ACUTE GASTRIC INDIGESTION IN SOLIPEDS. TYMPANITIC STOMACH.

Definition. Causes: overloading, lessened secretion, mastication or insalivation, frosted food, fermenting food, appetizing food, cooked food, debility, disease, starvation, overwork, fatigue, violent exertion after a meal, anæmia, parasitism, injury to vagi or their centres, iced water, wading or swimming in iced water, food with excess of proteids, drink after grain, alkaline waters. Symptoms: in slight cases, in severe, violent colic, weariness, pinched countenance, acid mouth, bloating of abdomen, anorexia, dysphagia, no rumbling of bowels, no fæces, tries to eructate, dullness, stupor, coma, vomiting. Rupture of stomach. Recovery. Lesions: overdistended stomach, ruptured peritoneal hemorrhage, ruptured diaphragm, small bloodless liver and spleen. Diagnosis. Treatment: Aromatics, stimulants, antiferments, laxatives, stimulants of peristalsis, exercise, friction, electricity, chloral hydrate, puncture of stomach and colon, probang, stomach pump, dieting, tonics.

Definition. Suspension of the normal functions—motor and secretory—of the stomach and the supervention of fermentation in its contents.

Causes. The small size of the stomach in the soliped (26 quarts) and the rapidity with which the alimentary matters normally traverse it, render this organ much less subject to disorder than the complex stomachs of ruminants. In his native state the horse eats at frequent intervals and digestion is constantly going on, so that the viscus is never distended to paresis, nor the secretions, nor vermicular movements retarded by excess of ingesta. But the limited capacity of the viscus becomes in its turn a cause of indigestion whenever the animal is tempted by hunger to hurriedly swallow too great a quantity of food; when the decreased secretions fail to act with sufficient promptness on the contents and leave them to undergo fermentation; when from imperfect mastication and insalivation the food is left in large masses comparatively impermeable to the gastric juice, and accumulates in firmly packed masses; when frosted food (roots, potatoes, apples, turnip tops, etc.), taken in quantity temporarily chills and paralyzes the stomach, and starts a speedy and gaseous fermentation; when the food swallowed is already in process of fermentation (musty or covered by cryptogams) and full of toxic fermentation products which tend to paralyze the stomach. Old animals are especially liable because not only are the teeth and salivary glands ineffective, but the functions of the stomach are habitually below par.

The paralysis of the stomach by overloading is seen especially in animals that have been fasting for too great a length of time, and are then furnished with a food, rich, appetizing and abundant. Few horses are proof against the temptation to overeating when they get to the cornbin, the ripening grain or maize, or the field of rich red clover. Some are natural gluttons and on gaining access to grain or green food, will suddenly overload the stomach beyond its power of active contraction on its contents, and without sufficient mastication or insalivation. The food is literally bolted whole, with no admixture of saliva, and no facility for admixture of gastric juice, even if the overloading had left the stomach capable of secreting the latter. Cooked food is especially dangerous by reason of its bulk, the facility with which it is swallowed, and the rapid and excessive dilatation of the stomach caused by it, rather than from lack of trituration and saliva. If fed judiciously, cooked food is more fattening for both horse and ox, any lack of ptyaline being counterbalanced by the presence of amylopsin in the intestines.

Such paresis and indigestion, however, are more common as the result of a general debility or a special gastric atony caused by disease, starvation, overwork or fatigue. In all acute febrile and inflammatory diseases the gastric functions are weak or suspended, and if the animal is tempted to eat, the ingesta is unaffected by the digestive fluids and forms a suitable fluid for injurious fermentations. In convalescence especially, when the starved system once more craves support, tempting food is liable to be taken to excess, unless the attendant is especially judicious and careful in grading the feed as the stomach can dispose of it. The horse that has been starved must be fed little and often, of easily digested material until the gastric functions are restored. Long continued severe work, exhausts the motor and secretory power of the stomach, as it debilitates the system at large, and the animal may be at first unable to digest a feed of grain even if he will take it. In such a case as in that of the very hungry glutton a drink of gruel or a handful of hay which he must masticate will often obviate the danger.

Violent exertion immediately after a meal arrests digestion, and tends to a fatal indigestion. An animal fed grain and immediately put to severe work, or subjected to confinement for a painful operation, may die in two hours from tympanitic indigestion.

This weakness of the digestion may come from profuse bleeding, from the anæmia caused by parasites (sclerostomata), or from injuries to the pneumogastric nerves or their centres. It can be produced experimentally by cutting both vagi; the gastric contents then remain packed and solid, without peptic juices and without digestion.

Iced water, like frozen food, may temporarily arrest the gastric functions and entail fermentation. It acts most dangerously on the overheated and exhausted horse, and though the indigestion may not prove fatal, it may induce a sympathetic skin eruption or laminitis. The mere exposure to external cold is less to be dreaded as there is a compensating stimulus which drives the blood to internal organs, the stomach included. Standing in cold water or wading or swimming a cold river, is commonly less injurious than a full drink of iced water, when heated and fatigued.

Certain kinds of food are far more dangerous than others, and especially such as should be digested in the stomach. Thus the different grains—barley, rye, buckwheat, wheat, oats, Indian corn, and even bran, have been especially objected to. The amount of proteids in oats, for example, is 11.9 per cent., while those of hay are but 7 per cent. The same bulk of oats, therefore, demands nearly double the work of the stomach to reduce its nitrogenous constituents to peptones than does hay. But when fully insalivated the difference is even greater, for oats take but the equivalent of their own weight of saliva, whereas hay takes four times its own weight. There is 1 part of proteids in 16.7 parts of insalivated oats, and but 1 in 71.4 of insalivated hay. If the oats are bolted without mastication, which can never be the case with hay, the discrepancy becomes greater still. Grain is best fed often, in moderate amount, and without further loading of the stomach immediately with either solids or fluids. Above all never feed grain to a thirsty horse and then lead him direct to the watering trough. Even should he fail to have the stomach paralyzed by the cold water, and indigestion developed, yet much of the proteids will be washed out into the small intestine to threaten indigestion there.

Selenitic waters may induce indigestion by neutralizing the hydrochloric acid of the stomach and interrupting digestion.

Finally all forms of gastritis—catarrhal, toxic, and phlegmonous—induce atony, fermentation and indigestion.

Symptoms. There may be simply tardy digestion or grave disorder with impaction or tympany.

In the former case there is impairment or perversion of appetite, refusal of food, irregular feeding, licking earth or lime, or eating filth, even fæces, with some dullness, apathy, or signs of pain such as pawing with the fore feet, or looking round at the flanks. There is rumbling of the bowels, followed in favorable cases by the passage of flatus, of softened fæces containing imperfectly digested food, and distinct diarrhœa which proves curative.

The more violent attacks set in suddenly, usually within one or two hours after feeding. There are usually colicy pains, pawing, looking back at the flank, kicking of the abdomen with the hind feet, lying down, rolling, rising again quickly, yawning, anxious pinching of the countenance, rigid loins insensible to pinching, and heat and dryness with an acid odor in the mouth. There is soon observed some swelling and tension of the belly with tympanitic resonance on percussion in the left hypochondrium. There is no elevation of temperature as in gastritis, and no complete intermissions of pain as in spasmodic colic, but pain is continuous, though worse at one time than another. There is an utter indisposition to eat or drink and if liquids are given by force there is manifest aggravation of the sufferings. As a rule there is no rumbling of the bowels, and though the animal may strain violently, little or nothing is passed, except at the first a few moulded balls of dung. The bowels like the stomach are paralyzed. In some cases there are attempts at regurgitation, the fore feet are placed apart, the neck arched, the lower cervical muscles are contracted and the nose drawn in toward the breast. In some instances relief is obtained by belching gas or by actual vomiting of solid matters. Vomiting in the horse is always ground for suspicion, since it usually occurs when the muscular coat of the stomach is ruptured. An important hindrance to vomiting lies in the loose folds of the mucosa covering the cardia, in the flaccid condition, and as these folds may be entirely effaced in hernia of the mucosa through the muscular coat as well as in the overdistended condition, vomiting may be either a fatal or a favorable indication. If vomiting takes place, without attendant prostration and sinking, and if on the contrary there is manifest improvement after it, it may be looked on as a beneficent outcome.

If no such relief is obtained the patient becomes increasingly dull and stupid; the breathing is accelerated, short, moaning or wheezing; the nostrils dilated; the nasal mucosa dark red; the superficial veins, especially those of the face, are distended and prominent.

The nervous symptoms may vary. Usually the dullness increases to stupor, the animal rests his head on the manger or against the wall, or if at liberty he may move forward or around blindly until some obstacle is met and he stumbles over it or pushes against it. In some instances there is champing of the jaws, or irregular motions of the limbs, but more commonly the dullness goes on to stupor and coma, the animal falls helpless and dies in a state of profound insensibility.

If the stomach should become ruptured there is often vomiting, the ingesta escaping by the nose, without any relief of the general symptoms, but with an increasingly haggard expression of countenance, sunken eye, and accelerated, weak, and finally imperceptible pulse. Cold sweats, which may have been already present, become more marked and the prostration becomes more extreme and the abdominal tenderness more marked. There are muscular tremblings of the shoulders and thighs, dilatation of the pupils, rapid breathing and stupor which presages death.

Recovery may be hoped for if rumbling in the bowels commences anew, if defecations continue and become soft and liquid, if urine is passed abundantly and if the general symptoms are improved. Complete relief may be had in five or six hours, and even in protracted cases in two days.

Lesions. The body is swollen, tense and resonant; the rectum usually projects somewhat and is dark red; the intestines, small and large, are tympanitic; the stomach is double or triple its usual size, tense and resistant, and with its contents may weigh as much as 40 pounds. When cut open its contents are seen to be disposed in the order in which they were eaten, in stratified layers, the motions of the stomach have not operated to mix them. There is no sign of digestion, unless it be in a thin surface layer or film which may be white, pulpy and chymified. The cuticular mucosa is usually unchanged further than its attenuation by stretching, the alveolated mucosa also attenuated is congested, opaque or slightly inflamed. The great curvature may be the seat of a rupture the edges of which are slightly swollen, congested and covered with small blood clots. The escaping ingesta usually remains enclosed in the omentum, which thus looks like a larger stomach with extremely thin gauze-like walls. If this is ruptured then the food floats in masses among the convolutions of the intestines. The peritoneum is red, hemorrhagic and covered with more or less exudation.

Another occasional lesion is rupture of the diaphragm. The liver and spleen are usually small and comparatively bloodless, owing to the compression.

Diagnosis. This is largely based on the speedy supervention of the attack on a feed, the animal having been apparently well before, on the onset by slight colics, rapidly passing into great and continuous suffering and stupor, with tympanitic tension of the abdomen, and suppression of the intestinal movements, in the absence of any distinct or marked hyperthermia. The rapid progress to death or recovery is equally characteristic.

Treatment. In mild cases the prompt use of aromatics will sometimes succeed; tincture of pimento, anise or coriander 2 to 3 ounces, oil of peppermint, 20 to 30 drops. Stimulants, aqua ammonia, 1 to 2 drachms, largely diluted, ether 1 ounce, brandy or whisky 1 pint, will sometimes succeed. A good combination is dilute hydrochloric acid, 1 drachm, oil of turpentine 1 ounce, olive oil ½ pint.

Still more effective in the rousing of the torpid vermicular movements are eserine sulphate 1.5 grain or pilocarpin 2 grains, or barium chloride 7 grains subcutem.

These largely replace the old plan of giving a dose of aloes in bolus, yet in case of need aloes may still be given in ounce doses in cold water injections. The cold serves to rouse the vermicular movements of the bowels and sympathetically of the stomach.

Walking exercise, friction over the abdomen, and even electric currents through the epigastrium and left hypochondrium may be helpful.

In very urgent cases, 1 ounce to 2 ounces chloral hydrate is often effective. It acts as a powerful antiferment, checking further extrication of gas, and counteracts spasms of the bowels, so that gas passes more freely per anum, vermicular movements are resumed and recovery may be hoped for.

Puncture of the stomach through the external abdominal wall can only be effected by transfixing the transverse colon above which it lies and few have the hardihood to undertake this. It may, however, be punctured with comparative safety through the fourteenth to the seventeenth intercostal space in its upper half (Scammel). The overdistended stomach pressing forward on the left half of the diaphragm, applies that against the inner surface of the ribs, the lung being driven forward out of the way, and the liver and colon are also displaced, so that the trochar transfixes the skin, intercostal muscles, costal and phrenic pleura, diaphragm, peritoneum and stomach. The marked drumlike resonance on percussion indicates the best point for the puncture, and the trochar should be directed inward and slightly backward and pushed until solid resistance at its point ceases. As the intestines are usually tympanitic as well it may be requisite to puncture also the cæcum and colon, to restore the peristalsis of the alimentary tract generally. Antiseptics such as sulphurous acid, the sulphites, or hyposulphites, calcium chloride, bleaching powder, potassium permanganate or chloral hydrate, may be introduced through the cannula or by the mouth.

As far as the stomach is concerned, an effective relief can be had through the probang or stomach pump. A small one-half inch hollow probang may be safely passed through the nose and gullet into the stomach, and any gas or liquid allowed to escape. With proper attachments this may be fixed to a stomach pump and the viscus exhausted of all available liquid, after which an equal amount is pumped in and again withdrawn, until the contents are reduced to a normal amount. The water pumped in may be rendered antiseptic by sodium chloride, sodium bisulphite, or other antiferment, so that further extrication of gas will be prevented. If it is necessary to use the ordinary probang or stomach tube introduced through the mouth, great care must be taken in introducing it to see that the soft palate does not deflect it downward into the larynx. Its presence in the gullet above and beyond the larynx can be felt by manipulation from without, and until this is ascertained it should on no account be pushed onward.

The importance of a measure of mechanical relief such as this, is the greater that the stomach of the soliped is non-absorbing, and relief from undue pressure of contents can only be had by their passage upward or downward. Then again, the horse cannot vomit like the carnivora and omnivora, nor regurgitate like ruminants, and if left to himself with engorged stomach, his case is hopeless indeed.

The contingent weakness in cases of recovery may demand careful feeding and a course of bitter tonics.