CHAPTER XXX.
SCIENCE IN THE CULTIVATION OF CORN.
The object of the present chapter will be to point out the principles concerned in the more immediate acts connected with the cultivation of corn. In so doing in the present case, as in the discussion of the preceding subjects, it may not be out of place here to state that it has not, nor will it be, our object to enter into the every-day practical details of crop-management, but to dwell more particularly upon those points in cultivation which may be said to belong more especially to the science of the subject.
This chapter, then, will be more especially devoted to the consideration of the three following subjects:—
1st. On the uses of special manures for corn crops.
2nd. On the quality and quantity of corn to be used for seed.
3rd. On the period for harvesting corn.
1st. On the Uses of Manures.—It is pretty generally agreed that special manuring for corn, when grown in the ordinary shifting crop system, is positively injurious, and more truly so, if farmyard dung be employed. Still, on our own farm we were over-persuaded to give a dressing of rotted dung to some wheat. As the previous crop, turnips, had all but failed, we yielded on being told that it was a common Dorset custom, but, fortunately, only to the extent of a few acres down the middle of the field, on which part, at harvest, the main of the crop had fallen to the ground, with the affection known as knee-bent. There was plenty of straw, not at all good; but the yield of plump grains can hardly be half of those of the other parts of the field.
As a general rule, we have never observed special manuring to be useful except as top-dressings in early spring, at which time soot, or, better still, a mixture of soot and guano, may be sown on most wheat crops to advantage, and more especially where the young plant has been injured by the slug or the wire-worm, as in these cases the lower joint and the winter root are destroyed. If, then, the young plant be at this time stimulated with the mixture as advised, and the crop be afterwards rolled, we supply nutriment just in the form that it can be readily assimilated, the injured plants send out new roots from the second joint, and begin a fresh life, whilst the uninjured ones push out new buds—stolons—and all grow the better, because the roller has aided in firmly fixing the plants in the ground.
There have been those who would tell us that manure can be best used to wheat by subjecting the seed to various steeps; but we need hardly stop to question the folly of the assertions which from time to time re-appear, both at home and abroad, upon this point.
Thus far the subject of manures has been treated as for wheat as a shifting crop; but this crop has been grown year after year on the same soil, and, in some cases, without an apparent diminution in quantity or quality. One instance that came under our own observation was in Gloucestershire, where a cottager had grown wheat on the same plot of ground for thirteen years, and, for aught I know, it may still be continued. Hence the subsoil was Lias shale; but it was well drained and cultivated as a garden, the manure employed being the contents of the garden-house.
In cases of this kind, an annual application of manure is absolutely necessary; and we are happy to find that different manures and their effects have been experimented upon and duly noted, for the same plots, during a period of no less than twenty years, and that by such careful and reliable inquirers as J. B. Lawes, Esq., F.R.S., and Dr. Gilbert, F.R.S.; full details of the results of whose labours upon this subject will be found in Vol. XXV. of the Journal of the Royal Agricultural Society of England, from which we have extracted some of the following general conclusions as to average yield and weight of corn for the lengthened periods quoted:—
A glance at this table shows us the wonderful results of continuous manuring for the soil operated upon; we might, however, expect that, though the general conclusions would probably not greatly vary, yet that there would not be absolute uniformity in these respects in different soils and districts.
2. On the Quality and Quantity of Seed-corn.—It seems to be generally concluded that a thin seed, from poorer soil, should be preferred for land of a better quality; but our own experience would lead us to look for seed from as great a change of soil as possible, and to procure therefrom not a poor, but as good a sample as we could. We should, however, look for our seed, not from a richer soil or a warmer climate, but the reverse. Oats, for example, as previously shown, degenerate, even to wild ones, if the poor seed be brought from a poor, cold soil, to be cultivated in land still poorer. We, however, on our farm, sowed oats during the past season weighing 48 lb. per bushel on a sandy soil; and, although our return was not so large in bushels as though we had sown black oats, yet their weight was but just under that of the seed. Now, these oats were from Canada, and, no doubt, the warm climate of the west of England suited them as to change.
As regards barley, we prefer a good sample for seed, if it be of home-growth; at the same time, very thin samples from Russia, or the States, often do well. Last season, we sowed some American barley of so poor a quality, that it was impossible to tell its name, but which gave for 50 acres an average yield of 40 bushels per acre, so even and plump, that only 28 sacks of “tailing” were separated, and the bulk—good Chevallier barley—was equal to any in the market.
In cultivating wheat, climate must ever be considered, as only in warm situations can the finest samples of white wheats be grown. Upland cold positions are suitable for red wheats, and so are undrained lowlands; still, good farming will render it possible to grow white wheats where, before drainage and other ameliorating processes, such was impossible.
As regards the quantity to be sown per acre, it will be seen that the margin is sufficiently wide, if we say that it lies between half a peck and half a quarter. In garden cultivation, with deep digging, and in the absence of weeds, birds, or insects, where you can choose your time for every operation, dibble in a seed in a place, the minimum quantity may suffice, as good crops have been got from a very small quantity of seed; but garden experimenters rather too positively lay down the law, when they tell the farmer that this thin seeding will do equally well on broad acres, where every operation is circumscribed by circumstances. Where there is so much to do, you cannot always get everything done at the right season, even if the soil were favourable for so doing; and the period at which you get your land ready for the seed, and the time of sowing it, makes a wide difference. But there is another point of even—if possible—greater importance; namely, the quality of the seed. Now, on our farm we always ascertain the germinating power of every sample of seed before sowing; and from this, as well as from the results of numerous experiments on this subject, we have arrived at the conclusion, that there are immense differences in this respect, which cannot possibly be made out at sight, but can only be ascertained experimentally. To make this matter clear, we append a [table (2)] of the results of experiments on this point upon no less than forty-two samples, which were tried in 1863.
Now, these experiments showed a want of germinating power, in some of the samples, of more than 50 per cent., and in the 42 samples an average of 24.5 per cent.; from which it will be seen that sometimes the thick sower is not the thick seeder, and his failure of a crop is not always due to slugs and wireworms.
These experiments were published in the Agricultural Gazette, and they evoked some remarks from a learned divine, so unfair and uncandid, as only to be excused by the nature of his professional education and modes of thought. Now, when this gentleman affected to believe that these things could not be so, and that with him every seed germinated, we could only conclude that the days of miracles had not quite ceased; but as, in later numbers of the Gazette, his opinions have been somewhat modified in this respect, we yet think him capable of riding a hobby too hard, though not until the pace has thrown him down and broken his knees will he own it.
Seeing, then, that there were such variations in the germinating powers of wheat, we determined to try a series of experiments with barley; and from the results ([table 3]), it will be seen that, though the margin is not so wide, yet great differences occur; still, with regard to this grain, we constantly find that in samples too thin and poor for even the farmyard poultry to pick up, yet that much of this is capable of germination.
Still, theory and practice confirm the assumption that in England very much seed is wasted by being too thickly sown; and, if a farmer can get his land well prepared and in good time, we conclude, as a matter of practical experience, that just half the seed usually sown will be better than the double quantity; but we should, as a rule, make a difference of at least half a peck for each week that we were beyond the best time of wheat-sowing in any particular district. On our own farm we sowed four and six pecks of wheat where double the quantity had been the rule before Christmas, and from six to eight pecks afterwards; six pecks of barley and oats, where a sack had previously been the rule. With the wheat and barley we were right, except in the very late-sown of the latter, when time was only sufficient to grow a single head, and not to allow of stooling. Here a sack would have given a better result. The same with our oats: thin seeding caused them to run to straw; they were on a poor sand, taller than the men who cut them; but had we doubled our seed, we conclude we should have had shorter straw and more corn.
If, then, these things be so, the judgment of the farmer will be best shown in rightly weighing all the circumstances of his case; and in the matter of seeding, as with physic, he will find that homœopathy alone is only quackery.