Broad-Leaved Woods.

133. Ash.

[Fig. 223]. Wood heavy, hard, strong, stiff, quite tough, not durable in contact with soil, straight grained, rough on the split surface and coarse in texture. The wood shrinks moderately, seasons with little injury, stands well and takes a good polish. In carpentry ash is used for finishing lumber, stairways, panels, etc.; it is used in shipbuilding, in the construction of cars, wagons, carriages, etc., in the manufacture of farm implements, machinery, and especially of furniture of all kinds, and also for harness work; for barrels, baskets, oars, tool handles, hoops, clothespins, and toys. The trees of the several species of ash are rapid growers, of small to medium height with stout trunks; they form no forests, but occur scattered in almost all broad-leaved forests.

134. Basswood.

[Fig. 224]. (Lime tree, American linden, lin, bee tree): Wood light, soft, stiff but not strong, of fine texture, and white to light brown color. The wood shrinks considerably in drying, works and stands well; it is used in carpentry, in the manufacture of furniture and woodenware, both turned and carved, in cooperage, for toys, also for paneling of car and carriage bodies. Medium to large sized trees, common in all Northern broad-leaved forests; found throughout the Eastern United States.

Fig. 224.

Fig. 225.

Fig. 226.

135. Birch.

[Fig. 225]. Wood heavy, hard, strong, of fine texture; sapwood whitish, heartwood in shades of brown with red and yellow; very handsome, with satiny luster, equaling cherry. The wood shrinks considerably in drying, works and stands well and takes a good polish, but is not durable if exposed. Birch is used for finishing lumber in building, in the manufacture of furniture, in woodturnery for spools, boxes, wooden shoes, etc., for shoe lasts and pegs, for wagon hubs, ox yokes, etc., also in wood carving. The birches are medium sized trees, form extensive forests northward and occur scattered in all broad-leaved forests of the Eastern United States.

136. Butternut.

[Fig. 226]. (White Walnut.) Wood very similar to black walnut, but light, quite soft, not strong and of light brown color. Used chiefly for finishing lumber, cabinet work and cooperage. Medium sized tree, largest and most common in the Ohio basin; Maine to Minnesota and southward to Georgia and Alabama.

Fig. 227.

137. Cherry.

[Fig. 227]. Wood heavy, hard, strong, of fine texture: sapwood yellowish white, heartwood reddish to brown. The wood shrinks considerably in drying, works and stands well, takes a good polish, and is much esteemed for its beauty. Cherry is used chiefly as a decorative finishing lumber for buildings, cars and boats, also for furniture and for turnery. It is becoming too costly for many purposes for which it is naturally suited. The lumber-furnishing cherry of this country, the wild black cherry, is a small to medium sized tree, scattered through many of the broad-leaved woods of the western slope of the Alleghanies, but found from Michigan to Florida and west to Texas.

138. Chestnut.

[Fig. 228]. Wood light, moderately soft, stiff, not strong, of coarse texture; the sapwood light, the heartwood darker brown. It shrinks and checks considerably in drying, works easily, stands well, and is very durable. Used in cabinet work, cooperage, for railway ties, telegraph poles, and locally in heavy construction. Medium sized tree very common in the Alleghanies, occurs from Maine to Michigan and southward to Alabama.

Fig. 228.

Fig. 229.

139. Elm.

[Fig. 229]. Wood heavy, hard, strong, very tough; moderately durable in contact with the soil; commonly cross-grained, difficult to split and shape, warps and checks considerably in drying, but stands well if properly handled. The broad sapwood whitish, heart brown, both shades of gray and red; on split surface rough, texture coarse to fine, capable of high polish. Elm is used in the construction of cars, wagons, etc., in boat and ship building, for agricultural implements and machinery; in rough cooperage, saddlery, and harness work, but particularly in the manufacture of all kinds of furniture, where the beautiful figures, especially of the tangential or bastard section, are just beginning to be duly appreciated. The elms are medium to large sized trees, of fairly rapid growth, with stout trunk, form no forests of pure growth, but are found scattered in all the broad-leaved woods of our country.

140. Gum.

—This general term refers to two kinds of wood usually distinguished as sweet or red gum, and sour, black, or tupelo gum, the former being a relative of the witch-hazel, the latter belonging to the dogwood family.

Sweet Gum. [Fig. 230]. (red gum, liquidambar); Wood rather heavy, rather soft, quite stiff and strong, tough, commonly cross-grained, of fine texture; the broad sapwood whitish, the heartwood reddish brown; the wood warps and shrinks considerably, but does not check badly, stands well when fully seasoned, and takes good polish. Sweet gum is used in carpentry, in the manufacture of furniture, for cut veneer, for wooden plates, plaques, baskets, etc., also for wagon hubs, hat blocks, etc. A large sized tree, very abundant, often the principal tree in the swampy parts of the bottoms of the Lower Mississippi Valley; occurs from New York to Texas and from Indiana to Florida.

Fig. 230.

Fig. 231.

141. Hickory.

[Fig. 231]. Wood very heavy, hard and strong, proverbially tough, of rather coarse texture, smooth and of straight grain. The broad sapwood white, the heart reddish nut brown. It dries slowly, shrinks and checks considerably, is not durable in the ground, or if exposed, and, especially the sapwood, is always subject to the inroads of boring insects. Hickory excels as carriage and wagon stock, but is also extensively used in the manufacture of implements and machinery, for tool handles, timber pins, for harness work and cooperage. The hickories are tall trees with slender stems, never form forests, occasionally small groves, but usually occur scattered among other broad-leaved trees in suitable localities.

Hickory excels as carriage and wagon stock, but is also extensively used in the manufacture of implements and machinery, for tool handles, timber pins, for harness work and cooperage. The hickories are tall trees with slender stems, never form forests, occasionally small groves, but usually occur scattered among other broad-leaved trees in suitable localities.

142. Maple.

[Fig. 232]. Wood heavy, hard, strong, stiff, and tough, of fine texture, frequently wavy grained, thus giving rise to “curly” and blister” figures; not durable in the ground or otherwise exposed. Maple is creamy white, with shades of light brown in the heart; shrinks moderately, seasons, works and stands well, wears smoothly and takes fine polish. The wood is used for ceiling, flooring, paneling, stairway and other finishing lumber in house, ship and car construction; it is used for the keels of boats and ships, in the manufacture of implements and machinery, but especially for furniture, where entire chamber sets of maple rival those of oak. Maple is also used for shoe lasts and other form blocks, for shoe pegs, for piano actions, school apparatus, for wood type in show bill printing, tool handles, wood carving, turnery and scroll work.

Fig. 232.

The maples are medium sized trees, of fairly rapid growth; sometimes form forests and frequently constitute a large proportion of the arborescent growth.

143. Oak.

[Fig. 233]. Wood very variable, usually very heavy and hard, very strong and tough, porous, and of coarse texture; the sapwood whitish, the heart “oak” brown to reddish brown. It shrinks and checks badly, giving trouble in seasoning, but stands well, is durable and little subject to attacks of insects. Oak is used for many purposes; in shipbuilding, for heavy construction, in common carpentry, in furniture, car and wagon work, cooperage, turnery, and even in wood carving; also in the manufacture of all kinds of farm implements, wooden mill machinery, for piles and wharves, railway ties, etc. The oaks are medium to large sized trees, forming the predominant part of a large portion of our broad-leaved forests, so that these are generally “oak forests” though they always contain a considerable proportion of other kinds of trees. Three well marked kinds, white, red, and live oak are distinguished and kept separate in the market. Of the two principal kinds, white oak is the stronger, tougher, less porous, and more durable. Red oak is usually of coarser texture, more porous, often brittle, less durable, and even more troublesome in seasoning than white oak. In carpentry and furniture work, red oak brings about the same price at present as white oak. The red oaks everywhere accompany the white oaks, and like the latter, are usually represented by several species in any given locality. Live oak, once largely employed in shipbuilding, possesses all the good qualities (except that of size) of the white oak, even to a greater degree. It is one of the heaviest, hardest and most durable building timbers of this country; in structure it resembles the red oak but is much less porous.

Fig. 233.

144. Sycamore.

[Fig. 234] (button wood, button-ball tree, water beech): Wood moderately heavy, quite hard, stiff, strong, tough, usually crossgrained, of coarse texture, and white to light brown color; the wood is hard to split and work, shrinks moderately, warps and checks considerably but stands well. It is used extensively for drawers, backs, bottoms, etc., in cabinetwork, for tobacco boxes, in cooperage, and also for finishing lumber, where it has too long been underrated. A large tree, of rapid growth, common and largest in the Ohio and Mississippi valleys, at home in nearly all parts of the eastern United States.

Fig. 234.

Fig. 235.

145. Tulip Wood.

[Fig. 235]. Tulip tree. (yellow poplar, white wood): Wood quite variable in weight, usually light, soft, stiff but not strong, of fine texture, and yellowish color; the wood shrinks considerably, but seasons without much injury; works and stands remarkably well. Used for siding, for paneling, and finishing lumber in house, car and shipbuilding, for sideboards and panels of wagons and carriages; also in the manufacture of furniture, implements and machinery, for pump logs, and almost every kind of common woodenware, boxes, shelving, drawers, etc. An ideal wood for the carver and toy man. A large tree, does not form forests, but is quite common, especially in the Ohio basin; occurs from New England to Missouri and southward to Florida.

146. Walnut.

[Fig. 236]. Black Walnut. Wood heavy, hard, strong, of coarse texture; the narrow sapwood whitish, the heartwood chocolate brown. The wood shrinks moderately in drying, works and stands well, takes a good polish, is quite handsome, and has been for a long time the favorite cabinet wood in this country. Walnut formerly used, even for fencing, has become too costly for ordinary uses, and is to-day employed largely as a veneer, for inside finish and cabinet work, also for turnery, for gunstocks, etc. Black walnut is a large tree, with stout trunk, of rapid growth, and was formerly quite abundant throughout the Alleghany region, occurring from New England to Texas, and from Michigan to Florida.

Fig. 236.

CHAPTER XIII.
Wood Finishing.

147. Wood Finishes.

—Finishes are applied to wood surfaces (1) that the wood may be preserved, (2) that the appearance may be enhanced.

Finishing materials may be classed under one or the other of the following: Filler, stain, wax, varnish, oil, paint. These materials may be used singly upon a piece of wood or they may be combined in various ways to produce results desired.

148. Brushes.

—Good brushes are made of bristles of the wild boar of Russia and China. These bristles are set in cement and are firmly bound by being wrapped with wire in round brushes or enclosed in metal in flat brushes. [Fig. 237].

Fig. 237.

Fig. 238.

A large brush, called a duster, is used for removing dust or loose dirt from the wood, [Fig. 238]. Small brushes, used for tracing, usually have chiseled edges, [Fig. 239].

Bristle brushes are expensive and should be well cared for. Brushes that have been used in shellac and are not soon to be used again should be cleaned by rinsing them thoroughly in a cup of alcohol. This alcohol may be used later for thinning shellac.

Fig. 239.

Varnish and paint brushes should be cleaned in turpentine. If they are to be laid away for some time, a strong soap suds, or lather made from some of the soap powders, should be well worked into the brush, after the preliminary cleansing. It should then be carefully pressed into proper shape and laid away flat on a shelf. When the brush is to be used again, it should first be washed out, to get rid of all the soap.

Brushes that are used from day to day should be kept suspended, when not in use, as in [Fig. 240], so that their bristles shall be kept moist, without their touching the bottom of the bucket or can.

Fig. 240.

Fig. 241.

Since alcohol evaporates rapidly, shellac cans with cone tops should be used or, better, a can in which the brush handle may extend through the top.

[Fig. 241] shows a can which is made double. Varnish is kept in the inner portion and water in the outer ring. The cover fits over the inner can and into the water space, thus sealing the varnish air-tight but removing all danger of the cover’s sticking to the sides of the can. The brush is suspended from the “cleaning wire” so that its bristles rest in the liquid.

If delicate woods are to be varnished, stone or glass jars would better be used to hold the liquid, for metal discolors it slightly.

Fig. 242.

Fig. 243.

149. General Directions for Using Brush.

—(1) Hold the brush as in [Fig. 242]. (2) Dip the end of the brush in the liquid to about one-third the length of the bristles. (3) Wipe off the surplus liquid on the edge of the can, wiping both sides of the brush no more than is necessary to keep the liquid from dripping. A wire stretched across the can as in [Fig. 243] provides a better wiping place for the dripping brush. In wiping the brush on the edge of the can, some of liquid is likely to “run” down the outside. (4) Using the end of the brush, apply the liquid near one end of the surface to be covered. (5) “Brush” in the direction of the grain. (6) Work towards and out over the end of the board, leveling the liquid to a smooth film of uniform thinness. The strokes should be “feathered,” that is, the brush should be lowered gradually at the beginning of the sweep and raised gradually at the close, otherwise, ugly “laps” will result. The reason for working out over the ends rather than from them will appear with a little thought. (7) Now work toward the second end. The arrows, [Fig. 244], show the general directions of the final or feathering strokes.

Fig. 244.

Edges are usually covered first and adjoining surfaces afterward.

It frequently happens that surplus liquid runs over a finished surface, especially when working near the arrises. This surplus can be “picked up” by wiping the brush upon the wire of the bucket until the bristles are quite free of liquid, and giving the part affected a feathering sweep.

If the object has an internal corner, work from that out over the neighboring surfaces.

Panels and sunk places should be covered first. Afterward, the raised places, such as stiles, rails, etc., may be attended to. Wherever possible the work should be laid flat so that the liquid may be flowed on horizontally. This is of especial advantage in varnishing. Vertical work should always be begun at the top and carried downward.

Tracing consists in working a liquid up to a given line but not over it, such as painting the sash of a window. Tracing requires a steady hand and some practice. A small brush is generally used and the stroke is made as nearly continuous as the flow of the liquid will allow. [Fig. 245].

Fig. 245.

150. Fillers.

—Fillers are of two kinds, paste and liquid. They are used to fill up the wood pores and thus give a smooth, level, non-absorbent surface, upon which other coverings may be placed. Paste fillers are for use upon coarse grained woods such as oak and chestnut, while liquid fillers are for close grained woods such as Georgia pine.

Fillers are not a necessity, especially the liquid, but the saving affected by their use is considerable. Not only are they cheaper than varnish but one or two coats of filler will take the place and permit a saving of two or three coats of the more expensive material.

Liquid filler should be applied evenly with a brush and allowed to dry twenty-four hours, after which it may be sanded smooth with No. 00 paper. It is used mainly upon large work such as porch ceilings and interior finish, like Georgia pine. On fine cabinet work, one or two coats of thin white shellac is used as a filler upon close grained wood. Shellac forms a surface which after twenty-four hours, can be sandpapered so as to make a very smooth surface. Varnish applied to the bare wood has a tendency to darken and discolor it. Filling with shellac preserves the natural color.

Paste filler is sold by the pound in cans of various sizes. The best fillers are made of ground rock crystal mixed with raw linseed oil, japan and turpentine.

For preserving the natural color of the wood, filler is left white; for Flemish, it is colored brown; for antique and weathered finishes, it is dark. Fillers can be purchased ready colored.

151. Filling with Paste Filler.

—(1) Thin the filler with turpentine until it makes a thin paste. (2) With a stiff-bristled brush, force the filler into the pores of the wood and leave the surface covered with a thin coating. (3) Allow this to stand until the filler has “flatted,” that is, until the “gloss” has disappeared and the filler becomes dull and chalkish. The time required for this to take place varies. Twenty minutes is not unusual. (4) Rub the filler off just as soon as it has flatted—do not let it stand longer, for the longer it stands the harder it is to remove. Rub across the grain as much as is possible, using a wad of excelsior. Finish fine work by going over it a second time with a cloth, rubbing with the grain as well as across, that the “high lights” may be clear of filler.

On fine work use a felt pad to rub the filler into the pores, and rub off with a cloth only.

Twenty-four hours should be allowed the filler to harden. One filling is sufficient for ordinary work; on fine work the above process is sometimes repeated after the first filling has hardened.

The striking contrasts in the grain of wood such as oak and chestnut, obtained by the use of colored fillers, are due to the dark filler’s remaining in the open grain but being wiped off of the close grain—the “high lights.”

On quarter-sawed oak, each flake is sometimes sanded with fine paper, No. 00, to remove the stain that the contrast may be sharper.

Excelsior and rags used in cleaning off filler must not be allowed to lie around but must be burned for they are subject to spontaneous combustion and are dangerous.

152. Stains.

—Stains are used to darken the high lights of wood preparatory to the application of a relatively darker filler. By varying the intensity of the stain different results may be obtained with the same color of filler. Stains are also used without fillers.

There are three kinds of stains: (1) water, (2) oil, (3) spirit. Each kind has its advantages and its disadvantages.

Wood stains are cheap, penetrate the wood deeply, and are transparent. They cause the grain of the wood to “rough up,” however, and for this reason are used mainly upon hard woods which require darkening before the application of a filler. The wood is sanded before the filler is applied. Where water stain is not to be followed by filler, it is customary to thoroughly moisten the surface to be covered with water alone. After this has dried, the surface is sanded with fine paper and the stain applied. The stain does not raise the grain as it otherwise would.

Water stains may be applied with a brush or a sponge. They are sometimes heated that they may enter the wood more deeply. Any coloring matter that can be dissolved in water will make a wood dye or stain.

Oil stains, like water stains, are often used to stain wood before filling. They are more generally used where no filling is desired. They are easier to apply evenly than water or spirit stains. They do not raise the grain of the wood like the other stains. On the other hand, they do not penetrate and therefore cannot color hard woods dark. Neither do they give the clear effects.

Most oil stains are applied with a brush, after which the surface of the wood is immediately wiped clean with a cloth.

Spirit stains are but little used where surfaces of any size are to be covered. They are expensive, fade easily, and are hard to apply evenly.

They are applied with a brush and dry very quickly.

A stain which penetrates deeply and is clear is obtained by placing the wood in a closed receptacle in which is placed a dish of concentrated ammonia. The fumes of this liquid cause a chemical change to take place, giving to the wood a rich nut-brown color.

153. Waxing.

—An old finish that has recently become popular is that of waxing. It takes the place of the varnish, by which it was supplanted years ago.

Wax finish is easily applied and is cheaper than varnish. It will not stand wetting. However, it is easily repaired.

Our ancestors used to make wax polish by “cutting” beeswax with turpentine.

Rapid drying and hardening waxes can be purchased now-a-days. They require a smooth surface and a very thin application for a successful result. Too much wax upon a rough surface will produce very ugly, white, chalk-like spottings as the wax dries. These are especially noticeable upon dark finishes. Waxes colored black overcome this but are not needed if the ordinary wax is properly applied.

In finishing with wax the following directions may be followed: (1) Stain the wood, if a very dark finish is desired. (2) If the wood is coarse-grained, put on two coats of paste filler and rub it off carefully, that a smooth surface may be prepared. Allow the stain twelve hours in which to dry, also each coat of the filler. (3) With a soft cloth apply as thin a coating of wax as can be and yet cover the wood. Wax is in paste form. (4) Allow this to stand five or ten minutes, then rub briskly with a soft dry cloth to polish. (5) After this coat has stood for twenty-four hours another may be applied in the same manner.

A thin coat of shellac brushed evenly upon the hardened filler “brings out” the grain and makes an excellent base for wax as well as varnish. It should stand twenty-four hours and then be sanded smooth with No. 00 sandpaper before the wax is applied.

There are other patent preparations which give the same soft effects as wax and are as easily applied—in fact, some of them are but wax in liquid form.

154. Varnishes.

—Varnishes are used where a hard transparent coating is desired. There are two kinds, (1) shellac or spirit varnish, (2) copal or oil varnish.

Varnishes vary greatly in quality and therefore in price. If made of specially selected pale gum for use on light or white woods the price will be higher than for that of ordinary color tho the quality may be no higher.

Rubbing varnishes are so made that they may take a “rubbed finish.”

Varnishing should be done in a room in which the temperature can be kept from 70 to 80 degrees Fahr., and which is comparatively free from dust. The surface to be covered must be clean, dry and filled even and smooth.

155. Shellac.

—Shellac or spirit varnish is a solution of lac and alcohol. Lac is soluble in both grain and wood alcohol but grain alcohol is preferable. Beds of crude lac are found in parts of Africa and South America where the lac has been left by the decay of leaves and twigs which it at one time encrusted. Crude lac is deposited upon leaves and twigs of certain of the lac-bearing trees by countless numbers of insects which draw out the sap.

Stick-lac is crude lac which has been purified somewhat of the bodies and eggs of the insects and rolled into stick forms. When crushed and washed it is known as seed-lac. When fully purified, which is done by melting and straining, it is spread out and is known as shellac.

White shellac is obtained by bleaching. Orange shellac is unbleached. Pure white shellac is used where the more yellow shellac would discolor. Orange shellac is stronger than white and will last longer but is harder to apply because it sets more rapidly.

Shellac varnish sets quickly, dries hard but softens under moisture. Unlike oil varnish, it does not “level up” and must, therefore, be brushed on quickly, using long, even strokes. No spots must be omitted for they cannot be “touched up.”

156. Shellac Finishes.

—The use of one or more coats of shellac preparatory to a varnish finish has been noted.

A very simple finish, and one that is easily applied, is obtained by covering stained wood with a very thin coat of shellac.

To obtain the finish known as egg-shell gloss, (1) Coat the smooth wood with from three to six applications of thin shellac. Allow each coat twenty-four hours in which to harden. (2) Rub to a smooth surface each hardened coat using curled hair or fine steel wool or fine oiled sandpaper.

157. Oil or Copal Varnishes.

—Oil varnish is composed of copal gum, boiled oil and turpentine. Copal gums are obtained from Africa mainly, in certain parts of which they are found as fossil resins, the remains of forests which once covered the ground.

Pressed flaxseed furnish crude linseed oil while the long leaf pine of the South, furnishes the turpentine pitch.

The oil is prepared for use by boiling it in huge kettles with different materials which cause it to change chemically. It is then put away to settle and age, that is to clear and purify itself. It takes from one to six months for the oil to reach a proper degree of clearness and purity. Turpentine is obtained from its pitch by distillation.

The copal gums are melted and boiled thoroly with the oil. Turpentine is added after the mixture of gum and oil has cooled sufficiently. The whole is then strained several times, placed in tanks to age or ripen. From one month to a year, or even more, is required.

The quality of varnish depends upon the qualities of the gums, the proportion of oil and turpentine and the care which is exercised in the boiling process.

158. Flowing Copal Varnish.

—(1) Lay on the varnish quickly in a good heavy coat. Use a good varnish brush and dip the bristles deeply into the liquid, wiping them off just enough to prevent dripping. (2) Wipe the bristles quite free of varnish; go over the surface and pick up as much of the surplus liquid as the brush will hold. Replace the varnish in the can by wiping the bristles on the wire of the can. Repeat until the entire surface has been left with but a thin smooth coating.

Two, three, four or more coats are applied in this manner, forty-eight hours being allowed between each for drying. Dry varnish comes off in sanding as a white powder; if not dry it will come off on the sandpaper as little black spots.

159. Typical Finishes for Coarse-Grained Woods.

—Egg-Shell gloss: (1) One coat of water stain, English, golden, etc., according to the result desired. (2) Allow time to dry, then sandpaper lightly with fine sandpaper. This is to smooth the grain and to bring up the highlights by removing stain from some of the wood. Use No. 00 sandpaper and hold it on the finger tips. (3) Apply a second coat of the stain diluted about one-half with water. This will throw the grain into still higher relief and thus produce a still greater contrast. Apply this coat of stain very sparingly, using a rag. Should this stain raise the grain, again rub lightly with fine worn sandpaper, just enough to smooth. (4) When this has dried, put on a light coat of thin shellac. Shellac precedes filling that it may prevent the high lights—the solid parts of wood—from being discolored by the stain in the filler, and thus causing a muddy effect. The shellac being thin does not interfere with the filler’s entering the pores of the open grain. (5) Sand lightly with fine sandpaper. (6) Fill with paste filler colored to match the stain. (7) Cover this with a coat of orange shellac. This coat of shellac might be omitted but another coat of varnish must be added. (8) Sandpaper lightly. (9) Apply two or three coats of varnish. (10) Rub the first coats with hair cloth or curled hair and the last with pulverized pumice stone and crude oil or raw linseed oil.

Dull finish: A dead surface is obtained by rubbing the varnish after it has become bone dry, with powdered pumice stone and water, using a piece of rubbing felt. Rub until the surface is smooth and even being careful not to cut thru by rubbing too long at any one spot. The edges are most likely to be endangered. Use a wet sponge and chamois skin to clean off the pumice.

Polished finish: The last coat should be rubbed first with pulverized pumice stone and water, and then with rotten stone and water. For a piano finish rub further with a mixture of oil and a little pulverized rotten stone, using a soft felt or flannel. A rotary motion is generally used and the mixture is often rubbed with the bare hand.

Gloss finish: For a gloss finish, the last coat is not rubbed at all.

160. Patching.

—It frequently happens in rubbing with pumice that the varnish is cut thru so that the bare wood shows. To patch such a spot proceed as follows: (1) Sandpaper the bare place lightly with very fine paper, No. 00, to smooth the grain of the wood raised by the pumice water. (2) If the wood has been stained or filled, color the spot to match the rest of the finish. Apply a little with a cloth and wipe off clean. (3) When this has dried, apply a thin coat of varnish to the bare wood, carefully. Draw it out beyond the bare wood a little, “feathering” it so that there shall not be a ridge. (4) Allow this to dry hard and apply a second coat, feathering it beyond the surface covered by the first coat. (5) Repeat until the required thickness has been obtained; then (6) rub with pumice and water. Rub lightly, using a little pumice and much water. The slightly raised rings made by the lapping of one coat upon another will need special attention. It is best not to sandpaper between coats, because of the danger of scratching the rubbed finish adjoining the patch.

161. Painting.

—The purpose of paints is to preserve the wood by covering it with an opaque material. Paints are usually composed of white lead or zinc oxide and coloring materials mixed or thinned with raw or boiled linseed oil. Turpentine is also used for thinning and as a drying agent.

Paint must be well brushed out so that a thin film may result.

In painting, (1) Cover the knots with shellac, or the oil of the paint will be absorbed thru two or three coats and a discoloration result. (2) Put on a prime coat. This coat should be mixed as thin as it can be and still not “run” when applied to vertical surfaces. (3) Fill the nail holes with putty. Sand lightly if a smooth finish is desired. (4) Apply two or three coats of paint thin enough to flow freely but thick enough to cover well and not “run.”

The second coat is given a little more than the usual amount of turpentine that a “flat effect” may prepare the way for the final gloss coat. If the last coat is to be dull, turpentine is used in it as well as the second. Oil causes gloss, turpentine causes a dull or flat effect.

APPENDIX I.
Additional Joints.

Butt Joint.
Toe Nail Joint.
Doweled Butt Joint.

Hopper Joint.
Glued and Blocked Joint.
Draw Bolt Joint.

Plate 1.

End-Lap Joint.
Lapped Dove-tail Joint.
Gained Joint.

Middle-Lap Joint.
Ledge or Rabbet.
Through Mortise & Tenon.

Plate 2.

Stub Mortise & Tenon.
Double Mortise and Tenon.
Wedged Mortise & Tenon.

Pinned Mortise & Tenon.
Slip Joint.
Fox Tail Tenon.

Plate 3.

Dove-tail Mortise & Tenon.
Stretcher Joint.
Ledge and Miter Joint.

Tusk Tenon.
Stretcher Joint.
Spline Miter.

Plate 4.

Dovetail Dado.
Fished Joint—A.
Splice Joint.

Lapped & Strapped Joint.
Fished Joint—B.
Scarf Joint.

Plate 5.

Spliced Joint.
Scarf Joint.
Bevel-Shoulder Joint.

Thrust Joint—A.
Thrust Joint—B.

Plate 6.

Spline Joint.Matched Joint.
Rabbeted & Fillistered Joint.
Beaded Joint.

Plate 7.

APPENDIX II.
Wood Finishing Recipes.

1. Wax.

—Cut up beeswax and add to it about one-third of its volume of turpentine. Heat to the boiling point in a double boiler. Or, melt a quantity of beeswax and to this add an equal quantity of turpentine. Care must be taken that the turpentine shall not catch fire.

2. Water Stains.

—Any coloring matter that is soluble in water will make a stain.

Mahogany: Three quarts of boiling water, one ounce of Bismarck-brown aniline.

Brown: Extract of logwood, the size of a walnut, dissolved by boiling in four ounces of water. Apply hot and repeat until the desired color is obtained.

Black: First stain the wood brown with the logwood solution. Coat this with a stain prepared as follows: Soak a teaspoonful of cast iron filings in four ounces of acetic acid or vinegar. Allow it to stand for a week, stirring it occasionally.

Walnut: Make a strong solution of powdered bichromate of potash and hot water. Over this stain, apply a coat of the logwood stain.

3. Oil Stains.

—Coach colors ground in Japan when thinned with turpentine make good stain. Mix in the proportion of one-half gallon of turpentine to one pound of color and add a little boiled oil. Colors commonly used are drop black, Vandyke brown, medium chrome yellow, burnt and raw umber and burnt and raw sienna.

Green: Drop-black, two parts, medium chrome yellow, one part, a little red to kill the brightness.

Walnut: Asphaltum with a little Venetian red.

Golden oak: Asphaltum and turpentine thinned like water, to be followed with filler darkened with burnt umber and black.

Antique oak: Raw sienna properly thinned, with a little burnt umber and black added.

4. Spirit Stains.

Black: Alcohol and aniline black.

Mahogany: Alcohol and Bismark brown.

Aniline stains cut with alcohol, and mixed with white shellac and banana oil or amyl alcohol in equal parts make good stains for small pieces of work.

APPENDIX III.
Working Drawings.

A working drawing of an object consists of one or more views of that object so drawn that they make known the size, shape, kind of material, etc.

Fig. 1.

A working drawing differs from a perspective. The former represents an object as it really is, the second, represents the object as it appears. [Fig. 1].

Fig. 2.

1. Instruments.

—Special instruments are required for the making of a mechanical drawing. [Fig. 2] shows a drawing-board with paper fastened to it, also a T-square and the two triangles. A compass is needed for drawing circles and arcs of circles.

The T-square is used for drawing horizontal lines. The head must be held firmly against the edge of the board and the lines drawn from left to right. Vertical and oblique lines are drawn from the T-square upward, the triangles being held against the edge of the T-square which, at the same time, is held against the edge of the board.

2. Conventions.

—Since it would be impossible to make full-sized drawings of some objects—a house for instance—it is customary to use a scale and by means of it make a smaller drawing, which shall have all of its parts properly proportioned. For example, if a drawing has printed upon it “¹⁄₂ inch = 1 inch,” it means for every inch of the object the drawing is but one-half an inch. The scale is to be used for measuring only. There is quite a variety of scales. Whatever scale is used, the numbers placed upon the drawing must represent the size of the object and not of the drawing.

Fig. 3.

In [Fig. 3] is shown a mechanical drawing of a common wood spool. It will be seen that there are different kinds of lines. Each has its meaning, as follows:

1. Light line—For penciling and cross-hatching.

2. Full line—For visible outlines of objects and limits of parts.

3. Heavy line—For border lines.

4. Dot line—For invisible outlines of objects and limits of invisible parts. Same width as 2.

5. Dash line—For projection lines. Same width as 1.

6. Long dash line—For dimension lines. Same width as 1.

7. Dot-and-dash line—For center lines and section lines. Same width as 1.

When there is not room for the figures that represent dimensions, the arrow heads may be turned in the direction of the measurement and placed outside. The figure, too, may be placed outside if necessary.

Nothing but the letters, the figures and the barbs—not the shafts—of the arrow are drawn free-hand.

Sometimes, it is desirable to have one dimension shorter than the scale selected would allow; this is done by means of a broken view: [Fig. 4]. The figured dimension prevents confusion.

Fig. 5.

Fig. 4.

Fig. 6.

In [Fig. 5], is shown a sectional drawing. Sectional drawings represent an object as it would appear if cut, with the part nearer the worker removed. Sections are indicated by “cross hatching,” the lines being equally spaced and drawn at an angle of 45 degrees.

Screws and nails are represented as in [Fig. 6].

Fig. 7.

3. Projection and Relation of Views.

—The names and the relative positions of three views are shown in [Fig. 7]. From these it will be seen (1) that the different views are arranged with reference to the front view, so that the part of a side view which is nearest the front view represents a part of the front of the object, (2) that the corresponding horizontal measurements of top and front views are alike, (3) that the corresponding vertical measurements of front and side views are alike, (4) that the corresponding vertical measurements of the top view and horizontal measurements of a side view are alike.

4. Letters and Figures.

—Letters are usually made freehand, light ruled lines at the top and bottom acting as guides. A simple style of letter and figure is shown in [Fig. 8]. They are placed in spaces that the proportion of the parts may the more readily be seen. They may be narrowed or widened by changing the width of the spaces, and shortened or lengthened by changing the height of the spacer.

Fig. 8.

5. Constructions.

—The hexagon, or six-sided figure; the octagon, or eight-sided figure; and the ellipse are so very frequently used in simple woodwork, that their construction is given here.

Fig. 9.

Directions for hexagon, [Fig. 9]: Describe a circle of a size equal to the required distance of hexagon from corner to corner. Draw the diameter A-B. With the point A as a center, using the radius of the circle, cut the circle at 1 and 2. With B as a center, and the same radius, cut the circle at 3 and 4. Connect A-1, A-2, 2-3, etc. Connecting every other point, as A-3, 2-B, etc., makes a six-pointed star.

Fig. 10.

Directions for octagon, [Fig. 10]: Draw a square with a width equal to the desired width of the octagon from side to side. Draw the diagonals. With the points A, B, C, and D as centers and a radius equal to one-half the diagonal, cut the sides of the square at 1, 2, 3, 4, 5, 6, 7, 8. Connect these points as shown.

Fig. 11.

Directions for ellipse, [Fig. 11]: An ellipse is a curve such that the sum of the distances from any point on it to two fixed points called the focii shall always be the same.

An easy way to construct such a curve is to place two thumb tacks at the focii, attach the ends of a string to them. With a pencil moving freely in the string but holding it taut draw the curve. By moving the tacks farther apart or closer together and by lengthening or shortening the string, the size and shape of the curve may be changed as desired.

Fig. 12.

Fig. 13.

6. Order of Procedure.

—Beginners should strive to know and to acquire good practice in drawing. Before beginning see that the pencil is properly sharpened.

(1) Determine the size and spacings of the views so that the parts of the drawings may be properly placed.

(2) With light full lines block out the different views. Blocking-out lines are made of indefinite length and the proper distances marked off on them after they are drawn. Holding the rule or scale upon the drawing vertically, mark off the vertical spaces. Draw light lines thru these points. Upon one of these horizontal lines lay off the horizontal spaces. Draw light vertical lines thru these points. [Fig. 12].

(3) Put on the dimensions.

(4) Put on the lettering.

(5) The drawing is ready for inking. In blocking-out, all lines are made full, light. In inking, the different kinds must be represented properly. [Fig. 13]. If it is not to be inked go over the lines that represent edges with the pencil a second time so that the outlines of the object will “stand out.”