition, since observers had found that it interfered greatly with the deglutition reflex. It would be unnecessary to open either the abdominal or the pleural cavity. The reflex stimulus of food, moreover, would be better than electrical stimulation of the superior laryngeal nerve. In short, the animal would swallow normal food under practically normal conditions. At Dr. Bowditch’s suggestion and with his valuable assistance—which we gratefully acknowledge—we made the following series of experiments.

To render the swallowed mass opaque, subnitrate of bismuth was used. The salt is tasteless, practically inert, and can be fed in large quantities without harm. In order that observations could be made by more than one person, all experiments were conducted in a dark room. On the side of the animal opposite the Crookes tube was placed an open fluorescent screen, on which the different tissues of the animal were outlined with varying degrees of light and shade. Among these shadows the swallowed mass appeared as a darker object, and thus its motion could be studied.

For the first experiments the goose was selected. The head and neck were held stationary by a tall pasteboard collar, which allowed free movement of the head without constriction of the neck. The fluorescent screen was placed against this collar at a uniform distance of thirty centimetres from the tube. When a bolus of corn-meal mush mixed with bismuth was placed in the pharynx, it descended slowly and regularly, and occupied about twelve seconds in passing over a distance of fifteen centimetres. The screen was marked at intervals of two centimetres with cross lines, by means of which the relative rate in different parts of the œsophagus could be studied. A vibrator marking tenths of a second was interrupted whenever the bolus crossed a line. An average of over one hundred such observations showed that the rate became slightly slower as the bolus proceeded.

In order to test liquids, molasses was mixed with bismuth to such a consistency as to drop easily from a glass rod. When this was fed with a pipette, it passed slowly and regularly down the œsophagus, clearly by peristalsis. The rate was about the same as for solid food. In both these experiments the addition of water would sometimes cause irregularities in the descent. Microscopic sections from four different parts of the œsophagus of the goose showed no histological difference.

In the experiments on the cat, the animal was placed on its back and left side on a holder. The extremities were secured by straps. The head was held between two upright rods, connected above by a thong; this allowed free movement of the head, without resistance to the passage of food. Shreds of meat dipped in bismuth were ordinarily masticated and swallowed without difficulty. For soft solids, bread and milk were used, so fluid as to be easily drawn up into a pipette. The insolubility of the bismuth salt rendered the study of liquids more difficult. Strong solutions of potassic iodide and other salts, and suspension of bismuth, in acacia and molasses were tried; but a simple mixture of milk and bismuth, shaken in a test tube and immediately drawn up into a pipette, was found most practicable.

Inasmuch as the movement of these different foods varied in different parts of the œsophagus, it will be convenient to divide the latter into three sections. The first or cervical portion extends from the pharynx to the thorax; the second or thoracic, from here to the lower half of the heart; and the third comprises the rest of the canal. The relative length of these three parts is about in the ratio of 9:8:6.

The beginning of deglutition was noted by one observer by a finger on the larynx; the same observer called out when the bolus arrived at the thorax, heart, and stomach respectively, while the other observer noted the time. The movement of solids will first be considered. The descent the entire way was by peristalsis, but the rapidity varied. The duration of the movement in the cervical portion was two and a half seconds, and in the thoracic region a little less than two seconds. At the lower end of the heart there was sometimes a slight pause. In the lower section, from the heart to the stomach, the movement was decidedly different; the rate was always very slow. The distance was less than one-third of the entire canal, yet the time consumed in this part ranged from six to seven seconds, or three-fifths of the entire time of descent. The character of the movement here was also peculiar. Whereas in the upper sections the passage was uniform and regular, with a slight acceleration in the thoracic region, here it was apparently irregular, for the bolus descended about one centimetre with each inspiratory movement of the diaphragm, and remained stationary or descended very slightly during expiration. Thus a series of hitches seemed to carry the bolus to the cardia. A probable explanation of this peculiar movement is that the stomach and lower œsophagus were pulled down with each descent of the diaphragm. This would make the movement appear irregular, although it was really a slow peristalsis. It may be well to remark here that this movement was invariably observed in the cat with every kind of food.

Semi-solids, namely, a mush of bread and milk, descended in the same way as solids; but the rate was slightly faster in the upper œsophagus, for the bolus took about a second less to reach the cardiac level. From here the rate was the same as with solids.

For liquids, one and a half to two seconds sufficed for the descent to the midheart region. Here there often occurred a long pause, from a few seconds to a minute or more. Then the œsophagus apparently contracted above the liquid, which slowly passed on to the stomach, as already described. Sometimes it seemed as if a swallowing movement, evidenced by a rise of the larynx, started the peristaltic wave. Again, several swallows would succeed one another before the liquid passed on. A few times the bismuth and milk seemed strung out along the œsophagus; some more liquid descending would gather this up, and the whole mass, assuming an ovoid form, would move into the stomach.

Thus in the cat the total time for deglutition varies from nine to twelve seconds. The lowest section presents no change ascribable to a difference in consistency, while in the upper sections the rate does slightly increase with the more liquid character of the food.

In experiments on the dog, bismuth enclosed in capsules or wrapped in shreds of meat was fed as the solid. The general phenomena were as follows: With the rise of the larynx there was a quick, propulsive movement of the bolus, which descended rapidly for a few centimetres, sometimes as far as the clavicle. From this point the rapidity was diminished, yet no pause was observed; the bolus simply moved more slowly. This rate was then continued to the stomach without a slackening of speed in the diaphragmatic region, as was observed in the cat. Semi-solids moved in the same way as solids. The total time of descent from larynx to stomach was from four to five seconds.

Liquids gave even a more decided squirt in the beginning of the movement. To render the œsophagus as lax and free as possible, the head of the dog was released from the upright rods and held by the hands after the food was placed in the mouth. Sometimes the liquid descended rather rapidly as far as the heart, at other times no further than the clavicle; then without a pause it passed on slowly and regularly, reaching the stomach in about the same time as solids and semi-solids.

Thus in the dog and cat but little variation was seen in the swallowing of liquids and solids. The liquids pass somewhat faster in the upper œsophagus. But in some animals the difference of rate with foods of varying consistency is much more marked. In the horse, for instance, mere observation shows a decided variation in the rate of movement in the œsophagus. Liquids shoot along the gullet, while solids move clearly by peristalsis. To determine the rate of solids, one hand was placed on the larynx of a horse to note the beginning of swallowing, and the other hand near the shoulders, where the bolus could be easily felt in its passage. The time consumed by the bolus in passing over a certain distance was measured by a stop watch. The rate obtained for solids, such as hay or grain, was from thirty-five to forty centimetres a second.

For semi-solids, a mixture of bran and water was made, thin enough to run easily between the fingers. Each bolus was watched by a separate observer with a separate watch. The average rate obtained was the same as for solids.

Liquids in the horse pass with a rapidity too great to be affected by peristalsis. Another force must be sought. Among the various muscles supposed to be effectual in moving food into the pharynx, the mylohyoids were shown by Meltzer to be essential. The styloglossi were cut by him without much interference with deglutition, but section of the mylohyoid nerves rendered the act impossible. The activity of these muscles in the horse during swallowing is easily perceived by the hand. Their energetic contraction is a sufficient explanation of the rapid passage of water through the œsophagus. The motion here is more than five times as rapid as that of solids and semi-solids.

Meltzer’s experiment to measure the rate of liquids in man by passing a stomach tube containing litmus paper was repeated by us with some modifications. Congo red paper was used, since it is more sensitive than litmus; it also furnishes a means of differentiating between mineral and organic acids, as the discolouration produced on Congo red by mineral acids is removed by ether. It was thus possible to distinguish between the discolouration produced by gastric regurgitation and that produced by the swallowed liquid. For the swallowed liquid, one-half per cent lactic acid was found most satisfactory, as the colour produced by it on Congo red test paper is almost instantly discharged in ether. By this method the paper was found discoloured within half a second after the rise of the larynx, certainly too short a period for a peristaltic wave to carry the liquid to the neighbourhood of the cardia.

The X-ray method lends itself less successfully to the study of deglutition in man than in the other animals we have studied. The thickness of the thorax, the distance of the œsophagus from the surface, and the relation to dense tissues render the observation of a swallowed mass difficult, especially when the mass is in rather rapid motion. The few observations which we have to report were made on a seven-year-old girl, placed in the sitting posture. Gelatine capsules containing bismuth were used for solids, and were traced to a point below the heart. The motion was very regular, and apparently due to peristalsis, for the bolus descended without a hitch or irregularity of any kind. Sometimes the capsule became fixed in the upper œsophagus, at about the level of the second rib. Repeated swallows of water would fail to dislodge it. An interesting point was noted here. With each attempt at swallowing, the capsule would rise slightly, as if the œsophagus was pulled up with the rise of the larynx; then the capsule would descend to its former position.

Semi-solids—a mush of bread and milk—could be seen about as far as solids; that is, to just below the heart. The motion of the mushy bolus was the same as with solids, except that the rapidity was perhaps slightly greater.

It should be noted here that with the human subject, as well as with the horse, our results for semi-solids differ from those derived by Meltzer’s method; for according to his statements semi-solids, like liquids, are squirted down the œsophagus, and are not propelled by peristalsis, as has been the case in our observations.

Liquids—bismuth and water—were seen only in the neck and upper thorax. Here there was a decided squirt. With the rise of the larynx the liquid was seen to pass rapidly through the pharynx and well down into the thoracic œsophagus before it was lost to observation. The rate, however, by estimation was less than that of liquids in the horse.

There remains to be considered Meltzer’s latest investigation, in which he endeavoured to ascertain whether liquids remain above the cardia till the arrival of the peristalsis, or ooze down before. An experimental answer was secured by Meltzer by the following method. The abdominal and gastric walls of an anæsthetised dog were incised, and a tube (vaginal speculum) introduced. Through this the entrance of food into the stomach could be observed directly. In repeated experiments no liquid was seen to pass through the cardia before the arrival of the peristaltic wave. An incision through the diaphragm near its anterior origin showed that the swallowed liquid was not squirted as far as a point an inch above the diaphragm. To observe the œsophagus nearer its beginning, the upper three ribs were resected on the left side. Thus the swallowed liquid was seen to shoot along the œsophagus before any peristalsis reached this point. The resection of the fifth rib exposed the œsophagus half-way between the bifurcation of the trachea and the diaphragm. Here a bulging was sometimes observed immediately after the beginning of the act, and the swallowed mass remained there until a peristaltic wave carried it down. If the mass swallowed was small, or was projected with moderate force, it might not even reach as far as the bifurcation. From these experiments Meltzer concluded that in animals, as in man, liquid food is not carried down the œsophagus by peristalsis, but is thrown rapidly into a deep part of the canal. The depth reached depends on the quantity swallowed, the force used, and the tonicity of the lower part of the œsophagus.

The difference between these methods of Meltzer and those employed in our experiments has already been mentioned; and merely his results, which were obtained with liquids alone, need be considered here. According to our observations on the dog, there was no distinct pause at any part of the canal. The movement simply became slower, and continued at this rate until the stomach was reached. Neither was the rate through the diaphragmatic part of the œsophagus slower than through the thoracic. The quick propulsive movement noticed in the dog was observed with solids and semi-solids as well as with liquids, but the liquids descended further down the canal before the movement changed to the slower peristalsis. While this difference was evident to the eye, the total time consumed by liquids in passing from pharynx to stomach was not enough shorter than the time for solids and semi-solids to be determined by our measurements.

Summary.

The phenomena of œsophageal deglutition as determined by our experiments may then be described as follows:—

There is a difference in swallowing according to the animal and the food which is used.

In fowls the rate is slow and the movement always peristaltic, without regard to consistency. A squirt-movement with liquids is manifestly impossible, as the parts forming the mouth are too hard and rigid. With this diminution of propulsive power in the mouth there is observed a greater reliance on the force of gravity. The head is raised each time after the mouth is filled, and the fluid by its own weight trickles into the œsophagus, through which it is carried by peristalsis.

In the cat the movement is always peristaltic, and slightly faster than in fowls. A bolus takes from nine to twelve seconds in reaching the stomach. Liquids move somewhat more rapidly than semi-solids in the upper œsophagus. In the lower or diaphragmatic part the rate is very much slower than above, and is the same for liquids as for solids.

In the dog the total time for the descent of a bolus is from four to five seconds. The food is always propelled rapidly in the upper œsophagus, and moves more slowly below. This rapid movement is frequently continued further with liquid food. No distinct pause was observed when the movement of the bolus changed from the rapid to the slower rate.

In man and the horse liquids are propelled deep into the œsophagus at a rate of several feet a second by the rapid contraction of the mylohyoid muscles. Solids and semi-solids are slowly carried through the entire œsophagus by peristalsis alone.

THE MOVEMENTS OF THE STOMACH STUDIED BY MEANS OF THE RÖNTGEN RAYS
By W. B. Cannon, M.D.
From the Laboratory of Physiology in the Harvard Medical School
Extracts from American Journal of Physiology, 1898

Since the stomach gives no obvious external sign of its workings, investigators of gastric movements have hitherto been obliged to confine their studies to pathological subjects or to animals subjected to serious operative interference. Observations made under these necessarily abnormal conditions have yielded a literature which is full of conflicting statements and uncertain results. The only sure conclusion to be drawn from this material is that when the stomach receives food obscure peristaltic contractions are set going, which in some way churn the food to a liquid chyme and force it into the intestines. How imperfectly this describes the real workings of the stomach will appear from the following account of the actions of the organ studied by a new method. The mixing of a small quantity of subnitrate of bismuth with the food allows not only the contractions of the gastric wall, but also the movements of the gastric contents to be seen with the Röntgen rays in the uninjured animal during normal digestion. An unsuspected nicety of mechanical action and a surprising sensitiveness to nervous conditions have thereby been disclosed.

Introductory Literature

The early writings on the subject of gastric movements are characterised by general inferences from physical laws and from the anatomical structure of the stomach. According to Galen the stomach had four functions: to draw the food from the mouth (facultas attractrix), to retain the food (facultas retentrix) during the process of chemical digestion (facultas alteratrix), and, finally, to pass the changed material onward (facultas expultrix). In later writings the facultas attractrix failed to appear as one of the functions of the stomach. Fallopius, in the sixteenth century, changed the notion of the facultas retentrix by suggesting that the pylorus alone performed this office, and that the muscles of the gastric wall could help only by remaining quiet. Thus the facultas alteratrix and the facultas expultrix are left as true gastric functions. It is with the latter activity and its effects that this paper is concerned.

The ideas of the early writers concerning the pylorus and cardia are of interest. The cardia, they were agreed, is closed during normal digestion in order to keep the food from re-entering the œsophagus. The pylorus they looked upon as the ruler of the actions of the stomach. Such names as pylorus (keeper of the gate), janitor justus, and rector, which the first investigators gave to the sphincter, indicate their theories of its functions. The passage of chyme into the duodenum, the keeping of undigested food in the stomach, the act of vomiting, were all dependent, they believed, on the “will” of the pylorus.

No substantial advance was made beyond these hypotheses until the beginning of the eighteenth century, when Wepfer and Schwartz applied the experimental method to the study of the gastric movements and laid the foundation of a more accurate knowledge. Wepfer vivisected wolves, dogs, and cats, and observed constrictions following stimulation of the stomach. He remarked a general contraction of the pyloric part in vomiting and noted peristaltic and antiperistaltic movements passing over the organ. About the middle of the stomach he frequently saw a deep constriction. The investigations of Schwartz are more valuable in that his search was for the normal action of the muscular coats. The movements, as he observed them, were generally only slight. They began either at the pylorus and passed to the left, half-way to the cardia, or started at the fundus and went to the pylorus. The contractions and relaxations, following one another, formed larger or smaller depressions and elevations, i. e., more or less definite waves.

Near the middle of the last century Haller, after confirming the results obtained by Schwartz and Wepfer, summarised his knowledge of the motor functions of the stomach as follows. In general, contraction alternates with relaxation, so that the stomach is, now here, now there, made narrower by longitudinal or transverse depressions; then in these same places relaxation and bulging occur. So long as both apertures are closed the food is driven hither and thither by the shifting movements. It first takes a definite direction when the cardia or the pylorus opens. If the cardia opens, there is an antiperistalsis followed by regurgitation and vomiting. If, on the contrary, the pylorus relaxes, a contraction, starting at the œsophagus, pushes the contents of the stomach into the duodenum. The pylorus allows the passage of fluids, but if it be stimulated by over distention or by hard pieces of food, it closes tightly.

Such was the knowledge of gastric movements in Haller’s time. A comparison of his descriptions with those in any standard work on physiology published ten or fifteen years ago will show that, despite very many researches, little advance had been made. Examinations of animals and men with gastric fistulas, studies of the stomach through the atrophied abdominal wall, and vivisection have yielded numerous results; but these have not been harmonious, and have led to much controversy. Prominent in this mass of material as a valuable contribution are Beaumont’s careful observations through the gastric fistula of Alexis St. Martin. Beaumont’s work has recently been confirmed by Hofmeister and Schütz, who, with Rossbach, Hirsch, Openchowski, and others, have presented during the last twelve years much new and interesting information. Since, however, it will conduce to clearness to set forth the results of these investigations in connection with my own work, their consideration will be deferred until later.

It will then appear that these later investigations, like the earlier researches, disagree as to the details of the stomach movements. Such differences in results are the proper outcome of the abnormal conditions under which the studies have been conducted. Obviously, in order to see the natural movements of the stomach, the organ should be observed in its natural state, and not after it has been disturbed by removal from the abdomen, or by the adhesions and losses of substance incident to gastric fistulas.

As a means of watching the gastric motor activities under normal circumstances, Dr. H. P. Bowditch, in the autumn of 1896, suggested the use of the Röntgen rays. The present paper is the result of the work thus far completed. The kind assistance and stimulating counsel of Dr. Bowditch throughout the investigation are gratefully acknowledged.

The Anatomy of the Stomach and its Relations to the Shadow

It must be constantly borne in mind that the shadows described in this research are cast by the gastric contents, not by the stomach itself. Therefore the movements of the organ are not seen directly, but are indicated by their effect on the contained food. Variations in the length and breadth of the stomach can be inferred from changes in the outline of the shadow, but variations in the front-to-back diameter of the organ must be judged from changes in the intensity of the shadow.

The form of the active stomach soon after food has been taken is shown in outline in Figure 1. Since the several parts of the stomach are to be mentioned frequently, it will be well to recall them here in their relations to the outline. The larger, cardiac part of the organ lies to the left of a line through w x. Into it the œsophagus opens through the cardiac sphincter, or cardia, at c. The pyloric part, which includes all of the stomach situated at the right of a line w x, is closed by the pylorus at p. This part has two divisions: the antrum at the right of the line y z, and the preantral part of the pyloric portion, or middle region of the stomach, between the lines w x and y z. The lesser curvature corresponds approximately to the anterior border of the shadow c w p; the greater curvature to the more extensive sweep, c p, along the posterior border.

Figure 1.

The wall of the cat’s stomach consists of three coats, but as this paper deals only with the functions of the muscular coat, that alone will be described. The gastric muscular fibres are disposed in three sets: an outer longitudinal layer, a middle circular layer, and a set of inner oblique fibres. The longitudinal fibres continue those of the œsophagus, and, radiating over the cardiac end, become more marked along the curvatures than on the front and back surfaces. Over the antrum they lie in a thick, uniform layer. The circular fibres form a complete investment, and are arranged in rings at right angles to the curved axis of the stomach. Towards the pyloric end they become denser and stronger, and at the pylorus form a thick bundle, the pyloric sphincter. Separating the antrum from the rest of the stomach, at y z, is a special thickening of the circular fibres, called by the early writers the “transverse band,” and described by Hofmeister and Schütz as the “sphincter antri pylorici.” The oblique fibres start from the left of the cardiac orifice and pass as two strong bands along the anterior part of the dorsal and ventral surfaces, giving off fine fasciculi to the circular musculature; towards the antrum they gradually disappear.

The musculature of the stomach consists of smooth muscle fibres, the chief physiological characteristics of which are slowness of contraction, rhythmic alternation of contraction and relaxation, and a very great tonicity, or power of prolonged contraction. The action of these muscles in the process of gastric digestion is now to be considered.

The Normal Movements of the Stomach

Since the time of Haller the chief contributors to the knowledge of the mechanics of the stomach have been Beaumont, Hofmeister and Schütz, and Rossbach.

Beaumont’s famous investigations on Alexis St. Martin are recorded in almost all general works on physiology. Through a gastric fistula he introduced a thermometer-tube and observed how it was affected by the motions of the stomach. His conclusions are as follows: “The circular or transverse muscles contract progressively from left to right. When the impulse arrives at the transverse band, this is excited to a more forcible contraction, and closing upon the alimentary matter and fluids contained in the pyloric end, prevents their regurgitation. The muscles of the pyloric end, now contracting upon the contents detained there, separate and expel some portion of the chyme.... After the contractile impulse is carried to the pyloric extremity, the circular band and all the transverse muscles become relaxed, and a contraction commences in a reversed direction, from right to left, and carries the contents again to the splenic extremity to undergo similar revolutions.”

In close accord with Beaumont’s description of the activities of the human stomach are the records of the investigations on the stomach of dogs by Hofmeister and Schütz. They removed the stomach from the body and placed it in a moist chamber, kept at body-heat and covered with glass. Under such conditions the organ remained active for from sixty to ninety minutes. A typical movement is described by these observers as composed of two phases. In the first phase a constriction of the circular fibres, deeper on the greater curvature, starts a few centimetres from the cardia and passes towards the pylorus. As the constriction proceeds it increases in strength until a maximum is reached about two centimetres in front of the antrum. This annular contraction, called by Hofmeister and Schütz the “preantral constriction,” closes the first phase. Immediately thereafter the strong sphincter antri pylorici, or transverse band, contracts. Now, while the preantral constriction is relaxing, the sphincter antri pylorici tightens still more, and the antrum is shut off from the rest of the stomach. As soon as this has occurred a general contraction of the muscles of the antrum follows. Relaxation begins at the sphincter antri pylorici and progresses slowly towards the pylorus; it is sometimes accompanied by an antiperistaltic movement.

Although Rossbach also used dogs, his results vary considerably from those of Hofmeister and Schütz. This discrepancy is possibly accounted for by a difference in method, for Rossbach left the stomach in the body. The dogs were treated with morphia and curare, and the abdomen was then widely opened, so that the movements could be clearly seen. When the stomach was full Rossbach saw deep constrictions begin near the middle and pass in waves to the pylorus. At first these movements were weak; later, however, they became more vigorous. The fundus remained in tonic contraction about its contents and took no part in the peristalsis.

Before attempting to explain the difference in the records of these observers I shall give an account of what may be seen in a cat by use of bismuth subnitrate and the Röntgen rays.

1. Movements of the pyloric part.—Within five minutes after a cat has finished a meal of bread, there is visible near the duodenal end of the antrum a slight annular contraction which moves peristaltically to the pylorus; this is followed by several waves recurring at regular intervals. Two or three minutes after the first movement is seen very slight constrictions appear near the middle of the stomach, and pressing deeper into the greater curvature, course slowly towards the pyloric end. As new regions enter into constriction, the fibres just previously contracted become relaxed, so that there is a true moving wave, with a trough between two crests. When a wave swings round the bend in the pyloric part the indentation made by it deepens; and as digestion goes on the antrum elongates and the constrictions running over it grow stronger, but until the stomach is nearly empty they do not entirely divide the cavity. After the antrum has lengthened, a wave takes about thirty-six seconds to move from the middle of the stomach to the pylorus. At all periods of digestion the waves recur at intervals of almost exactly ten seconds. So regular is this rhythm that many times I have been able to determine within two or three seconds when a minute had elapsed simply by counting six similar phases of the undulations as they passed a given point. It results from this rhythm that when one wave is just beginning several others are already running in order before it. Between the rings of constriction the stomach is bulged out, as shown in the various outlines in Figures 2, 3, 4, and 5. The number of waves during a single period of digestion is larger than might possibly at first be supposed. In a cat that finished eating fifteen grams of bread at 10.52 A.M., the waves were running regularly at 11.00 o’clock. The stomach was not free from food until 6.12 P.M. During that time the cat was fastened to the holder at intervals of half an hour, and the waves were always observed following one another in slow and monotonous succession. At the rate of three hundred and sixty an hour, approximately two thousand six hundred waves passed over the antrum during that single digestive period.

From the above review it will be manifest that my observations of the movements of the pyloric part agree closely with those of Rossbach, but differ considerably from the harmonious results of the work of Beaumont, and Hofmeister and Schütz. Beaumont’s methods, however, may be justly criticised on the ground that the thermometer-tube which he held in the stomach was wholly unlike food and very liable to bring about unwonted contractions in so sensitive an organ as the stomach. Further, the movements observed by Hofmeister and Schütz, as Ewald has pointed out, may easily have resulted from the abnormal stimulus due to lack of blood—a potent cause of peristalsis. And it will be shown later that the accounts given by these investigators describe very well the actions of the stomach when stimulated by an unusual irritant. In this connection it may be added that since the publication of the preliminary notice of my work, Roux and Balthazard, using the Röntgen rays, have published the results of observations on the stomachs of the dog and man similar to those thus far described in this paper.

The fact that my observations and those of Roux and Balthazard were conducted under normal conditions, and that the conditions of Rossbach’s experiments were more nearly normal than those of the other observers mentioned, warrants the conclusion that the pyloric part has a more important function than that of merely expelling the contents of the stomach into the intestines. After summarising the description given by Hofmeister and Schütz, Ewald, for a priori reasons, declares: “I cannot accept this view. The plain fact that the pyloric portion secretes a strongly digesting fluid containing pepsin and hydrochloric acid proves it to be an important part for the peptonising function of the stomach.” The account of the remarkable manner in which the pyloric portion performs this function must be deferred until the movements of other parts of the stomach have been considered.

2. Movements of the pyloric sphincter.—Rossbach mars his otherwise careful work by declaring that the pylorus is tightly closed during the whole digestive period of from four to eight hours, and that then the sphincter relaxes and the peristaltic waves empty the stomach. That this is not the normal action of the sphincter has been shown by several observers. Hirsch watched dogs with duodenal fistulas and saw food come from the stomach at intervals of one-fourth of a minute to several minutes. Roux and Balthazard maintain that in dogs food enters the duodenum at the completion of each wave of constriction. Observations on the cat, however, do not support their view, but agree rather with the statement of Hirsch.

In cats fed with bread mixed with subnitrate of bismuth, ten or fifteen minutes elapse after the first constriction in the antrum before any food can be seen in the duodenum. When food does appear it is spurted through the pylorus and shoots along the intestine for two or three centimetres. Not every constriction-wave forces food from the antrum. On one occasion, about an hour after the movements began, three consecutive waves were seen, each of which squirted food into the duodenum. The pylorus remained closed against the next eight waves, opened for the ninth, but closed once more against the tenth and eleventh. For each of the four succeeding waves the sphincter relaxed, but blocked the food brought by three constrictions that followed; and in this irregular way the food continued passing from the stomach. Near the end of gastric digestion, when the constrictions are very deep, it may be that the pylorus opens for every wave.

When a hard bit of food reaches the pylorus, the sphincter closes tightly and remains closed longer than when the food is soft. This action of the sphincter was shown by giving with the regular food of the cat a dry, hard pellet of equal parts of starch paste and bismuth subnitrate about the size of a pea. The food itself contained merely enough bismuth to throw a dim shadow, near the centre of which the pellet could be clearly seen as a dark object. The continual passing of the contraction-waves finally brought the little ball to the pylorus. When it arrived there, five grams of bismuth subnitrate were introduced into the stomach through a tube in the œsophagus. This was done in order that the food passing into the intestines after the ball came to the pylorus might be distinguished from that which had gone on before. By kneading the stomach the bismuth was distributed, as shown by the uniformly black shadow. The pellet could still be seen near the end of the antrum when the constrictions passed over it. Now, although the waves continued to run regularly, the very black food did not gather in the intestines in sufficient amount to be recognised until forty-two minutes after it had been introduced. And when, finally, the food did show itself in the intestines, its shadow contrasted strongly with that of the food which had already passed on. The slowness of the expulsion is not to be regarded as wholly due to the hard mass. No doubt the kneading of the stomach mixed the contents of different parts of the organ and brought to the pylorus food not yet sufficiently digested to be passed by that selective sphincter. But this does not explain the whole delay. Food similar to that given here, except that it contained no hard particles, has usually been seen as small masses in the intestines within fifteen minutes after being swallowed. A part of the delay was evidently, therefore, caused by the hard pellet. Further evidence on this point was secured when, on one occasion, the sphincter was seen to open only seven times in twenty minutes following the arrival of a hard particle of food at the pylorus. The conclusion may therefore be drawn that hard morsels keep the pylorus closed and hinder the passage of the food into the duodenum.

3. Activity of the cardiac portion.—The part played by the fundus apparently has not hitherto been properly appreciated. It has been regarded as the place for peptic digestion, or as a passive reservoir for food; but it is in fact a most interestingly active reservoir.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 5.—Figures 2, 3, 4, and 5 present outlines of the shadow of the contents of the stomach cast on a fluorescent screen by the Röntgen rays. The drawings were made by tracing the outline of the shadow on tissue paper laid upon the fluorescent surface, and are about one-half the actual size. They show the change in the appearance of the stomach at intervals for half an hour, from the time of eating until the stomach is nearly empty.

The action of the cardiac portion will be best understood by comparing the appearances the stomach presents at various stages in a digestive period. In order to show these stages I carefully made a set of three tracings of the outlines of the stomach as soon as possible after a cat had finished eating, and another set of three every half hour thereafter, until the contents had disappeared (Figs. 2, 3, 4, and 5). These tracings were made by placing white tissue paper over the fluorescent screen, and drawing with a thick lead pencil, easily seen, as much of the boundary of the stomach as I could at the end of each expiration. Between the times for making the drawings the cat was allowed to rest quietly on a mat, but care was taken to lay her in the same position on the holder for every drawing. The drawings of each set were afterwards fastened over one another, so that the lines coincided as closely as possible. Another piece of tissue paper was then put over these, and all four sheets were laid on an illuminated pane of glass. It was thus easy to get a composite tracing which, considering the movement imparted to the stomach by respiration, and the dimness of the shadows in the later stages of digestion, probably represents more exactly than any single drawing the outline of the stomach for each successive period.

A comparison of these drawings shows that as digestion proceeds the antrum appears gradually to elongate and acquire a greater capacity, and that the constrictions make deeper indentations in it. But when the fundus has lost most of its contents, the longitudinal and circular fibres of the antrum contract to make it again shorter and smaller. Its change of form, however, compared with the rest of the stomach, is slight.

The first region to decrease markedly in size is the preantral part of the pyloric portion. The peristaltic undulations, caused by the circular fibres, start at the beginning of this portion, and gradually, by their rhythmic recurrence, press some of the contents into the antrum. As the process continues, the smooth muscle fibres with their remarkable tonicity contract closely about the food that remains, so that the middle region comes to have the shape of a tube (Figs. 3 and 4—1.30 P.M. to 2.30 P.M.), with the rounded fundus at one end and the active antrum at the other. Along the tube very shallow constrictions may be seen following one another to the pylorus.

At this juncture the longitudinal fibres which cover the fundus like radiating fingers, and the circular and oblique fibres reaching in all directions about this spherical region, begin to contract. Thus the contents of the fundus are squeezed into the tubular portion. This process, accompanied by a slight shortening of the tube, goes on until the shadow cast by the fundus is almost wholly obliterated (Fig. 5—5.30 P.M.).

The waves of constriction moving along the tubular portion press the food onward as fast as they receive it from the contracting fundus, and when the fundus is at last emptied they sweep the contents of the tube into the antrum (Fig. 5—5.00 P.M. to 6.00 P.M.). Here the operation is continued by the deeper constrictions till, finally (in this instance at 6.12 P.M.), with the exception of a slight trace of food in the fundus, nothing is to be seen in the stomach at all.

The food in the fundus may possibly be slightly affected by the to-and-fro movements of the diaphragm in respiration. With normal breathing the upper border of the cardiac portion swings through about one centimetre; with dyspnœa, or deep breathing, through one and a half or two centimetres. Since the lower border does not move so much, the contents are gently pressed, and then released from pressure, at each respiration. The pyloric portion is moved very little by the diaphragm, the oscillation being less than a half centimetre.

Moritz has pointed out the value of an organ like the stomach for holding the bulk of the food and serving it out a little at a time, so that the intestines may not become congested during their digestive and absorptive processes. All of the advantages supposed to be thus secured to the intestines may be claimed also for the stomach itself. For the preceding description indicates, and experiments to be described later prove, that the stomach is composed of two physiologically distinct portions: the busy antrum, over which during digestion constriction-waves are running in continuous rhythm; and the cardiac part, which is an active reservoir, pressing out its contents a little at a time as the antral mechanism is ready to receive them.

The Movements of the Stomach in Vomiting

The appearance of the stomach during vomiting has been studied particularly by Openchowski. He says that when an emetic is given there follows a quivering of the stomach-wall, which, beginning near the pylorus, shows itself later in the antral and middle regions of the stomach. The quivering afterwards passes into a contraction, most strongly marked in the antral part, since the peristaltic waves running down to the antrum from above are continually growing deeper. At the same time the fundus expands spherically. The increased contraction in the pyloric part drives the contents towards the more dilated portion, and thence they are forced into the œsophagus by abdominal pressure.

The same phenomena occur when a cat is given apomorphine hypodermatically. First the upper circular muscles relax and become so flaccid that the slightest movement of the abdomen changes the form of the fundus. Then there are apparently irregular twitchings of the fundus wall. Soon a deep constriction starts about three centimetres below the cardia and, growing in strength, moves towards the pylorus. When it reaches the transverse band the constriction tightens and holds fast, while a wave of contraction sweeps over the antrum. Another similar constriction follows. In the interval the transverse band relaxes slightly, but tightens again when the second wave reaches it. Perhaps a dozen such waves pass; then a firm contraction at the beginning of the antrum completely divides the gastric cavity into two parts. This same division of the stomach into two parts at the transverse band is to be seen when mustard is given. Now, although the waves are still running over the antrum, the whole preantral part of the stomach is fully relaxed. A flattening of the diaphragm and a quick jerk of the abdominal muscles, accompanied by the opening of the cardia, now force the contents of the fundus into the œsophagus. As the spasmodic contractions of the abdominal muscles are repeated, the gastric wall again tightens around the contained food. Antiperistalsis I have seen only once; then, while the cat was retching, a constriction started at the pylorus and ran back, over the antrum, completely obliterating the antral cavity.

It will be recalled that the principal difference between the movements of the stomach and their effects as described by Beaumont, and Hofmeister and Schütz on the one hand, and Rossbach, Roux and Balthazard, and myself on the other hand, is that the former observed constrictions completely dividing the stomach at the transverse band, and the antrum then squeezing its contents into the intestines; whereas the latter have seen the constrictions moving forward as narrowing rings, but not separating the gastric cavity into two parts.

With the exception of peristalsis in the antrum, the gastric movements at the beginning of emesis are almost exactly the same as those Beaumont, and Hofmeister and Schütz, declare to be the normal contractions of the stomach. Their observations were made, however, when the organ was subjected to unnatural stimulation. In the excised stomach, observed by Hofmeister and Schütz, not only were all nervous connections severed, but likewise all flow of blood to the organ was entirely stopped, and the cutting off of the blood supply is regarded as one of the most powerful predisposing causes of peristaltic action. The thermometer-tube used by Beaumont was an irritant to the stomach, as he himself admits. “If the bulb of the thermometer,” he writes, “be suffered to be drawn down to the pyloric extremity, and retained there for a short time, or if the experiments be repeated too frequently, it causes severe distress and a sensation like cramp, or spasm, which ceases on withdrawing the tube, but leaves a sense of soreness and tenderness at the pit of the stomach.” Moritz also noticed that a rubber sound introduced into the human stomach proved to be a source of irritation. It seems reasonable to suppose, therefore, that these observers did not see the normal movements, but the actions resulting from abnormal irritation.

The Effect of the Movements of the Stomach on the Food

In my first observations on the active stomach a bulging of the stomach-wall was to be seen in front of the passing waves. But as food did not immediately appear in the intestine, and as, after the pylorus relaxed, the gastric contents did not diminish rapidly enough to allow the supposition that all of the food squeezed forward by the waves was immediately forced through the pylorus, it was assumed that a part, at least, of the food under pressure was forced back towards the cardia through the constriction-ring. This inference was stated in the preliminary notice of my work. Roux and Balthazard also observed the passage of the undulations over the pyloric part, but state merely that the function of the constrictions is the propulsion of food into the intestine, without mentioning what must be regarded as a very important function; namely, the mixing effect of the waves.

Most writers have agreed that the result of the active and passive movements of the stomach is to force the contents hither and thither, thus mixing them and the gastric juice together. Two observers, Beaumont and Brinton, have attempted to explain the manner of the mixing. Beaumont, after noting how the thermometer-tube, used by him to indicate the gastric motions, was affected, describes the circulation of the food as follows: “The bolus as it enters the cardia turns to the left, passes the aperture, descends into the splenic extremity, and follows the great curvature towards the pyloric end. It then returns, in the course of the small curvature, makes its appearance again at the aperture, in its descent into the great curvature, to perform similar revolutions.” Brinton bases his theory of the circulation of the food on an analogy between the movement of a constriction over the stomach and the passage of a septum with a central perforation along the interior of a cylinder full of liquid. The result in both cases, he declares, must be a peripheral current of advance, and a central current of return. Thus in the stomach there would be peripheral currents from the cardia along the walls of the stomach to the pylorus, where they would unite and run as an axial current back to the cardia.

Certain a priori objections may be urged against each of these conclusions. In the first place Beaumont’s observations were made on a subject having a gastric fistula, and the adhesions between the stomach and the abdominal wall would prevent the fundus from acting quite normally in relation to its contents. Beaumont’s conclusions, furthermore, are based on the movements of a thermometer-tube introduced through the fistula, and on the recognition of particles of food which he had seen before as they passed the fistulous opening: the first method, as has been shown, made the conditions in the stomach more abnormal than they were previously; the second gave uncertain knowledge of the course of the food when out of the observer’s sight. Brinton’s hypothesis states the probable movements of fluid contents acted on by a passing constriction. But it may be objected that the conditions assumed by him do not exist in all parts of the stomach. For not only is there no peristalsis visible in the fundus, but with the usual food the fundus contents are not liquid. Moreover, the constrictions at the beginning of the pyloric portion are very slight and move slowly. The food in front of them is, accordingly, not under much greater pressure than the food behind them. The axial current which might result, therefore, could not be strong enough to go far into the cardiac portion.

It is easily possible to test experimentally the validity of these two theories by watching the action of pieces of food which throw a black shadow in a dimly outlined stomach. For this purpose little paste pellets of bismuth subnitrate, with starch enough to keep the form, were given with the customary meal. These pellets, it was found, did not break up in the stomach during the gastric digestion of soft bread. Several times I have been fortunate in getting two of the little balls in the axis of the stomach and about a centimetre apart. As the constriction-wave approached them, both moved forward, but not so rapidly as the wave. Now when the constriction overtook the first ball, the ball moved backward through the constricted ring, in the direction of least resistance. The wave then overtook the second ball, and it also passed backward to join its fellow. At the approach of the next wave they were both pushed forward once more, only to be again forced backward, one at a time, through the narrow orifice. As the waves recurred in their persistent rhythm, the balls were seen to be making progress—an oscillating progress—towards the pylorus; for they went forward each time a little farther than they retreated. This to-and-fro movement of the pellets was much more marked in the antrum, where the waves were deep, than in the middle region. On different occasions from nine to twelve minutes have elapsed while the balls were passing from where the waves first affected them to the pylorus; which means that on the way they were moved back and forth by more than a half hundred constrictions.

If the pylorus does not relax, it is evident that a wave approaching it pushes the food into a blind, elastic pouch, the only exit from which is through the advancing constricted ring. The constrictions are deeper near the end of the antrum, and the rings are small; consequently, the food is squirted back through them with considerable violence. As has been noted, the pylorus opens less frequently for a while after a solid piece of food comes to it. In such a case the slow driving waves squeeze the hard morsel and the soft food about it up to the sphincter, only to have the whole mass shoot back, sometimes half-way along the antrum. Over and over again the process is repeated till the sphincter at last opens and allows the more fluid parts to pass. Hofmeister and Schütz, and Moritz have disclaimed any selective action of the pylorus, and declare that solids are driven from the pylorus to the fundus by antiperistalsis. The action of the pylorus which I have seen, however, is more like that described by the earlier investigators; for during digestion there was no antiperistalsis, and the sphincter, separating the fluids from the solids, caused the solids to remain and undergo a tireless rubbing. Frequently, when several of these balls have been given at the same time, they have all been seen in the antrum after the stomach was otherwise empty. Here they remain to be softened in time by the juices, or to be forced through the pylorus later, for solids do pass into the intestine. Thus when the teeth neglect their work the stomach attempts to perform their function; the relative inefficiency of the gastric method of grinding and its interference with the normal gastric activities point an obvious hygienic moral.

During the process of digestion the food in the cardiac portion gives no sign of currents. Balls which lie in the fundus immediately after the food is ingested keep their relative positions until the cardiac portion begins to contract, and then move very slowly towards the antrum. Moreover, the food in the fundus of a cat has the same mushy appearance when examined after gastric peristalsis had been active for an hour and a half that it had when ingested. The contents of the antrum, on the other hand, look quite different and have the consistency of thick soup. The inactivity of the food in the fundus can also be proved by feeding first five grams of bread and bismuth, then five grams without bismuth, and finally five grams again with bismuth in it. The stomach contents are thus arranged in two dark layers along the curvatures, with a light layer between. Tracings made on tissue paper show that ten minutes after peristalsis commenced the stratification had entirely disappeared in the pyloric part, but that an hour and twenty minutes thereafter the layers were still clearly visible in the cardiac region.

The value of the circulation of the food, as described by Beaumont and Brinton, lay in the supposition that the contents of the stomach were thus brought near to the secreting gastric wall, and that the gastric juice could thus more readily exert its action. Although my observations do not support their theories of mixing currents running throughout the stomach, they still show that the pyloric portion is an admirable device for bringing all of the food under the influence of the glandular secretions of that region. For, when a constriction occurs, the secreting surface enclosed by the ring is brought close around the food lying within the ring in the axis of the stomach. As this constriction passes on, fresh areas of glandular tissue are continuously pressed in around the narrow orifice. And also, as the constriction passes on, a thin stream of gastric contents is continuously forced back through the orifice, and thus past the mouths of the glands. The result of this ingenious mechanism is that every part of the secreting surface of the pyloric portion is brought near to every bit of food, before the latter leaves the stomach, a half hundred times or more, as evidence by the moving ball.

Salivary Digestion in the Stomach

The absence of movement in the fundus would seem to give the food during its stay there little opportunity to become mixed with the gastric juices, and thus to undergo peptic digestion. The truth of this supposition can easily be proved experimentally by feeding a slightly alkaline meal, and later testing the chemical reaction of the contents of various parts of the stomach. A cat which had been without food for fifteen hours was given eighteen grams of mushy bread made slightly alkaline with sodium carbonate. One hour and a half after the cat had finished eating she was killed, and the stomach laid bare by opening the abdomen. A very small hole was then made through the wall in the fundus region, and another similar hole was made into the antrum. By means of a glass pipette food was extracted first from the periphery of the fundus; this food was slightly acid. The cleaned pipette was then introduced two and a half centimetres into the fundus contents, and the food thus extracted gave the original alkaline reaction. Specimens of the liquid contents of the antral and middle regions, taken from various depths, were all strongly acid. A dog killed an hour and three-quarters after eating showed similar differences between the reactions of the food in the fundus and the food in the pyloric portion. So, as a matter of fact, the food does not become acid at a uniform rate in all parts of the stomach, as would be the case if Beaumont’s and Brinton’s theories of mixing currents were true. Moreover, if the facts accorded with their notions, the saliva, which ceases to act in the presence of more than 0.003 per cent free hydrochloric acid, and is destroyed when the percentage of acid proteids is large, would manifestly have its service as a ferment limited to the relatively short time during which the stomach contents, in the process of thorough mixing, were reaching that degree of acidity. There is, however, no movement of food in the fundus, and the alkaline food received from the œsophagus remains alkaline in this region for a considerable period. The nutriment, therefore, if well chewed and thus mixed with saliva, can undergo salivary digestion in the fundus for a considerable period without interference by the acid gastric juice.[32]

From all these observations the conclusion must be that the fundus acts as a reservoir for the food, in which the digestion of sugars and starches may take place; and that the pyloric portion with its simple but marvellous peristaltic mechanism, by a single process, triturates the food, brings it near to the active glands, stirs it thoroughly with their secretions, and expels the products into the intestines.

The Inhibition of Stomach Movements during Emotion

Early in the research a marked unlikeness was noticed in the action of the stomachs of male and female cats. The peristalsis seen with only a few exceptions in female cats failed to appear in most of the males, although both had received exactly the same treatment. Along with this difference was a very striking difference in behaviour when bound to the holder; the females would lie quiet, mewing occasionally, but purring as soon as they were gently stroked. The males, on the contrary, would fly into a violent rage, struggle to be loose from their fastenings, bite at everything near their heads, cry loudly, and resist all attempts to quiet them. On account of this difference only female cats were used for some time, and the significance at first attributed to the action of the males was almost forgotten when the following incident recalled it and suggested that the excitement caused the suspension of the stomach movements. On October 23, 1897, a male cat was fed at 12.00, but was not placed on the holder till ninety minutes later. The waves were passing at the rate of six a minute. The cat fell into a rage and the waves suddenly stopped.

A few days later an observation on a female with kittens explained the absence of gastric movements in the males. While the peristaltic undulations were coursing regularly over the cat’s stomach, she suddenly changed from her peaceful sleepiness, began to breathe quickly, and struggled to get loose. As soon as the change took place, the movements in the stomach entirely disappeared; the pyloric portion relaxed and presented a smooth, rounded outline. I continued observing, and stroked the cat reassuringly. In a moment she became quiet and began to purr. As soon as this happened the movements commenced again in the stomach; first a few constrictions were visible near the end of the antrum, then a few near the sharp bend in the lesser curvature, and finally the waves were running normally from their habitual starting-place. By holding the cat’s mouth closed between the thumb and last three fingers, and covering her nostrils with the index finger, she could be kept from breathing. At the first sign of discomfort the fingers were removed. This experiment was repeated a great many times on different cats, and invariably the evidence of distress was accompanied by a total suspension of the motor activities of the stomach and a relaxation of the antral fibres.

No amount of kneading or compression of the abdomen with the fingers, short of making the cat angry, would cause the waves to stop; so that the cat’s movements, in themselves, were not the source of the inhibition. And since expressions of strong feeling on the part of the animal always accompanied cessation of the constriction-waves, the inhibition was probably due to nervous influence. It has long been common knowledge that violent emotions interfere with the digestive process, but that the gastric motor activities should manifest such extreme sensitiveness to nervous conditions is surprising.

Summary

1. By mixing a harmless powder, subnitrate of bismuth, with the food, the movements of the stomach can be seen by means of the Röntgen rays.

2. The stomach consists of two physiologically distinct parts: the pyloric part and the fundus. Over the pyloric part, while food is present, constriction-waves are seen continually coursing towards the pylorus; the fundus is an active reservoir for the food and squeezes out its contents gradually into the pyloric part.

3. The stomach is emptied by the formation, between the fundus and the antrum, of a tube along which constrictions pass. The contents of the fundus are pressed into the tube and the tube and antrum slowly cleared of food by the waves of constriction.

4. The food in the pyloric portion is first pushed forward by the running wave, and then by pressure of the stomach-wall is returned through the ring of constriction; thus the food is thoroughly mixed with gastric juice, and is forced by an oscillating progress to the pylorus.

5. The food in the fundus is not moved by peristalsis, and consequently it is not mixed with the gastric juice; salivary digestion can therefore be carried on in this region for a considerable period without being stopped by the acid gastric juice.

6. The pylorus does not open at the approach of every wave, but only at irregular intervals. The arrival of a hard morsel causes the sphincter to open less frequently than normally, thus materially interfering with the passage of the already liquefied food.

7. Solid food remains in the antrum to be rubbed by the constrictions until triturated, or to be softened by the gastric juice, or later it may be forced into the intestine in the solid state.

8. The constriction-waves have, therefore, three functions: the mixing, trituration, and expulsion of the food.

9. At the beginning of vomiting, the gastric cavity is separated into two parts by a constriction at the entrance to the antrum; the cardiac portion is relaxed, and the spasmodic contractions of the abdominal muscles force the food through the opened cardia into the œsophagus.

10. The stomach movements are inhibited whenever the cat shows signs of anxiety, rage, or distress.

THE MOVEMENTS OF THE INTESTINES STUDIED BY MEANS OF THE RÖNTGEN RAYS[33]
By W. B. Cannon
From the Laboratory of Physiology in the Harvard Medical School
Extracts from American Journal of Physiology, 1902

Introduction

The investigation of intestinal movements has been beset by the same difficulties that characterised the investigation of the gastric mechanism. Pathological subjects or animals subjected to the disturbing action of drugs and anæsthetics and of serious operations have been the only sources of our knowledge. A considerable difference of opinion as to the nature of the normal movements in the intestines has resulted from observations made under these necessary abnormal conditions. The slowly advancing peristaltic wave and the Pendelbewegung, or swaying movement, described by Ludwig, have been regarded as true physiological processes. Concerning antiperistalsis and the swiftly running vermicular contraction, observers are not so nearly in agreement. The activity of the large intestine has been described as simply peristalsis of a slower rate than that seen in the small intestine.

The best known of the intestinal movements is the normal peristaltic wave. This wave is slow, having a rate of about two centimetres per minute, is regular, and by most observers is said to move always in one direction. The progress of the contraction, as suggested by Nothnagel’s experiments, and as clearly stated by Mall and by Bayliss and Starling, is dependent upon a local reflex. According to Mall, when an object stimulates the mucosa there occurs above the point of stimulation a constriction which forces the object downward; and as it moves downward new regions immediately above the mass are by this reflex brought into constriction, and thus the wave and its stimulus advance together. “At the same time,” Mall states, “a sucking force, due to active dilatation below the body, may have a tendency to drag it down.” In what manner an active dilatation of the intestinal wall may occur so as to produce a “sucking force” he does not make wholly clear. Bayliss and Starling, in describing normal peristalsis in the intestine, state that the contractions above the bolus increase until there is a strong tonic constriction. This passes the bolus onward, and as it advances the ring of constriction follows it. While the bolus is passing down, the gut above it is traversed by waves running as far as the constricted ring. These observers state the law of intestinal peristalsis thus: “Local stimulation of the gut produces excitation above and inhibition below the excited spot.”

The pendulum movements are characterised by a gentle swaying motion of the coils, and are accompanied by rhythmical contractions of the intestinal wall. They continue with undiminished force after paralysis of the local nervous mechanism by nicotine or cocaine; they have been called, therefore, myogenic or myodromic contractions. Observers have described them variously as shortenings and narrowings of the gut, rhythmically repeated at nearly the same intestinal circumference; as alternating to-and-fro movements of the long axis without changes in the lumen; as local or extensive periodic contractions and relaxations mainly of the circular musculature; and as waves involving both muscular coats of the intestine, and travelling normally from above downward at a rapid rate (2 to 5 cm. per second). They have been seen in the dog, and in the rabbit and cat. In the cat Bayliss and Starling noticed that when the lumen of the gut was distended by a rubber balloon, there appeared rhythmical contractions, which nearly always were most marked at about the middle of the balloon; i. e., the region of greatest tension. This form of constriction, which, as my observation shows, is an indication of the manner in which the rhythmical contraction acts in the cat’s intestine, Bayliss and Starling seem to have regarded with slight attention, since it did not accord with the law of peristalsis.

The swift vermicular wave may pass the whole length of the intestine in about a minute. It is often seen just after death, as well as in pathological states such as intestinal anæmia or hyperæmia, and when the bowel contains gases and organic acids from decomposing food. Starling is inclined to regard this type of intestinal activity as an exaggeration of the rhythmic type; Mall, on the other hand, places it in a class by itself, and declares that its service is to rid the intestine rapidly of irritating substances. Nothnagel, who designates this form of movement with the term Rollbewegung, thinks it is transitional between a physiological and a pathological activity.

The existence of antiperistalsis has been so much questioned that it will be considered in a special section of this paper, where my observations may be conveniently introduced.

The common understanding of the manner in which food passes through the intestinal canal is that the chyme ejected from the stomach is pressed downward by a peristalsis, which passes slowly over a part or all of the small intestine. The peristaltic waves of the colon are supposed to constitute an independent group, similar to those of the small intestine, but weaker and slower. Movements of the food other than the uninterrupted advance have been mentioned by some observers. Starling states that the effect of the pendulum movement is to mix the contents of the intestine and bring them into intimate contact with the mucous membrane. Grützner writes that he has been brought “by strange and peculiar observations” to believe that the fluid contents of the small intestine move irregularly forward, then forward and back, then perhaps remain quiet for some time, only to pass backward for a long distance, and finally to move forward steadily to the end. In this manner the food is mixed and brought into contact with the absorbing walls. The to-and-fro shiftings of the food Grützner ascribed to advancing and retrograde contractions of the intestinal musculature, and he argued that even circular constrictions must force the liquid contents away in both directions. To support his contention, Grützner introduced mercury into the intestine and observed it with the Röntgen rays. After noting a backward and forward movement of the mercury he dismissed the method, saying, “Many a flash must come from the Röntgen tube before the normal movement of the intestinal contents is made entirely clear by this method.”

The following account is a summary of many repeated observations on different animals, and is a contribution to a clear understanding of the normal movements of the intestines and their contents.

The Movements of the Small Intestine

When the food has been distributed through the intestine so as to present the appearance shown in Figure 1, a noticeable feature in most or all of the loops is the total absence of movement. If the animal remains quiet, however, only a few moments elapse before peculiar motions appear in one or another of the loops, or perhaps in several, and last for some time. These motions consist in a sudden division of one of the long, narrow masses of food into many little segments of nearly equal size; then these segments are again suddenly divided and the neighbouring halves unite to make new segments, and so on, in a manner to be more fully described. I have called this process the rhythmic segmentation of the intestinal contents. Further observation reveals peristalsis here and there, and under certain circumstances the typical swaying movements may be seen. All these phenomena are now to be considered in detail.

Figure 1.—Appearance of food in the intestines 5¾ hours after eating. This and other radiographs reduced two-thirds.

Rhythmic segmentation of the intestinal contents.—This is by far the most common and the most interesting mechanical process to be seen in the small intestine. The nature of the process may best be understood by referring to the diagram in Figure 2. A string-like mass of food is seen lying quietly in one of the intestinal loops (line 1, Fig. 2). Suddenly an undefined activity appears in the mass, and a moment later constrictions at regular intervals along its length cut it into little ovoid pieces. The solid string is thus quickly transformed, by a simultaneous sectioning, into a series of uniform segments. A moment later each of these segments is divided into two particles, and immediately after the division neighbouring particles (as a and b, line 2, Fig. 2) rush together, often with the rapidity of flying shuttles, and merge to form new segments (as c, line 3, Fig. 2). The next moment these new segments are divided, and neighbouring particles unite to make a third series, and so on. At the time of the second segmentation (line 3, Fig. 2) the end particles are left small. Observation shows that these small pieces are not redivided. The end piece at A simply varies in size with each division; at one moment it is left small, at the next moment it is full size from the addition of a part of the nearest segment, and a moment later is the small bit left after another division. The end piece at B (probably the rear of the mass) shoots away when the end mass is divided, and is swept back at each reunion to make the large end mass again, only to be shot away and swept onward with each recurrence of the constrictions. Thus the process of repeated segmentation continues, with the little particles flitting towards each other and the larger segments shifting to and fro, commonly for more than half an hour without cessation. From the beginning to the end of a period of segmentation the food is seen to have changed its position in the abdomen to only a slight extent; whether this change is a passing of the food along the loop, or a movement of the loop itself, it is impossible to tell from the shadows on the screen. The change of position, however, is much less conspicuous than the lively division and redivision which the mass suffers so many times from the busy, shifting constrictions.

Figure 2.—Diagram representing the process of rhythmic segmentation. Lines 1, 2, 3, 4 indicate the sequence of appearances in the loop. The dotted lines mark the regions of division. The arrows show the relation of the particles to the segments they subsequently form.

From this typical form of rhythmic segmentation there are several variations. Sometimes, and especially when the mass of food is thick, the constrictions do not make complete divisions and are so far apart that the intermediate portions are relatively large. Moreover, the constrictions do not take place in the middle of each portion, but near one end; thus each portion is constricted, not into halves, but into thirds. If a little pointer is placed at the middle of a segment, when the segments are completely divided into halves, in a few seconds the pointer will be in the middle of the clear space between two segments; but in a few seconds more the first phase will return and the pointer will again be indicating a segment,—two operations intervene between similar phases. When, however, the portions are constricted into thirds, the indicator shows it, since three operations intervene between similar phases. The manner of these changes is made clearer by reference to the diagram in Figure 3. That each portion is constricted into three pieces is proved also by watching the gradual reduction of the portion at the left end of line 1 through lines 2 and 3, and also in the gradual formation of a full-sized portion at the right end of lines 2, 3, and 4. When food undergoing this process is watched, it appears to be affected by a series of constrictions, each of which starts at one end of the mass and marches through to the other end, leaving its impress at short intervals along the length. The progression of the dotted lines from right to left in a, b, c, and d, etc., Fig. 3, gives a notion of these advancing constrictions.

Another variation of the segmentation is shown in Figure 4. In this type there are evidently divisions and subdivisions, i.e., one more operation between the appearance and the reappearance of the same phase than is present in the simple division of the small segments in a long string of food (Fig. 2). This form of segmentation is fairly typical for the constrictions seen in food advancing through the intestine. Sometimes the divisions occur in the middle of a long string of food and leave the ends wholly unaffected.

Figure 3.—Diagram showing the relations of the portions when they are constricted into three pieces. The dotted lines indicate regions of constriction; the arrows indicate the relationship of the pieces to the portions they subsequently form.

A remarkable feature in the segmentation of the food is the rapidity with which the changes take place. The simplest way of estimating the rate of division is to count, not the number of times the partition of the food recurs in the same place, but the number of different sets of segments observed in a given period. Thus in Figure 4 the appearances of lines 1, 2, 3, 4, etc., would be counted, and not merely lines 1, 4, etc. Repeated observations on different animals have shown that the most common rate of division in long, thin chains of food varies between twenty-eight and thirty times in a minute; i. e., there is a change from one set of segments to another set every two seconds, and a return of the same phase every four seconds. In some cases the rate is as low as twenty-three times per minute. The larger masses seem to be associated with a slower segmentation; the operations indicated in Figure 3, for example, occurred from eighteen to twenty-one times in a minute, so that the same phase reappeared only once in eight or nine seconds. The segmentation frequently continues for more than half an hour; in one instance it was seen to persist with only three short periods of inactivity for two hours and twenty-two minutes. At the rate of thirty segmentations per minute it is clear that a slender string of food may commonly undergo division into small particles more than a thousand times while scarcely changing its position in the intestine.

I have seen once, in a cat only lightly etherised, the exterior of an intestine which was dividing the food as above described. An hour and a half after a meal of salmon the anæsthetic was given, the abdomen opened, and the flaps raised so as to form walls. Warm salt solution was then poured into the abdominal cavity, and the floating coils left covered with the transparent omentum. The gastric peristaltic waves were running regularly; on the intestine there were visible at various places during the period of observation regions of constriction which had the appearance shown in Figure 3, except that the rings were relatively nearer together. New rings of constriction took place on the same side of all the bulging parts at the margin of the constricted portion (cf. dotted lines, Fig. 3). As new rings occurred the old relaxed, but apparently with tardiness, for the contents gurgled as if forced through the narrowed lumen. The constrictions recurred irregularly and at much longer intervals than in the normal animal. The contracted rings were pale and bloodless.

The effect of the process of rhythmic segmentation proves it an admirable mechanism. The food over and over again is brought into closest contact with the intestinal walls by the swift kneading movement of the muscles. Thereby not only is the undigested food intimately mixed with the digestive juices, but the digested food is thoroughly exposed to the organs of absorption. Mall has shown that contraction of the intestinal wall has the effect of pumping the blood from the submucous venous plexus into the radicles of the superior mesenteric vein, and thus materially aids the intestinal circulation. Moreover, lacteals loaded with fat will in a few moments become empty unless the intestine is slit lengthwise, so that the muscles cannot exert compression. The rhythmic constrictions, therefore, both propel the blood in the portal circulation and act like a heart in promoting the flow of lymph in the lacteals. This single movement with its several results is an excellent example of bodily economy; the repeated constrictions, as already shown, thoroughly churn the food and digestive fluids together, and also plunge the absorbing mucosa into the very midst of the food masses: but not only are the processes of digestion and absorption favoured by these movements; they also, by compression of the veins and lacteals of the intestinal wall, serve to deport through blood and lymph channels the digested and absorbed material.

Peristalsis.[34]—The phenomena of peristalsis and segmentation are usually combined in some manner while the food passes through the small intestine. Peristalsis is observed normally in two forms: as a slow advancing of the food for a short distance in a coil, and as a rapid movement sweeping the food without pause through several turns of the gut. The latter form is frequently seen when the food is carried on from the duodenum; and it may readily be produced in other parts of the small intestine by giving an enema of soapsuds.

Figure 4.—Diagram showing combined peristalsis and segmentation.

When a mass of food has been subjected for some time to the segmenting activity of the intestine, the separate segments, instead of being again divided, may suddenly begin to move slowly along the loop in which they lie. That this movement is not a swinging of the coil as a whole, but a peristaltic advance of separate rings of its circular musculature, is made probable by the fact that the succeeding segments follow along the same path their predecessors have taken. The advance of the little pieces may continue for seven or eight centimetres, when finally the front piece stops or meets other food. Then all the succeeding pieces are swept one by one into the accumulating mass, which at last lies stretched along the intestine, a solid string manifesting no sign of commotion.

Another form of slow peristalsis is frequently observed when the food is pushed forward, not in small divisions, but as a large lump. The relatively long string of food is first crowded into an ovoid form as the forward movement begins, and as it is collecting thus, it seems at the last to be suddenly formed into a more rounded ball, as if the mass were pulled or pushed together at the two ends. The next moment it is indented in the middle by a circular constriction (as shown in Fig. 4, line 2), which spreads it in both directions along the loop. The trailing portion (a) is next cut in two, and the severed part sometimes flies back over its course about a centimetre. Now the whole mass is swept together again and slightly forward as shown in line 4, Fig. 4, and the segmenting process is repeated. At stage 3, Fig. 4, a constriction sometimes appears around the middle of the advanced portion (b). Thus, with many halts and interruptions, the food slowly advances.

A slight variation of the movement just described is observed when the amount of food is greater and extends farther along the intestine. Under such circumstances, as the mass moves forward, constrictions appear just in front of the rear end, which separate it from the main body, and cause it to shoot backward sometimes through the distance of a centimetre. The main body meanwhile is not disturbed. No sooner has the rear section been shot away than it is swept forward again into union with the rest of the food, and the whole mass then advances until another interfering constriction repeats the process.

Rhythmic segmentation and the pendulum movement.—There is little doubt that the segmentation of the food which I have seen is due to an activity of the intestinal musculature similar to that which causes the so-called pendulum movement. This activity, as already noted, is rhythmic, and, although accounts differ, analytical methods prove that it involves both the longitudinal and the circular layers of muscle. Observations of the effect of the rhythmic contractions upon the food show that the action of the circular fibres is most prominent. It is probable, however, that the longitudinal fibres also play an important part in the process of segmentation. Examination of Figure 2 makes clear that in line 2 the regions of constriction appear between the regions of constriction in line 3; before c can be formed, therefore, the constriction between a and b must relax. Contraction of the longitudinal fibres between two segments would help to enlarge the constricted lumen of the gut. It seems probable that, as the constrictions on either side of c occur, the longitudinal fibres between them contract; almost simultaneously the constriction between a and b relaxes, and the two particles are thus brought swiftly together. A similar process naturally would take place for each of the shifting segments. Thus the function of the longitudinal muscles would be to contract between new rings of constriction and thereby aid in relaxing the former ring between them. During my one observation of the segmenting process, as seen on the surface of the intestine, I could not be sure that the distance between neighbouring segments was shortened as the constriction relaxed; that activity of the longitudinal fibres is present, however, is indicated by observations of Raiser on the intestines of the rabbit and the cat. Raiser observed the outer surface of the coils, and describes the normal movement as an alternate contraction and relaxation of single divisions of the longitudinal fibres; he notes that these short divisions shift. But whether they shift in alternation with the shifting circular constrictions, as seems probable, is an interesting point not yet determined.

Figure 5.—Tracing showing segmentation of chyme in the duodenum. This and other tracings reduced two-thirds.

Bayliss and Starling state that the swaying pendulum movements are essentially due to peristaltic waves recurring in the same place and running rapidly downward. This form of the movements I have seen only once. At this time about 90 c.c. of soapy water had been injected. This procedure has the effect of exaggerating in every particular the movements of the small intestine. In this instance a broad constriction appeared about the middle of a long string of food and persisted there while it spread down the gut. As the contraction spread, the gut swayed slowly to and fro before it. Then there was a relaxation, followed by a recurrence of the constriction in the same place, a spreading of the contraction, and a swinging of the loop just as before. This phenomenon was repeated again and again, till finally the string was divided and the forward piece pushed through a tortuous course to the colon.

The course of the food in the small intestine.—Chyme is not forced from the stomach by every wave that passes over the antrum, but only at intervals. When the pylorus relaxes, the food, moved towards the pylorus under considerable pressure, is squirted along the duodenum for two centimetres or more. Careful watching of this food shows that usually it lies for some time in the curve of the duodenum until additions have been made to it from the stomach, and a long, thin string of food is formed. While it is resting in this place it is exposed to the outpouring of the bile and pancreatic juices. All at once the string becomes segmented (see Fig. 5) and the process of rhythmic segmentation continues several minutes, thoroughly mixing the intestinal digestive juices with the chyme. In this region the alternate positions of the segments are sometimes far apart, and the to-and-fro movements of the particles may be a relatively extensive and very energetic swinging. Finally the little segments unite into a single mass, or form in groups, and begin to move forward. The peristalsis here, as already mentioned, is much more rapid than the normal peristalsis elsewhere in the small intestine. The masses, once started, go flying along, turning curves, whisking hither and thither in the loops, moving swiftly and continuously forward. After passing on in this rapid manner for some distance the food is collected in thicker and longer strings, resembling the strings seen characteristically in the other loops. Towards the end of digestion the small masses shot out from the stomach, after a few segmentations, may move on in the rapid course without being accumulated in a larger mass until the swift movement ceases.

During the first stages of digestion in the cat’s small intestine the food usually lies chiefly on the right side of the abdomen; during the last stages the loops on the left side contain the greater amount of food. In these loops the food remains sometimes for an hour or more with no sign of movement. All at once a mass begins to show irregular depressions and elevations along its length, and then suddenly it is divided, at first partially, later completely, into many little equal parts, and these repeatedly undergo division and reunion, division and reunion, over and over again, in the manner described above as rhythmic segmentation. After a varying length of time the activity wanes and the little segments are carried forward individually and later brought together, or join and move on as a single body, or they may reunite and lie quietly for some time without further change. Thus by a combined process of kneading and peristaltic advance the food is brought to the ileocæcal valve to enter the large intestine. Records from ten different animals show that salmon does not appear in the small intestine until an hour or an hour and a half after the food is eaten. Inasmuch as five or six hours elapse after eating before this food begins to be seen in the colon, it is evident that the chyme takes four to five hours to pass the length of the small intestine. It is interesting to note that the operations are considerably shortened if the meal has consisted of bread and milk.

The Competence of the Ileocæcal Valve

The ileocæcal valve in the cat is situated three or four centimetres from the blind end of the cæcum. Its position is usually marked in shadows of the food in the colon by a slight indentation, towards which masses about to enter the colon are ordinarily directed from a point somewhat distant in the small intestine (see Fig. 6).

Regarding the competence of the ileocæcal valve many observations have been made. Grützner has reviewed the evidence bearing on the question and concludes that the valve is not competent, least of all for liquids. He declares that as soon as liquids or thin fluid masses appear in the upper part of the colon they pass in many instances into the small intestine the moment that the pressure on the colon side rises slightly. If the colon contains a solid or a thick, mushy mass, the passage towards the small intestine is scarcely possible, because every increase of pressure in the large intestine must force the two lips of the valve together and close it.

The importance of the competence of the ileocæcal valve under normal conditions cannot be appreciated until the function of the first part of the colon is considered. In order that this part of the intestinal mechanism may perform its service, the competence of the valve for the food which enters the colon from the ileum should be perfect. As a matter of fact, such is the case. Not only does the activity of the colon prove this statement, but the failure of every attempt to drive the food in the colon back through the valve into the ileum confirms the proof. Again and again I have tried, by manipulation through the abdominal wall, to press the normal contents of the colon downward with sufficient force to cause them to return to the small intestine, but without success. The valve held perfectly.

The Movements of the Large Intestine

When the large intestine is full, palpation through the abdominal wall demonstrates that the material in the lower descending colon and in the sigmoid flexure is usually composed of hard, incompressible lumps, while that in the ascending and transverse colon and the cæcum is soft, permitting the walls of the gut to be easily pushed together. The condition of the contents in these two regions seems to indicate a rough division of the large intestine into two parts, and the mechanical activities of these two parts verify the differentiation. In the descending colon the material is very slowly advanced by rings of tonic constrictions (see Fig. 7); in the ascending and transverse colon and in the cæcum by far the most common movement is an antiperistalsis.

Antiperistalsis in the colon.—The colon of cats which have been without food for a day usually contains enough gas to make the position of the gut distinguishable with the fluorescent screen (see Fig. 1). The first food to enter the colon from the small intestine is carried by antiperistaltic waves into the cæcum (Fig. 1), and all new food as it enters is also affected by these waves. Thus the contents of the colon, instead of being driven immediately toward the rectum by slow peristalsis, as is the general opinion, are first repeatedly pushed toward the cæcum by an antiperistaltic action.

These antiperistaltic waves follow one after another like the peristaltic waves of the stomach (see Figs. 5, 6, and 10). They begin either on the more advanced portion of the food in the colon (when only a small amount is present), or at the nearest tonic constriction, which is usually at the turn between the transverse and descending colon (Figs. 7 and 8.) The waves rarely run continuously for a long time. When the colon is full, it is usually quiet. The first sign of activity is an irregular undulation of the walls, then very faint constrictions passing along the gut towards the cæcum. These constrictions may first appear only on the ascending colon. As they continue coursing over the intestine they become deeper and deeper, until there is a marked bulging between successive constrictions. When the waves have thus become more prominent, they are seen to start near the end of the transverse colon and pass without interruption to the end of the cæcum. After these deepest waves have been running for a few minutes the indentations grow gradually less marked, until at last they are so faint as to be hardly discernible. The final waves are sometimes to be observed only at the end of the transverse colon.

Such a period of antiperistalsis lasts from two to eight minutes, with an average duration of four or five minutes. The periods recur at varying lengths of time; in one instance a period began at 1.38 P.M. and was repeated at 2.06, 2.34, 2.55, 3.15, and at 3.36, when the observation ceased; in another instance a period began at 2.43 P.M., and was repeated at 2.57 and at intervals of from ten to fifteen minutes thereafter while the animal was being watched. The waves have nearly the same rate of recurrence as those in the stomach; about five and a half waves pass a given point in a minute, i. e., eleven waves in two minutes. This rate has proved fairly constant in different cats and at different stages in the process of digestion; in one case, however, the waves passed at the rate of nine in two minutes.

The stimulating effect of rectal injections on the movements of the small intestine has already been noted. Enemata have also pronounced stimulating action on the antiperistalsis of the colon. Usually the almost immediate result of a rectal injection of warm water is the appearance of deep antiperistaltic waves, which often continue running for a long period. In one case, after an injection of 50 c.c. of warm water, the waves followed one another with monotonous regularity during an observation lasting an hour and twenty minutes. The manner in which this antiperistaltic mechanism affects nutrient enemata introduced into the bowel will be discussed in the section devoted to the question of antiperistalsis.

These constrictions passing backward over the colon do not force the normal contents back through the valve into the small intestine again. I have seen hundreds of such constrictions, and only twice have there been exceptions to this rule,—once under normal conditions, when a small mass slipped back into the ileum, and at another time when a large amount of water had been introduced into the colon. The importance of the competence of the ileocæcal valve is now apparent; indeed, antiperistalsis in the colon gives new meaning and value to the location of a valve at the opening of the ileum. For, inasmuch as the valve is normally competent, the constrictions repeatedly coursing towards it force the food before them into a blind sac. The effect on the food must be the same as the effect seen in the stomach when the pylorus remains closed before the advancing waves. The food is pressed forward by the approach of each constriction; but since it cannot go onward in the blind sac, and is, moreover, subjected to increasing pressure as the constriction comes nearer, it is forced into the only way of escape, i. e., away from the cæcum through the advancing constricted ring. About twenty-five waves affect every particle of food in the colon in this manner during each normal period of antiperistalsis. The result must be again a thorough mixing of the contents and a bringing of these contents into close contact with the absorbing wall—a process which has already been variously repeated many times in the stomach and in the small intestine.

Two other movements have been observed in the ascending colon, but they are rare appearances. The first of these was a serial sectioning of the contents noticed in an animal given castor oil with the food. A constriction separated a small segment in the cæcum; another constriction then cut off a segment just above the first, and with the disappearance of the first constriction the two separated segments united. A third segmentation took place above the second, and the changes occurred again. Thus the whole mass was sectioned from one end to the other; and no sooner was that finished than the process began again and was repeated several times. A slight modification of this movement was observed in a colon containing very little food. The mass was pressed and partially segmented in the manner characteristic of the small intestine, and was thus again and again spread along the ascending colon, and each time swept back into a rounded form by antiperistalsis. The second of the two movements mentioned above consisted in a gentle kneading of the contents. This was caused by broad constrictions appearing, relaxing, appearing, relaxing, over and over again, in the same place. When several of these regions were active at the same time, they gave the food in the colon the appearance of a restless undulatory mass. Once a constriction occurred and remained permanently in one place, while the bulging parts on either side of it pulsated alternately, at the rate of about eighteen times in a minute, with the regularity of the heart-beat. Although these phenomena are somewhat striking, they are not usual, and are in no way so important as the antiperistalsis.

The changes when food enters the colon.—The passage of food through the ileocæcal valve seems to stimulate the colon to activity. As food is nearing the ileocæcal valve the large intestine is usually quiet and relaxed (Fig. 6, 4.00), though occasionally indefinite movements are to be observed; and sometimes just before the food reaches the end of the ileum the circular fibres of the colon in the region of the valve contract strongly, so that a deep indentation is present there. The indentation may persist several minutes; it disappears as the muscles relax just previous to the entrance of the food. The food is moved slowly along the ileum and is pushed through the valve into the colon. The moment it has entered a strong contraction takes place all along the cæcum and the beginning of the ascending colon, pressing some of the food onward, and a moment later deep antiperistaltic waves (Fig. 6, 4.03) sweep down from the transverse colon and continue running until the cæcum is again normally full, i. e., for two or three minutes.

Figure 6.—Tracings showing changes when food enters the colon and also the first tonic constriction. 4.00, the colon relaxed as food approaches in the ileum. 4.03, the colon contracted and traversed by antiperistaltic waves after the food has entered.

The appearance of tonic constrictions.—It has already been noted that as the food accumulates in the ascending colon it is at first confined to this region by antiperistaltic waves. With further accessions, however, the contents naturally must be pressed more and more into the transverse and descending colon. In the early stages of this accumulation, while the food lies chiefly in the ascending colon, the only activity of the muscular walls is the antiperistalsis. As the contents extend along the intestine a deep constriction appears near the advancing end and nearly separates a globular mass from the main body of the food (Fig. 6). The contents of the large intestine progress farther and farther from the cæcum; meanwhile new tonic constrictions appear which separate the contents into a series of globular masses. And as the number of these divisions increases they take a position farther from the cæcum, so that they are present chiefly in the descending colon (Fig. 7). Raiser has recorded a similar appearance in the terminal portion of the rabbit’s colon, in which deep circular constrictions separate the scybalous masses. He maintains that these masses are pushed onward by the constrictions. Comparing tracings made at rather long intervals (forty-five minutes), I found that the rings disappear from the transverse colon, and then are present with the waste material in the descending colon. Thus in the cat also these rings, which seem with short observation to be remaining in one position, are in reality moving slowly away from the cæcum, pushing the hardening contents before them. The contents at this stage are no longer fluid, and consequently they must offer considerable resistance to a force pushing them through the colon. It is an advantage to have this pultaceous substance propelled in divisions rather than in a uniformly cylindrical mass, since the fibres along the length of the mass are thereby rendered effective. Such are the functions of the persistent rings; they form the waste matter into globular masses at the end of the transverse colon and slowly push these masses onward.

Figure 7.—Radiograph showing the region of tonic constrictions (descending colon) and the region of antiperistalsis (transverse and ascending colon).

In the transverse colon, which is free from the slowly moving rings, the antiperistaltic waves have full sway. In the region of the tonic rings an infrequent or even a slowly periodic relaxation and contraction are often to be observed. These changes seem to take place in all the rings at about the same time. Once I saw antiperistaltic waves running over the uppermost of four segments, but since the rings on either side of the segment held tightly, the waves had merely the effect of churning the material of the segment and did not move it onward. Inasmuch as the material in these segments at first is soft, so that the segments are easily compressible, while the fæcal masses which are the final result are relatively hard and dry, it follows that even within the confines of these persistent rings some absorption is taking place.

Defecation

The process of clearing the colon is a process of repeated reduction of the amount of material present. Figure 8 (3.11) is a radiograph showing the food in the colon at 3.11 P.M. About 3.25, with a slow, sweeping movement, the gut swung around so that the ascending colon was lying in the position of the last half of the transverse colon, and the transverse colon had taken the position of the descending part (Fig. 8, 3.25). At the same time the tonic constrictions disappeared and were replaced by a strong, broad contraction of the circular muscle, tapering the contents off on either side in two cones. The region of strongest contraction was apparently drawn downward with the rest of the gut by a shortening of the descending colon. As the intestine swung around, more material was forced into the rectum, and when the swinging of the intestine stopped, the constriction which divided the lumen passed slowly downward, and with the aid of the muscles surrounding the abdominal cavity, pushed the separated mass out of the canal.[35] After the terminal mass had thus been pushed out, the colon with the remainder of its contents returned to nearly its former position (Fig. 8, 3.46). About two hours afterward this remnant had been spread throughout the length of the large intestine by means of the slowly moving rings. Figure 7 is a radiograph of the same colon pictured in Figure 8; the radiograph was taken at 11.50 A.M., and at 12.15 P.M. the material in the lower descending colon was forced out in the manner above described. Within three hours the remaining portion had been spread into the evacuated region, as shown in Figure 8, 3.11. The manner in which the material is spread from the region of the antiperistaltic waves into the region of the slowly advancing rings presents a problem. During normal living new food constantly arriving in the colon must force the old contents forward just as the later parts of a meal force forward the earlier parts; there is no doubt, however, that most of the contents of the cæcum and the ascending colon may be passed onward even during starvation. The emptying of these regions, according to my observations, is never complete; for after considerable time has elapsed and the large intestine is cleared and dilated with gas, some substance is still to be detected in the cæcum and clinging to the walls of the ascending colon. The only activities manifested here are the antiperistaltic waves and the strong tonic contraction of the whole circular musculature shown in Figure 6. It is clear that the latter activity would serve to press into the transverse colon a considerable portion of the contents of the ascending colon, and the remnant seen clinging to the walls would be the part not thus pressed forward.

Figure 8.—Two radiographs and a tracing showing the changes taking place in defecation. 3.11, material in the colon. 3.25, colon carried downward and terminal mass separated. 3.46, after defecation, when the colon returns to former position. Defecation occurred at 3.27.

Twice I have seen appearances which might account for the emptying of the first portion of the large intestine in a more thorough manner than that above described. At one time, without apparent stimulation, strong tonic contraction occurred along the entire length of the ascending colon, which forced the contents almost wholly into the transverse portion. This action seemed merely an exaggerated form of that observable after food passes the ileocæcal valve (see Fig. 6). At another time, after a mass of food had passed through the ileocæcal valve, after the ascending colon had contracted generally and the antiperistaltic waves had coursed over it in the usual manner, a deep constriction appeared at the valve and ran upward without relaxation nearly the length of the ascending colon, pushing the contents before it. For an instant the wave paused; then the constriction relaxed and the food returned towards the cæcum. These observations indicate that either a general contraction of the wall of the large intestine or a true peristalsis may be effective in pressing waste matter from the region where antiperistalsis is the usual activity into the region where the slowly advancing rings may carry it on to evacuation (see Fig. 7).

The Question of Antiperistalsis

In 1894 Grützner published an observation and made an assumption about which there has since been much controversy. He maintained that when normal salt solution, holding in suspension hair, powdered charcoal, or starch grains, is injected into the rectum, it is carried upward into the small intestine and may even enter the stomach. These experiments have been repeated by several observers. Some have confirmed Grützner’s results; others have failed, after using most careful methods, to find any evidence of the passage of the injected material back to the stomach, and they have declared that the apparent success was due to carelessly allowing the food of the animal to become contaminated with the test materials, so that these were introduced into the stomach by way of the mouth. That antiperistalsis does not occur in the small intestine seems to be proved by Mall’s experiment of reversing a portion, sewing it in place, and then finding that the food does not pass the reversed region, but collects at the upper end. Sabbatani and Fasola reversed stretches of small intestine of varying length, and found that the reversed portions allowed fluids to pass, but that the persistence of the physiological direction of movement caused an accumulation of undigested food in the region of the upper suture. However a portion of the intestine lay in relation to the rest, it always manifested the normal peristalsis. Many other observers working directly on the intestine confirm this testimony and state that the progress of the constriction-rings is always downward, and that antiperistalsis is not physiological. In 1898, however, Grützner took his stand again in favour of a backward movement in the intestines, and in a somewhat metaphysical manner argued that peristalsis and antiperistalsis belong to each other just as relaxation of muscle is related to contraction. He assumed that as the contents are advanced by slow peristalsis, so are they returned by a similar movement in the opposite direction, and he mentions several pathological cases (fistula of intestine) to substantiate the assumption.

By means of the X-rays it is possible to see just what takes place when a fluid is injected into the rectum. For the purpose of determining how nutrient enemata are received and acted upon in the intestines, I have introduced thin, fluid masses in large and small amounts, and thick, mushy masses in large and small amounts, in different animals. The enemata consisted of 100 c.c. of milk, one egg, ten to fifteen grams of bismuth subnitrate, and two grams of starch to hold the bismuth powder in suspension. To make the thick enema all these were stirred together and boiled to a soft mush; to make the thin enema all the parts were boiled together except the egg, which was added after the boiled portion was cooled. The small amount injected was 25 c.c.; the large amount almost 90 c.c., about the capacity of the large intestine when removed from the body. The animals were given first a cleansing injection, and after this was effective the nutrient material was introduced. In order to make sure of the observation, a control radiograph was first taken to show no bismuth food present, and other radiographs taken at varying intervals after the injection to record the course the food was following.

Figure 9.—- Radiographs showing that after a large nutrient enema (about 90 c.c.) has been given the food is forced more and more from the large into the small intestine. The enema was introduced at about 1.40 P.M. At 3.00 segmentation was occurring in many loops.

These experiments show that when small amounts of nutrient fluid are introduced they lie first in the descending colon. In every instance antiperistaltic waves are set going by the injection, and the material is thereby carried to the cæcum. When large amounts are injected they stop for a moment in the region between the transverse and descending colon, as if a constriction existed there. Then a considerable amount of the fluid passes the point, and antiperistaltic waves carry it to the cæcum. In any case the repeated passing of the waves seems to have the effect of promoting absorption, for in the region where these waves continue running, the shadows become gradually more dim, and finally the bismuth appears to be only on the intestinal walls; in other regions, e. g. in the descending colon, the shadows retain their original intensity. Small injections have never in my experience been forced even in part into the small intestine; but with the larger amounts, whether fluid or mushy, the radiographs show many coils of the small intestine containing the bismuth food.

The passage of the injected material beyond the ileocæcal valve is probably due entirely to antiperistalsis in the colon,—a factor unknown to both Grützner and his opponents. The valve, which is thoroughly competent for food coming normally from the small intestine into the large, is curiously incompetent for a substance, even of the consistency of thick cream, introduced in large amount by rectum. When the valve first permits the food to enter the ileum, the fluid pours through and appears suddenly as a winding mass occupying several loops of the intestine (Fig. 9, 1.50, about ten minutes after the injection). The mass is continuous from the valve to the other end; antiperistalsis is therefore not visible in the small intestine under the circumstances of this experiment. The antiperistaltic waves of the colon, however, continue running; the transverse and ascending colon are thus almost emptied, and the small intestine more and more filled with food (Fig. 9, 2.15 and 3.00). After a short time the typical segmenting movements can be seen in the loops, busily separating the food into small masses, and over and over again dividing and redividing them.

I have never seen food material pass back from the colon so far as the stomach; but once, about ten minutes after an injection of 100 c.c. of warm water, the cat retched and vomited a clear fluid resembling mixed water and mucus. In the fluid were two intestinal worms still alive.

The importance of the mechanism by which nutrient enemata are passed backward in the intestine is evident. In the colon the nutrient material is worked over by the antiperistaltic waves, intimately mixed with whatever digestive juices may be present, and exposed to the organs of absorption in that region. If the enemata are large, the digestive and absorptive processes are by no means confined to the colon, but may take place along extensive surfaces of the small intestine. I have repeatedly seen rhythmic segmentation active throughout many loops of the small intestine, thus exposing the injected food to the same mixing and absorbing processes as affect the nutriment which has come through the stomach in a normal manner.

The Effect of Emotions and Sleep

Observations on the stomach of the cat showed that the peristalsis is inhibited whenever the animal manifests signs of anxiety, rage, or distress. Since the extrinsic innervation of a large part of the intestinal tract is the same as that of the stomach, it is of interest to note the effect of emotional states on the movements of the intestines. Esselmont, in a study of the dog’s intestine, noted constantly after signs of emotion a marked increase of activity lasting for only a few moments. Fubini also observed that fear occasioned more rapid peristalsis. There is no doubt that many emotional states are a strong stimulus to peristalsis, but it is equally true that other emotional states inhibit peristalsis. In the cat the same conditions which stop the movements of the stomach stop also the movements of the intestines.

Figure 10.—Tracings showing the effect of excitement on antiperistalsis in the colon.

The female cats used in these observations ordinarily lie quietly on the holder and make no demonstration. Sometimes, however, with only a little premonitory restlessness, the cat suddenly flies into a rage, lashing her tail from side to side, pulling and jerking with every limb, and biting at everything near her head. During such excitement, and for some moments after the animal becomes pacified again, the movements, both of the large and small intestine, entirely cease. Such violence of excitement is not necessary to cause the movements to stop; a cat which was restless and continually whining while confined to the holder showed no signs of intestinal movements during any period of observation (one period lasted more than an hour), although the changes in the distribution of the food observable from one period to the next proved that movements were going on during the quiet intermissions. In another cat, uneasy and fretful for fifty minutes, no activity was seen; then she became quiet for several minutes, and peristalsis of the small intestine appeared.

When the segmentation process in the small intestine is stopped by excitement the segments unite and the series of parts returns to the form of a solid string. The change occurring in the large intestine when the antiperistalsis is inhibited by excitement is shown in Figure 10. The tonic constrictions in the descending colon are apparently not affected by emotional states, for they do not seem to relax in the excitement which causes the movements to cease.

By holding the mouth and nostrils closed, or by pressing between the rami of the jaw, the breathing may be stopped. As soon as the cat shows distress from lack of breath every form of intestinal movement stops.

The statement is sometimes made in text-books of physiology that the gastric and intestinal mechanisms cease to act during sleep. It is worthy of note that nearly all the animals curled up and slept during the time between observations; nevertheless, the progress of the food through the intestines continued. The statement is also made that at night, even without sleep, the intestines are almost entirely at rest; that this is their normal time for repose. I have seen both large and small intestines actively at work, however, from half past nine until half past ten o’clock at night.

Summary

1. Bismuth subnitrate, 10 to 33 per cent, mixed with the food renders the movement of the intestinal contents, and thereby the movements of the intestinal walls, visible on the fluorescent screen.

2. The activity most commonly seen in the small intestine is the simultaneous division of the food in a coil into small segments, and a rhythmic repetition of the segmentation each time applied to the new segments formed from parts of those just divided. In the cat this rhythmic segmentation may proceed at the rate of thirty divisions per minute. The effects of the constrictions causing the segmentation are the mixing of the food and the digestive juices, the bringing of the digested food into contact with the absorbing mechanisms, and the emptying of the venous and lymphatic radicles of their contents by compression of the intestinal wall.

3. Peristalsis is usually combined with segmentation. As the food is advancing, interfering constrictions often separate the rear end of the mass from the main body. The separation is momentary, however; the rear end is swept into union with the main body again, and the whole mass is pushed onward until another constriction repeats the changes.

4. The ileocæcal valve is thoroughly competent for food entering the colon from the ileum.

5. The usual movement of the transverse and ascending colon and the cæcum is an antiperistalsis. This recurs in periods about every fifteen minutes, and each period lasts commonly about five minutes; the waves recur during a period at the rate usually of eleven waves in two minutes. This antiperistalsis gives new significance to the ileocæcal valve; for the food, now in a closed sac, is thoroughly churned and mixed by the constrictions running towards the cæcum, and again exposed to absorbing walls without any interference with the processes in the small intestine.

6. As soon as new food enters the large intestine a strong general contraction takes place along the cæcum and ascending colon, forcing some of the food onward; a moment later antiperistaltic waves begin to pass.

7. With the accumulation of material in the transverse colon, deep tonic constrictions appear one after another and carry the material into the descending colon, leaving the transverse and ascending portions free for the antiperistaltic waves.

8. In emptying the large intestine the material in the lower descending colon is first carried out by combined peristalsis and pressure of abdominal muscles; the remainder of the material is then spread into the evacuated region, and this region is again cleared; the second remainder may be similarly affected. In normal life the new food arriving in the colon must force forward the old contents of the ascending and transverse colon.

9. The observations have revealed no evidence of antiperistalsis in the small intestine, but since the ileocæcal valve will allow nutrient material under pressure to pass backward, the antiperistalsis of the large intestine may force into the small intestine a considerable portion of a large nutrient enema. Segmentation in the small intestine affects such an enema precisely as it affects food which has passed normally through the stomach.

10. Signs of emotion, such as fear, distress, or rage, are accompanied by a total cessation of the movements of both large and small intestines. The movements continue in the cat both during sleep and at night.

THE BATTLE CREEK LABORATORIES
THE MAMMOTH SANITARIUM AND THE LARGE ADOPTED FAMILY OF DR. AND MRS. J. H. KELLOGG

[A report of one experiment has been selected from Modern Medicine relative to the work of the laboratories connected with the Battle Creek Sanitarium because it relates to the effect of cooking and mastication upon food in illustration of the statement of Dr. Campbell pertaining to these aids to digestion. Much more evidence could be had from the Sanitarium reports, but sufficient has already been given herewith from various authoritative sources to justify our claims of the great importance of mouth-treatment in human nutrition.

It may be said here, however, that the trial of thorough mouth-work as an aid to digestion, which has been in progress at the Sanitarium for more than a year, and which has finally been accepted and prescribed as the first requirement of the treatment of patients, is of the utmost significance. This is, by far, the largest sanitarium in the world, having some hundreds of physicians, nurses, and other attachés, and treating many thousands of patients annually. The “cure” is based upon natural methods of recuperation, and while all of the staff, both medical and surgical, are fully equipped diplomatists, and whereas the organisation has a legally and professionally accepted medical school of its own, so-called medicines are rarely used, and never except as antidotes to specific poisons. Nature is assisted by scientific means to do the curing, and now that an economic nutrition to relieve the exhausted system of the patient from all possible strain through ample mouth-treatment of food, as intended by the anatomical, dental, and chemical plan on which man is constructed, has been tried and accepted as a fundamental principle of the institution, it gives a practical indorsement of the claims set forth in “Glutton or Epicure,” and in this present book, and declares that they are of greatest importance in securing health and efficiency.

The Battle Creek Sanitarium is a philanthropic and humanitarian institution operating under a perpetual charter which compels the use of all the profits gained to foster the spread of the humanitarian work. More than sixty branches of the parent institution have been established in or near large cities in different parts of the world, under the title of The American Medical Missionary Association, and each of these branches conducts a life-saving business on Good Samaritan principles. The organisation started its medical missionary work some thirty-seven years ago, with almost no capital and only one patient, in a small two-storey frame house, in the then small village of Battle Creek, Michigan. The incorporators were religious enthusiasts who believed that Christianity should be expressed in works as much as in faith, in curing the sick and healing the wounded, and thus preparing the unfortunate for the reception of moral and spiritual inspiration.

The best evidence that this scheme of procedure to attain the ultimate end was a good one is shown by the success of the institution in its growth from such small beginning to the immense proportions of the present time, with one of its buildings nearly a thousand feet in length and five storeys in height and numerous other buildings radiating from the main one and scattered about it in a finely wooded park. Fire came and destroyed the old building and all its contents, but yet it was soon rebuilt, and the concern goes on growing and growing, because the foundation principle of the institution is the beautiful Golden Rule, and the method of treatment employed is taken from the open book of Nature.

While the organisation was primarily based upon a special religious creedal enthusiasm, it has become so broadly altruistic as to suggest a return to original Christianity as defined in the Sermon on the Mount. In such Christian expression honest agnostics, born Buddhists, and the tolerant of all the different Christian creeds may join and say amen!

One of the splendid results of an economic nutrition, attained by following the natural requirements and impulses, is the curing of many diseases, among them several forms of constipation. The writer has a genuine admiration for the spirit that is the motive power of the Battle Creek Sanitarium and firm belief in the Christianity demonstrated in the work, especially in the private experiment of Dr. and Mrs. Kellogg, with their family of adopted waifs. Twenty-four children of unfortunate parents, waifs so unfortunate in their attractability as to be hopelessly neglected, have been gathered under this sheltering roof and are showing their mettle and gratitude by splendid behaviour and brilliant accomplishment in a manner that any proud parent might approve. To miss any opportunity to express gratitude to Dr. and Mrs. Kellogg for giving us such a splendid example of the true meaning of practical Christianity would be showing symptoms of the worst form of constipation; viz., constipation of appreciation and affection.—Horace Fletcher.]

EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF MASTICATION AND COOKING OF FOOD, ETC., IN THE LABORATORIES OF THE BATTLE CREEK, MICHIGAN, SANITARIUM, UNDER THE DIRECTION OF DR. J. H. KELLOGG

From Modern Medicine

The table clearly shows the effect of cooking and the effect of mastication upon the salivary digestion of food. Column 1 shows the results obtained after an ordinary test meal consisting of 1½ ounces of water biscuit to 8 ounces of water; column 2, 1½ ounces of water biscuit ground fine, mixed with water and swallowed without chewing; column 3, test meal consisting of 1½ ounces of raw wheat flour and 8 ounces of water; column 4, test meal consisting of 1½ ounces of unground pearled wheat with 8 ounces of water.

Water biscuit, well chewed.Water biscuit, not chewed.Raw flour.Raw wheat.
1234
Total acidity (A)0.1420.1400.2040.136
Calculated acidity (A´)0.1560.1320.1860.128
Total chlorine (T)0.2960.2840.3320.272
Free HCl (H)0.0500.0280.0560.052
Combined chlorine (C)0.1060.1040.1300.076
Fixed chlorides (F)0.1140.1520.1460.144
Maltose (M)1.0880.2720.0000.000
Dextrine and soluble starch (D)0.8120.5480.3000.448
COEFFICIENTS
Digestion of albumin (a)0.820.971.001.00
Digestion of starch (b)0.710.420.000.00
Salivary activity (c)1.171.111.141.37
Fermentation (x)5.0011.006.006.00
Chlorine liberation (m)0.800.700.850.71

Several points of interest are to be noted in the above table, the first and most conspicuous of which is the fact that the saliva did not act at all upon the raw flour and raw wheat, as shown by the total absence of maltose in the cases represented in columns 3 and 4. The small amount of dextrine and soluble starch shown was, perhaps, already present in the raw grain, but this point I have not investigated. It is clear, however, that no sugar was produced when raw starch was taken, whereas the amount of sugar produced after the ordinary test meal was more than 1 gram in each 100 c.c. of stomach fluid; in other words, the stomach fluid contained more than one per cent of sugar without taking into account the amount which had been absorbed.

The figures for maltose in column 2 represent a test meal in which little or no saliva was mixed with the test meal, the food being swallowed without chewing, indicating very slight action of the saliva, the amount of maltose found in the stomach fluid being but a trifle more than one-fourth the amount obtained after an ordinary test meal. The amount of soluble starch and dextrine was less than half the normal amount in the case of the raw flour, and but little more in the case of the raw wheat.

Another point of interest is the increased amount of lactic acid found in the test meal taken without chewing, represented in column 2. The coefficient of fermentation which represents the number of milligrams of lactic acid (as expressed in terms of HCl) found in 100 c.c. of stomach fluid was more than double that found after the same kind of test breakfast properly masticated, represented in column 1. The results of this experiment distinctly associate acid fermentation with imperfect mastication and imperfect salivary digestion.

Another fact noted in a comparative study of the results of the analysis of over 5000 stomach fluids, which very strongly confirms this idea, is that starch conversion is usually complete in cases of apepsia, while lactic acid is conspicuous by its absence. In nearly all cases of apepsia which I have encountered, numbering about forty cases in all, the most delicate tests for lactic acid have failed to show its presence except in the most minute quantities; in most cases it was entirely absent.

There are a number of other points of interest in the above table in addition to those which relate particularly to starch digestion. One of the most noteworthy of these is the fact that the digestion of albumen was not unfavourably influenced by the neglect to masticate the food, the coefficient of digestion, in fact, being raised from .82 to .97. This coefficient is a qualitative and not a quantitative index. The higher coefficient indicates a more perfect elaboration of proteids and a close approach to an absolutely perfect proteid digestion.

Another fact of perhaps even greater interest has relation to the digestion of albumen when the wheat was eaten raw, in the form of either flour or wheat. The coefficient of proteid digestion in both cases, as shown in columns 3 and 4, was 1.00, indicating perfect elaboration of the albuminoids. From this it appears that raw gluten, or the proteids of wheat, is digested more perfectly when taken in a raw state than when cooked, the very opposite of which we have seen to be true of starch. The digestion of raw starch may take place in the intestines, by the action of the pancreatic juice, but cannot take place in the stomach, for the reason that the saliva has not the power to penetrate the cellulose envelope of the starch granule, and hence cannot digest raw starch.

This fact coincides in a most interesting manner with the biological fact that man is by nature a frugivorous animal. In the process of ripening, the starch of fruits undergoes a hydration similar to that which takes place in cooking and in pancreatic digestion, whereby the insoluble starch is converted into soluble starch, dextrine, and sugar. This explains, also, why well-ripened fruit may be eaten raw with impunity, while unripe fruit and farinaceous food of all sorts require cooking. In his diet, man, like his nearest relative, the monkey, being naturally a frugivorous animal, may eat fruits in the state in which Nature has provided them; but when he introduces other natural products into his bill of fare, he must adopt artificial means for securing the preparation for digestion which Nature makes in the ripening process of fruits.

The coefficient of chlorine liberation (m) is very nearly uniform, indicating that the mastication of food and the cooking of food have little influence upon this digestive function.

The coefficient of salivary activity (c) was determined independently for each test breakfast. Its practical uniformity indicates that there was no essential change in the character or quality of the saliva to account for the differences shown by the totals in relation to the stomach digestion of starch.