The General Principle of Relativity

The region therefore requires a space-time geometry of its own, and be it noted that with this special geometry is associated a definite gravitational field, and if the gravitational field ceases to exist, for example if the disk were brought to rest, all the irregularities of measurement disappear, and the geometry of the region becomes Euclidean. This particular case illustrates the following propositions which form the basis of this part of the theory of relativity:

The connection between a gravitational field and its appropriate geometry suggested by a case in which acceleration was their common cause is thus assumed to exist from whatever cause the gravitational field arises. This of course is pure hypothesis, to be tested by experimental trial of the results derived therefrom.

Gravitational fields arise in the presence of matter. Matter is therefore presumed to be accompanied by a special geometry, as though it imparted some peculiar kink or twist to space which renders the methods of Euclid inapplicable, or rather we should say that the geometry of Euclid is the particular form which the more general geometry assumes when matter is either absent or so remote as to have no influence. The dropping of the notion of acceleration is after all not a very violent change in point of view, since under any circumstances the observer is supposed to be unaware of the acceleration. All that he is aware of is that a gravitational field and his geometry coexist.

The prospect of constructing a system of geometry which does not depend upon measurement may not at first sight seem hopeful. Nevertheless this has been done. The system consists in defining points not by their distances from lines or planes (for this would involve measurement) but by assigning to them arbitrary numbers which serve as labels bearing no relation to measured distances, very much as a house is located in a town by its number and street. If this labeling be done systematically, regard being had to the condition that the label-numbers of points which are close together should differ from one another by infinitesimal amounts only, it has been found that a system of geometry can actually be worked out. Perhaps this will appear less artificial when the fact is called to mind that even when standards of length are available no more can be done to render lengths of objects amenable to calculation than to assign numbers to them, and this is precisely what is done in the present case. This system of labeling goes by the name of “Gaussian coordinates” after the mathematician Gauss who proposed it.

It is in terms of Gaussian coordinates that physical laws must be formulated if they are to have their widest generality, and the general principle of relativity is that all Gaussian systems are equivalent for the statement of general physical laws. For this purpose the labeling process is applied not to ordinary space but to the four dimensional space-time continuum. The concept is somewhat difficult and it may easily be aggravated into impossibility by anyone who thinks that he is expected to visualize it. Fortunately this is not necessary; it is merely one of these irrelevancies to which those who are unaccustomed to think in symbols are liable.

It will now be seen that among physical laws the law of gravitation stands pre-eminent, for it is gravitating matter which determines the geometry, and the geometry determines the form of every other law. The connection between the geometry and gravitation is the law of gravitation. This law has been worked out, with the result that Newton’s law of the inverse square is found to be approximate only, but so closely approximate as to account for nearly all the motions of the heavenly bodies within the limits of observation. It has already been seen that departure from the Euclidean system is intensified by rapidity of motion, and the movements of these bodies are usually too slow for this departure to be manifest. In the case of the planet Mercury the motion is sufficiently rapid, and an irregularity in its motion which long puzzled astronomers has been explained by the more general law.

Another deduction is that light is subject to gravitation. This has given rise to two predictions, one of which has been verified. The verification of the other is as yet uncertain, though the extreme difficulty of the necessary observations may account for this.

Since light is subject to gravitation it follows that the constancy of the velocity of light assumed in the earlier part of this paper does not obtain in a gravitational field. There is really no inconsistency. The velocity of light is constant in the absence of gravitation, a condition which unaccelerated motion implies. The special principle of relativity is therefore a limiting case of the general principle.


[1] It will be noted that Mr. Bolton pronounces the geometry of space to be Euclidean in the absence of gravitational fields, not that of space-time. This is in accord with what was pointed out on page 161.—Editor. [↑]

VIII

THE NEW CONCEPTS OF TIME AND SPACE

The Essay in Behalf of Which the Greatest Number of Dissenting Opinions Have Been Recorded

BY MONTGOMERY FRANCIS NEW YORK

We have all had experiences, on trains and boats, illustrating our inability to tell, without looking off to some external body, whether we are at rest or moving uniformly; and when we do so look, to tell, without reference to the ground or some other point external to both systems, whether ours or the other be the seat of motion. Uniform motion must be relative, because we find nowhere in the universe a body in the unique state of absolute rest from which alone absolute motion might be measured.

True, the wave theory of light with its homogeneous space-filling ether seemed to provide a reference standard for the concept of absolute motion, and for its measurement by experiment with light rays. But when Michelson and Morley looked for this absolute motion they found no trace of it. To the physicist, observational student of the external world, nothing exists save observationally; what he can never observe is not there. So: I. By no means whatever may we regard uniform straight-line motion as other than relative.

As a further direct consequence of the Michelson-Morley experiment we have: II. Light in a vacuum presents the same velocity,

miles per second, to all observers whatever their velocity of relative motion. In addition to being experimentally established, this is necessary to support I, for if light will distinguish between our velocities, its medium is necessarily a universal standard for absolute motion. But it is contrary to common sense to suppose that if I pass you at 100 miles per hour, the same light impulse can pass us both at the same speed, C. We feel, instinctively, that space and time are not so constituted as to make this possible. But the fact has been repeatedly demonstrated. And when common sense and fundamental concepts clash with facts, it is not the facts that must yield. We have survived such crises, notably one where we had to change the fundamental concept of up-and-down; if another one is here, says Einstein, let us meet it.

This the Special Theory of Relativity does. It accepts Postulates I and II above; their consequences it deduces and interprets. For extensive demonstration of these I lack space, and this has been satisfactorily done by others so it is not my chief duty; but clearly they will be startling. For the very ray of light which refuses to recognize our relative motion is the medium through which I must observe your system and you mine.

It turns out that I get different values for lengths and time intervals in your system than you get, and vice versa. And we are both right! For me to accept your “correction” were for me to admit that you are at absolute rest and I in absolute motion, that your measure of light velocity is right and mine wrong: admissions barred by the postulates. We have nothing to correct; we can only recognize the reason for the discrepancy; and knowing our relative velocity, each can calculate from his own results what the other’s will be. We find, of course, that at ordinary velocities the discrepancy is many times too small for detection; but at relative velocities at all comparable with that of light it rises above the observational horizon.

To inquire the “true” length is meaningless. Chicago is east of Denver, west of Pittsburgh, south of Milwaukee; we do not consider this contradictory, or demand the “true” direction of Chicago. Einstein finds that the concept of length, between points in space or events in time, does not as we had supposed represent an intrinsic property of the points or the events. Like direction, it is merely a relation between these and the observer—a relation whose value changes with the observer’s velocity relative to the object. If our ideas of the part played in the world by time and space do not permit us to believe this, we must alter these ideas. Let us see how we may do this.