A Continuum of Points

It is now in order to introduce a word, which I shall have to confess the great majority of the essayists introduce, somewhat improperly, without explanation. But when I attempt to explain it, I realize quite well why they did this. They had to have it; and they didn’t have space in their three thousand words to talk adequately about it and about anything else besides. The mathematician knows very well indeed what he means by a continuum; but it is far from easy to explain it in ordinary language. I think I may do best by talking first at some length about a straight line, and the points on it.

If the line contains only the points corresponding to the integral distances 1, 2, 3, etc., from the starting point, it is obviously not continuous—there are gaps in it vastly more inclusive than the few (comparatively speaking) points that are present. If we extend the limitations so that the line includes all points corresponding to ordinary proper and improper fractions like ¼ and 17⁄29 and 1633⁄7​—what the mathematician calls the rational numbers—we shall apparently fill in these gaps; and I think the layman’s first impulse would be to say that the line is now continuous. Certainly we cannot stand now at one point on the line and name the “next” point, as we could a moment ago. There is no “next” rational number to 116⁄125​, for instance; 115⁄124 comes before it and 117⁄126 comes after it, but between it and either, or between it and any other rational number we might name, lie many others of the same sort. Yet in spite of the fact that the line containing all these rational points is now “dense” (the technical term for the property I have just indicated), it is still not continuous; for I can easily define numbers that are not contained in it—irrational numbers in infinite variety like

; or, even worse, the number pi = 3.141592 … which defines the ratio of the circumference of a circle to the diameter, and many other numbers of similar sort.

If the line is to be continuous, there may be no holes in it at all; it must have a point corresponding to every number I can possibly name. Similarly for the plane, and for our three-space; if they are to be continuous, the one must contain a point for every possible pair of numbers x and y, and the other for every possible set of three numbers x, y and z, that I can name. There may be no holes in them at all.

A line is a continuum of points. A plane is a continuum of points. A three-space is a continuum of points. These three cases differ only in their dimensionality; it requires but one number to determine a point of the first continuum, two and three respectively in the second and third cases. But the essential feature is not that a continuum shall consist of points, or that we shall be able to visualize a pseudo-real existence for it of just the sort that we can visualize in the case of line, plane and point. The essential thing is merely that it shall be an aggregate of elements numerically determined in such a way as to leave no holes, but to be just as continuous as the real number system itself. Examples, however, aside from the three which I have used, are difficult to construct of such sort that the layman shall grasp them readily; so perhaps, fortified with the background of example already presented, I may venture first upon a general statement.