The Wings of Bats.
The Bones of the Wing of the Bat—the spiral configuration of their articular surfaces.—The bones of the arm and hand are especially deserving of attention. The humerus (fig. [17], r, p. 36) is short and powerful, and twisted upon itself to the extent of something less than a quarter of a turn. As a consequence, the long axis of the shoulder-joint is nearly at right angles to that of the elbow-joint. Similar remarks may be made regarding the radius (the principal bone of the forearm) (d), and the second and third metacarpal bones with their phalanges (e f), all of which are greatly elongated, and give strength and rigidity to the anterior or thick margin of the wing. The articular surfaces of the bones alluded to, as well as of the other bones of the hand, are spirally disposed with reference to each other, the long axes of the joints intersecting at nearly right angles. The object of this arrangement is particularly evident when the wing of the living bat, or of one recently dead, is extended and flexed as in flight.
In the flexed state the wing is greatly reduced in size, its under surface being nearly parallel with the plane of progression. When the wing is fully extended its under surface makes a certain angle with the horizon, the wing being then in a position to give the down stroke, which is delivered downwards and forwards, as in the insect. When extension takes place the elbow-joint is depressed and carried forwards, the wrist elevated and carried backwards, the metacarpo-phalangeal joints lowered and inclined forwards, and the distal phalangeal joints slightly raised and carried backwards. The movement of the bat’s wing in extension is consequently a spiral one, the spiral running alternately from below upwards and forwards, and from above downwards and backwards (compare with fig. [79], p. 147). As the bones of the arm, forearm, and hand rotate on their axes during the extensile act, it follows that the posterior or thin margin of the wing is rotated in a downward direction (the anterior or thick one being rotated in an opposite direction) until the wing makes an angle of something like 30° with the horizon, which, as I have already endeavoured to show, is the greatest angle made by the wing in flight. The action of the bat’s wing at the shoulder is particularly free, partly because the shoulder-joint is universal in its nature, and partly because the scapula participates in the movements of this region. The freedom of action referred to enables the bat not only to rotate and twist its wing as a whole, with a view to diminishing and increasing the angle which its under surface makes with the horizon, but to elevate and depress the wing, and move it in a forward and backward direction. The rotatory or twisting movement of the wing is an essential feature in flight, as it enables the bat (and this holds true also of the insect and bird) to balance itself with the utmost exactitude, and to change its position and centre of gravity with marvellous dexterity. The movements of the shoulder-joint are restrained within certain limits by a system of check-ligaments, and by the coracoid and acromian processes of the scapula. The wing is recovered or flexed by the action of elastic ligaments which extend between the shoulder, elbow, and wrist. Certain elastic and fibrous structures situated between the fingers and in the substance of the wing generally take part in flexion. The bat flies with great ease and for lengthened periods. Its flight is remarkable for its softness, in which respect it surpasses the owl and the other nocturnal birds. The action of the wing of the bat, and the movements of its component bones, are essentially the same as in the bird.