Euclid’s Geometry

Point, line and plane Euclid attempts to define. Modern objection to these efforts was made clear above. Against Euclid’s specific performance we urge the further specific fault that his “definitions” are really assumptions bestowing certain properties upon points, lines and planes. These assumptions Euclid supplements in his axioms; and in the process of proving propositions he unconsciously supplements them still further. This is to be expected from one whose justification for laying down an axiom was the alleged obvious character of the statement made. If some things are too obvious to require demonstration, others may be admitted as too obvious to demand explicit statement at all.

Thus, if Euclid has two points A and B in a plane, on opposite sides of a line M, he will draw the line AB and without further formality speak of the point C in which it intersects M. That it does so intercept M, rather than in some way dodges it, is really an assumption as to the nature of lines and planes. Or again, Euclid will speak of a point D on the line AB, between or outside the points A and B, without making the formal assumption necessary to insure that the line is “full” of points so that such a point as D must exist. That such assumptions as these are necessary follows from our previous remarks. If we think of our geometry as dealing with “chings,” “changs,” and “chungs,” or with elements I, II and III, it is no longer in the least degree obvious that the simplest property in the world applies to these elements. If we wish any property to prevail we must state it explicitly.

With the postulates embodied in his definitions, those stated in his axioms, and those which he reads into his structure by his methods of proof, Euclid has a categorical set—enough to serve as foundation for a geometry. We may then climb into Euclid’s shoes and take the next step with him. We follow him while he proves a number of things about intersecting lines and about triangles. To be sure, when he proves that two triangles are identically constituted by moving one of them over on top of the other, we may protest on the ground that the admission of motion, especially of motion thus imposed from without, into a geometry of things is not beyond dispute. If Euclid has caught our modern viewpoint, he will rejoin that if we have any doubts as to the admissibility of motion he will lay down a postulate admitting it, and we shall be silenced.

Having exhausted for the present the interest of intersecting lines, our guide now passes to a consideration of lines in the same plane that never meet. He defines such lines as parallel. If we object that he should show the existence of a derived concept like this before laying down a definition that calls for it to exist, he can show that two lines drawn perpendicular to the same line never meet. He will execute this proof by a special sort of superposition, which requires that the plane be folded over on itself, through the third dimension of surrounding space, rather than merely slid along upon itself.

We remain quiet while Euclid demonstrates that if two lines are cut by any transversal in such a way as to make corresponding angles at the two intersections equal, the lines are parallel. It is then in order to investigate the converse: if the lines are parallel to begin with, are the angles equal?