Drab Cretaceous strata

The youngest division of the Mesozoic Era is the Cretaceous Period. Near the beginning of this period, brightly colored rocks continued to be deposited. Then, the Teton region, as well as most of Wyoming, was partly, and at times completely, submerged by shallow muddy seas. As a result, the brightly variegated strata were covered by 10,000 feet of generally drab-colored sand, silt, and clay containing some coal beds, volcanic ash layers, and minor amounts of gravel.

The Cretaceous sea finally retreated eastward from the Teton region about 85 million years ago, following the deposition of the Bacon Ridge Sandstone ([fig. 40]). As it withdrew, extensive coal swamps developed along the sea coast. The record of these swamps is preserved in coal beds 5 to 10 feet thick in the Upper Cretaceous deposits. The coal beds are now visible in abandoned mines along the east margin of the park. Coal is formed from compacted plant debris; about 5 feet of this material is needed to form 1 inch of coal. Thus, lush vegetation must have flourished for long periods of time, probably in a hot wet climate similar to that now prevailing in the Florida Everglades.

Sporadically throughout Cretaceous time fine-grained ash was blown out of volcanoes to the west and northwest and deposited in quiet shallow water. Subsequently the ash was altered to a type of clay called bentonite that is used in the foundry industry and in oil well drilling muds. In Jackson Hole, the elk and deer lick bentonite exposures to get a bitter salt and, where the beds are water-saturated, enjoy “stomping” on them. Bentonite swells when wet and causes many landslides along access roads into Jackson Hole ([fig. 17]).

The Cretaceous rocks in the Teton region are part of an enormous east-thinning wedge that here is nearly 2 miles thick. Most of the debris was derived from slowly rising mountains to the west.

Cretaceous sedimentary rocks are much more than of just scientific interest; they contain mineral deposits important to the economy of Wyoming and of the nation. Wyoming leads the States in production of bentonite, all of it from Cretaceous rocks. These strata have yielded far more oil and gas than any other geologic system in the State and the production is geographically widespread. They also contain enormous coal reserves, some in beds between 50 and 100 feet thick. The energy resources alone of the Cretaceous System in Wyoming make it invaluable to our industrialized society.

Figure 40. The yardstick and the sea. The shaded part of the yardstick shows the 500-million-year interval during which Paleozoic and Mesozoic seas swept intermittently across the future site of the Tetons. When they finally withdrew about 85 million years ago, a little more than 5/8 of an inch of the yardstick remained to be accounted for.

ABSOLUTE TIME (Millions of years ago) INCHES
{submerged} 85-585 ⅝-4⅝
CENOZOIC 0-80 0-½
MESOZOIC 80-180 ½-⅞
PALEOZOIC 180-570 ⅞-4⅞
PRECAMBRIAN 570- 4⅞-

As the end of the Cretaceous Period approached, slightly more than 80 million years ago, the flat monotonous landscape ([fig. 41]) which had prevailed during most of Late Cretaceous time gave little hint that the stage was set for one of the most exciting and important chapters in the geologic history of North America.