CONTENTS.
| PAGE | |
| Chapter I.—General History | [1] |
| Chapter II.—Preparation of the Design and setting out the full-sized Draught | [22] |
| Chapter III.—Various Materials used in Coach-building | [29] |
| Chapter IV.—Points to be considered before commencing the Construction of a Carriage.—Component Parts of the Body.—Smith’s Work.—Glue | [35] |
| Chapter V.—Parts composing the Under-carriage.—Framing them together.—Wrought-iron Perches.—Brakes | [48] |
| Chapter VI.—Wheels | [54] |
| Chapter VII.—Axles | [70] |
| Chapter VIII.—Springs | [82] |
| Chapter IX.—Wheel-Plates and Fore-carriages | [90] |
| Chapter X.—Iron and Metal-work generally.—Lamps.—Principles of Combustion | [96] |
| Chapter XI.—Painting | [102] |
| Chapter XII.—Ornamental Painting | [123] |
| Chapter XIII.—Lining and Trimming | [132] |
| Chapter XIV.—General Remarks on the Coach-building Trade | [142] |
| Chapter XV.—Invention | [168] |
| Chapter XVI.—Remarks on keeping Carriages | [178] |
A PRACTICAL TREATISE
ON
COACH-BUILDING.
CHAPTER I.
GENERAL HISTORY.
The origin of the word coach has not yet been accurately determined. Menage says it is taken from the Latin vehiculum, which most people will take the liberty of doubting; Wachten, from the German kutten, to cover; Lye, from the Belgic koetsen, to lie along, or, as it really means, a couch or chair; it has also been tried to prove that the word is of Hungarian origin, and that it took its name from Kotsee, the old name of the province of Wiesellung, where various kinds of carriages were made; and in Beckmann’s “History of Inventions” it is mentioned that “when the Archbishop received certain intelligence that the Turks had entered Hungary, not contented with informing the king by letter, he speedily got into one of those light carriages of the place they call kotcze, and hastened to his majesty.” This, in addition to the fact that some years previously the King of Hungary presented to the Queen of Bohemia a vehicle that excited great wonder and admiration, by reason of its trembling (branlant), showing clearly that it must have been suspended, is strongly in favour of the Hungarian coachmakers; but we must leave it to the philologists to determine the exact truth, for what with the caroche of France, the caroce of Italy, the carri-coche of Spain, and our own coach, the head gets somewhat bewildered, and is fain to take refuge in the simple carruca of ancient Rome, from which these appellations most probably had their rise. In any case the honour must be a divided one, as the caretta, chare, car, charat, &c., must have been the earliest forms of the derivation, as such were the names given to the first vehicles; later, we have the Hungarian kotcze, the German kutsche, &c., and adding both form and name to what had gone before, produced a mixed vehicle with a mixed appellation. Dr. Johnson defines coach as a “little carriage.” The large carriage that he had in his mind’s eye at the time must have been a marvellous vehicle.
The progress of the art of coach-making, like the progress of most inventions and discoveries, has been rather slow, we may say remarkably slow; sometimes it made a sudden start, but a reaction in the other direction generally settled it before much advance had been made; but seeing that the early portions of the Old Testament contain references to wheel carriages, it does seem rather strange that perfection should take so long to arrive at. This may be partly accounted for by the fact that the nations of the earth were always at war with one another, and consequently had no time to foster inventive power. And this has unfortunately been the case until comparatively recent times.
The first land carriages were doubtless very primitive contrivances. Though the “chariot” and the “waggon” are mentioned in Genesis, no description is given of their construction. Joseph rode in the second chariot of Pharaoh as a mark of great honour and dignity. “Waggons” were dispatched from the court of Egypt to convey thither the wives and little ones of the family of Jacob. From this, as well as the fact of the brethren of Joseph bearing their corn away on asses, we may infer that wheel carriages, even of the most simple construction, were not in general use at this time. It is very probable that the common vehicle of the period was an embryo sledge, drawn by man or beast along the ground.
The Bible and the hieroglyphics on the various ruins of ancient Egypt furnish us with the earliest authentic records. In the case of Egypt this is particularly valuable to us, because of the great degree of culture arrived at in the civilised arts. In fact it is the chief country of which we have any record of the progress of these arts, and though not actually established, it is extremely probable that to the Egyptians we owe the invention, or at least the introduction of the wheel. These people were early engaged in the erection of large buildings and monuments, of which the pyramids and sphinxes are such striking examples; and in order to convey the enormous blocks of stone and granite to their ultimate destination, the roller would be the first thing to suggest itself as a means of facilitating transit. The next step would be the formation of a truck, to which these rollers could be attached, and on which could be placed the materials to be moved. Progression with a contrivance of this kind would necessarily be rather slow, but it would soon become apparent that if a larger roller were used the motion could be accelerated. The next improvement would be an endeavour to lighten the rollers by sawing them into thick slices, and connecting them by a horizontal roller of smaller dimensions, giving a rude representation of a wheel and axle. The agricultural carts used by the peasantry of Chili, in South America, were made in this fashion until very recently. The further lightening of these cars would follow almost as a matter of course, by cutting the slices of the trunk to form the wheel, thinner, and further by cutting away portions of this slice, forming spokes. The wheel having arrived at this stage of perfection, the axle would call for a little attention. Up till the present, they would be fixed firmly to the wheels and revolve with them. This arrangement would cause great inconvenience in turning, for one wheel would revolve more rapidly than the other, by reason of the circle described by one wheel in turning round being greater than that of the other, and the vehicle would be liable to overturn. The next step was to arrange that the wheels could revolve independently of the axle. This being done, we have the wheel, in its principles, the same as at present.
Fig. 1.—Egyptian Chariot.Fig. 2.—Egyptian Chariot.
The paintings and sculptures upon the walls of the temples and tombs of Egypt show that wheeled carriages were in use in that country at an early period ([Figs. 1 and 2]). In the Bible they are usually translated “chariot.” They are of great interest to us, as they formed the chief means of conveying man for 2,000 years before Christ, and were more or less the type of all the other vehicles of the ancient world. We find certain words used in describing them, both by Homer, who lived 1,000 years B.C., and by Moses, who lived at least 500 years earlier; and these words are the technical terms in use at the present day, such as axles, wheels, naves, tyres, spokes, &c. It is reasonable to infer from this, that the art to which these terms apply must have existed prior to the writers’ description; so that any doubt as to the correctness of the Egyptian sculptures must be dispelled by the references of the above authors. In the fifth book of the Iliad “The awful Juno led out the golden-bitted horses, whilst Hebe fitted the whirling wheels on the iron axle of the swift chariot. The wheels had each eight brazen spokes, the felloes were of gold, secured with brazen tyres all round, admirable to the sight. The seat was of gold hung by silver cords, the beam or pole was of silver, at the end of which were hung the golden yoke and the golden reins.”
Fig. 3.—Roman Chariot.
The car was greatly used by the Romans, being adopted from the one used by the Etrurians ([Fig. 3]), a neighbouring country on the Italian peninsula. These latter people were traditionally the first to place a hood or awning over the open two-wheeled car, and they showed great taste in decorating their vehicles in the manner familiar to us by the remains of their pottery. A very fine copy of one of the Roman cars is in the museum at South Kensington, cast from the original in the Vatican.
Herodotus (450 B.C.) mentions that the Scythians used a vehicle which consisted of a rough platform upon wheels, on which was placed a covering like a beehive, composed of basket work and covered with skins. When they pitched anywhere these huts were taken off, and served them as dwellings in lieu of tents. [Fig. 4] shows one of their chariots.
The war chariots used by the Persians were much larger than those used by contemporary nations. The idea seems to have been to form a sort of turret on the car to protect the warriors in action. These vehicles were provided with curved blades, like scythes, which projected from the axletrees, for the purpose of maiming the enemy as they drove through them.
Fig. 4.—Scythian Chariot.
At the period of the invasion of this country by the Romans, a car or chariot seems to have been in use which they had not met with before. It was larger than the Roman car, and possessed a seat, from which feature it was called essedum. It was doubtless an improved vehicle of its kind, for Cicero, writing to a friend in Britain, says “that there appeared little worth bringing away from Britain except the chariots, of which he wished his friend to bring him one as a pattern.”
Sir William Gell, in his work on Pompeii, which was destroyed A.D. 79, mentions that three wheels had been dug out of the ruins in his day, very much like our modern wheels—a little dished, and 4 feet 3 inches high, with ten spokes rather thicker at each end than in the middle. He also gives an illustration of a cart used for the conveyance of wine in a large skin or leather bag; it is a four-wheeled cart, with an arch in the centre for the front wheel to turn under. The pole appears to end in a fork, and to be attached to the axle bed.
On the decline of the Roman power, many of the arts of civilisation which they had been instrumental in forwarding fell into disuse. The skilled artisans died and left no successors, there being no demand for them. This will account for no mention being made of carriages or chariots for some centuries. Of course there were various primitive contrivances in use to which the name of cart was given, but the great and wealthy moved about the cities or travelled on horseback, or if they were incapable of this, they used litters carried by men or horses. The great bar to the general adoption of wheeled carriages was undoubtedly the very bad state of the roads.
An evident improvement in construction was made by the Saxons. In the Cotton Library there is a valuable illuminated manuscript, supposed to be the work of Elfricus, Abbot of Malmesbury. The subject is a commentary on the Books of Genesis and Exodus, with accompanying illustrations. In one of these is represented the first approach to a slung carriage; and it may be interesting to the lovers of historical coincidence that it is given in an illustration of the meeting of Joseph and Jacob, and in that part of the Bible which first makes mention of vehicular conveyance. The chariot in which Joseph is seated is a kind of hammock (most probably made of leather, which was much used by the Anglo-Saxons), suspended by iron hooks from a framework of wood. It moves upon four wheels, the construction of which is not clear, owing to the decorative license taken with them by the artist. The father of Joseph is placed in a cart, which we doubt not, from its extreme simplicity, is a faithful type of those of the time. This proves the illuminator to have been true to his subject and the custom of the period in which he lived, as the chariot was monopolised by the great men, while the people rode in carts.
With the Normans came the horse litter, a native originally of Bithynia, and from thence introduced into Rome, where it is still used by the Pope on state occasions, and also among the mountain passes of Sicily, as well as in Spain and Portugal. Malmesbury records that the dead body of Rufus was placed upon a rheda caballaria, a kind of horse litter. King John, in his last illness, was conveyed from the Abbey of Swinstead in lectica equestre. These were for several succeeding reigns the only carriages in use for persons of distinction. Froissart writes of Isabel, the second wife of Richard II., as “La june Royne d’Angleterre en une litieré moult riche qui etoit ordonèe pour elle.” These litters were seldom used except on state occasions. When Margaret, daughter of Henry II., went into Scotland, she is described as journeying on a “faire palfrey,” but after her was conveyed by two footmen “one very riche litere, borne by two faire coursers vary nobly drest; in which litere the sayd queene was borne in the intryng of the good towns or otherwise to her good playsher.”
Carriages proper were first introduced on the continent. Italy, France, Spain, and Germany contend with each other for the honour of the first introduction. The earliest record we have is on the authority of Beckmann, who says that, when at the close of the thirteenth century Charles of Anjou entered Naples, his queen rode in a caretta, the outside and inside of which were covered with sky-blue velvet interspersed with golden lilies.
The English were not long before they adopted this new innovation. In an early English poem called the “Squyr of Low Degree,” supposed to be before the time of Chaucer, the father of the Princess of Hungary thus makes promise:—
“To-morrow ye shall on hunting fare,
And ride my daughter in a chare.
It shall be covered with velvet red,
And cloths of fine gold all about your head,
With damask white and azure blue,
Well diapered with lilies new:
Your pomelles shall be ended with gold,
Your chains enamelled many a fold.”
The pomelles were doubtless the handles to the rods affixed towards the roof of the “chariette,” and were for the purpose of holding by when deep ruts or obstacles in the roads caused an unusual jerk in the vehicle.
On the continent, there seems to have been a great deal of opposition to the use of carriages. In 1294, Philip, King of France, issued an ordinance prohibiting the citizens’ wives the use of cars or chars; and later on, Pope Pius IV. exhorted his cardinals and bishops not to ride in coaches, according to the fashion of the time, but to leave such things to women; and it really was thought infra dig. for a man to travel other than on horseback. Even his Holiness the Pope rode upon a grey horse; though to indemnify him for the exertion, his horse was led, and his stirrup held by kings and emperors.
These exhortations had about the same effect as James I.’s “Counterblast to Tobacco;” they created an increased demand, and the people showed their sense in preferring the ease that does no injury to the self-denial that does no good, in spite of the opposition of their superiors.
The first coach made in England was for the Earl of Rutland, in 1555, and Walter Rippon was the builder. He afterwards made one for Queen Mary. Stow’s “Summerie of the English Chronicle” is the authority upon which this statement is made.
In a postscript to the life of Thomas Parr, written by Taylor, the Water Poet (and a mortal enemy to land carriages), we find the following note: “He (Parr) was eighty-one years old before there was any coach in England (Parr was born in Edward IV.’s reign in 1483); for the first ever seen here was brought out of the Netherlands by one William Boonen, a Dutchman, who gave a coach to Queen Elizabeth, for she had been seven years a queen before she had any coach; since when they have increased with a mischief, and ruined all the best housekeeping, to the undoing of the watermen, by the multitudes of Hackney coaches. But they never swarmed so much to pester the streets as they do now till the year 1605; and then was the gunpowder treason hatched, and at that time did the coaches breed and multiply.” Taylor is to be thanked, not only for his information, but for his capital though unconscious burlesque upon those fancied philosophers who talk of cause and effect, where events, because they happen in sequence, are made to depend one on the other, when the fact of their being two things apart makes them independent existences.
We have not space to dwell upon these old specimens at length. Queen Elizabeth’s coach is called by an old author “a moving temple.” It had doors all round, so that when the people desired, and the virgin queen was agreeable, they might feast their eyes on the beauty of its trimming or linings.
The following entry in Sir William Dugdale’s diary may be interesting: “1681. Payd to Mr. Meares, a coachmaker in St. Martin’s Lane, for a little chariot wch I then sent into the country, £23 13s. 0d., and for a cover of canvas £01 00s. 00d.: also for harness for two horses £04 00s. 00d.”
The opposition on the part of the watermen to the introduction of coaches assumed rather serious proportions, more especially as the populace sided with them; to such a height did the antagonism run that a movement was made to introduce a Bill into Parliament to prevent the increase of coaches; the apology for its introduction being, that in war time it would be a matter of great difficulty to mount the troops if so many horses were monopolised for these coaches. Luckily, however, it came to nothing, and the antipathy gradually died out.
Coaches and vehicles of all descriptions now became general, and in 1635 a patent was granted to Sir Saunders Duncombe for the introduction of sedans; their purpose being “to interfere with the too frequent use of coaches, to the hindrance of the carts and carriages employed in the necessary provision of the city and suburbs.” A rivalry now sprung up between coach and sedan, and gave rise to a humorous tract, in which they hold a colloquy as to which should take precedence, a brewer’s cart being appointed umpire.
The coaches at this period were fearfully and wonderfully made. There are several examples of them scattered about in the various museums. The people who used them at this time had no great ideas of them, for so formidable an affair was the undertaking of a journey reckoned, that even from Birmingham to London a departure was the signal for making a will, followed by a solemn farewell of wife, children, and household!
Towards the end of the seventeenth century improvements began to take place. In Wood’s diary mention is made of a machine called the “Flying Coach,” which performed the journey between Oxford and London in thirteen hours! This was express rate for that age, especially as there was some talk of making a law to limit the ground covered by a coach to thirty miles a day in summer, and twenty-five miles a day in winter. Oh, those good old times! The outcry lessened, and the imperfect vehicles and bad roads were left to passengers unmolested. What the latter were may be imagined from the fact that, when Charles III. of Spain visited England, and Prince George of Denmark went out to meet him, both princes were so impeded by the badness of the roads that their carriages were obliged to be borne on the shoulders of the peasantry, and they were six hours in performing the last nine miles of their journey.
In the eighteenth century improvements were made in the construction of coaches, but they were still heavy lumbering contrivances, so that little or no progress was made in the rate at which they travelled. Even so late as 1760 a journey from Edinburgh to London occupied eighteen days, a part of the roads being only accessible by pack horses. There is a very good specimen of the vehicle of the early part of the eighteenth century in the South Kensington Museum, belonging to the Earl of Darnley’s family, and is well worthy of study as being one of the lightest examples known of this period.
In the Museum of South Kensington is also an excellent example of the fully developed coach of 1790. It is a very massive-looking affair, and belonged to the Lord Chancellor of Ireland; it looks very much like a faded edition of the City state coach now, though when new it doubtless had a very good appearance. It consists of a very large body, suspended from upright or whip springs by means of leather braces; the standing pillars slope outwards, making the sides longer at the roof than at the elbow line. The wheels are of good height, and the carriage part is very massively constructed, the upper part being finished off with scroll ironwork, and on this in the front the coachman’s hammercloth is raised. The panels are painted with landscapes, &c., by Hamilton, R.A., and no doubt altogether it cost a deal of money.
Vehicles now began to assume that variety of shape and form of which we have in our own time so many specimens. There were Landaus, introduced from a town of that name in Germany; these were, like the coaches, only made to open in the centre of the roof just as they do now, but instead of the covering falling into a horizontal line it only fell back to an angle of 45 degrees, and this pattern was maintained for a number of years. Landaulets were chariots made to open. Generally speaking, the difference between a coach and a chariot was that the former had two seats for the accommodation of passengers, and the latter but one, and in appearance was like a coach cut in half. Then came phaetons, barouches, sociables, curricles, gigs, and whiskies, which, in their general form and attributes, were similar to the vehicles of the present day which bear these names. In those days fast driving was all the “go,” and young men vied with each other in driving the loftiest and most dangerous gigs and phaetons. Contemporary literature teemed with romantic tales of spills and hairbreadth ’scapes from these vehicles, and yet dilated on the fearful pleasure there was in driving them.
The larger wheeled vehicles were hung upon framed carriages, with whip springs behind and elbow springs in front, like the gentlemen’s cabriolets of the present day. When drawn by two horses they were called curricles, or by one horse, chaises. There was a little variation in the shape of the body, viz. the full curricle pattern and the half curricle, with or without a boot, similar to a Tilbury or a gig body. The wheels were 4 feet 3 inches to 5 feet in height. Lancewood was then used for shafts.
It is at the beginning of the nineteenth century that real progress is to be found in coaches and other carriages. In 1804, Mr. Obadiah Elliott, a coachmaker of Lambeth, patented a plan for hanging vehicles upon elliptic springs, thus doing away with the heavy perch, as the longitudinal timber or iron connecting the hind-carriage with the fore carriage is called. Perches are still used, but are chiefly confined to coaches proper, or those hung upon C springs. Elliott also considerably lightened the carriage part of the vehicles he turned out. This was the first step to a grand revolution in the manufacture of carriages, which was to affect every variety of vehicle, great or small. Elliott’s enterprise was rewarded by the gold medal of the Society of Arts, and by his business becoming a very prosperous one, for the public were not slow in discovering the advantages arising from great lightness in vehicles.
A print, published in 1816, shows a landaulet hung on elliptic springs, four in number, with a square boot framed to the body, and the driving seat supported on ironwork high above the boot. Behind there is a footboard supported on the pump-handles. The distance between the axletrees is very short, only 6 feet 6 inches from centre to centre. The body is rather small, and the wheels are 3 feet 8 inches and 4 feet 8 inches high respectively, and the bottom of the body is 3 feet 6 inches above the ground. The span or opening of the springs is 10 inches.
In 1814 there were 23,400 four-wheeled vehicles paying duty to Government, 27,300 two-wheeled, and 18,500 tax-carts in Great Britain, showing a total of 69,200 vehicles. The later returns will show how much a reduction in the duties and the use of elliptic springs have promoted the increase of vehicles of all kinds.
A vehicle much in fashion at this period was the curricle, which had been in use for some time in Italy, where it was suspended from leather braces. Springs were added by the French, and, on its being introduced here, the English altered the shape, giving the back a graceful ogee curve, improved the hood, and added a spring bar across the horses’ backs. It was a vehicle of easy draught, and could be driven at great speed. Unfortunately it was rather dangerous if the horse shied or stumbled, and this tended to reduce the demand for it, and it was gradually superseded by the cabriolet, though Charles Dickens used one as soon as he could afford it, and Count D’Orsay had one made as late as 1836.
The vehicle called the briska, or britchka, was introduced about 1818 from Austria. It was hung both upon C springs and elliptic springs, and was made in various sizes for different requirements. It was nearly straight along the bottom. The hind panel was ogee shaped, and the front terminated in a square boot. There was a rumble behind, and the back seat was fitted with a hood which could be raised or lowered at pleasure, and the knees were covered by a folding knee flap. This was an inconvenient vehicle for our climate, as only half the number could be sheltered in wet weather that could be accommodated in dry. It was very fashionable for a time, but died out about 1840.
Fig. 5.—Stanhope.
The “Stanhope” takes its name from being first built to the order and under the superintendence of the Hon. Fitzroy Stanhope, by Tilbury, the builder of the vehicle bearing that name. It was shaped like the old ribbed gig, but was hung upon four springs, two of which were bolted between the shaft and axle, and the other two crossways, parallel to the axle at either end of the body, and shackled to the side springs. Stanhopes are an easy kind of vehicle, and do not rock so much as other gigs behind a rough-trotting horse. At the same time they are rather heavy, owing to the large amount of iron plating used to strengthen the shafts, &c.
Fig. 6.—Tilbury.
The “Tilbury” was very much like the Stanhope, but had no boot, and like it was heavily plated with iron. It was hung by two elbow springs in front, with leather braces to the shafts or front cross bar, and behind by two elbow springs passing from beneath the seat to a cross spring raised to the level of the back rail of the body by three straight irons from the hind part of the cross bar. Later, two more springs were added between the axletree and the shafts, by scroll irons. The Tilbury was a very good-looking and durable vehicle, but its weight took away the public favour, and it went out of fashion about 1850. It was, however, adopted with great success by Italy and other continental countries, where the roads are bad, and solidity of construction is the first consideration.
Dog-carts and Tandem-carts are too well known to need description. The former were so called from their being used for the conveyance of sporting dogs, such as greyhounds or pointers, and the slats or louvre arrangement of the sides was for the purpose of admitting air to the animals; though scarcely ever used for this purpose now, the original plan has been pretty closely adhered to, except that the boot is considerably reduced and made to harmonise more with the other parts.
Some of the greatest improvements in the shape and style of various vehicles were effected by a celebrated maker named Samuel Hobson, who remodelled and improved pretty nearly every vehicle which came under his hands. He particularly directed his attention to the true proportion of parts, and artistic form of carriages. He lowered the bodies, and lengthened the under or “carriage” part. The curves and sweeps also received due attention. In fact, he carefully studied those “trifles” (as Michael Angelo’s friend would have termed them) on which depended the success of the production as a work of art. Imitation being the sincerest form of flattery, the other coachmakers soon showed their sense by copying his best ideas, though, to give these other coachmakers their due, they greatly assisted Mr. Hobson with suggestions for improvements, and as a reward availed themselves of his superior talent for working on these ideas.
As our interior trade and manufactures increased, the custom arose of sending commercial travellers throughout England to call attention to the various goods, and it was found very convenient to send these travellers in light vehicles which could convey samples of the various articles. This led to a very great increase in the number of gigs; and about 1830 one coach factory of London supplied several hundreds of these vehicles to travellers at annual rentals. And though on the introduction of the railway system long journeys by road were unnecessary, these gigs were found of great use in town and suburban journeys, and in London they may be seen by hundreds daily, and they are scarcely used by any one else but commercial travellers. They are too familiar to need detailed description.
In 1810 a duty was levied by Government upon vehicles for sale. It was repealed in 1825, but the returns give the number of vehicles built for private use in 1814 as 3,636, and in 1824 as 5,143, whilst the number of carriages in use in 1824 had grown to 25,000 four-wheeled, and 36,000 two-wheeled, besides 15,000 tax-carts; an increase since 1814 of 20,000 vehicles.
In 1824 there was built for George IV. a low phaeton, called a pony phaeton, which has since become very common, and has undergone but very little change from the original. It was a cab shape, half-caned, with a skeleton bottom side hung upon four elliptical springs, with crane ironwork back and front. It was drawn by two ponies; the wheels were only 21 and 33 inches high.
A carriage had been introduced from Germany, called a droitska or droskey—an open carriage with a hood, on a perch, and suspended from C springs. The peculiarity was, that the body was hung very near the perch, so that the seat was only 12 inches above the hind axletree, and the place for the legs was on either side of the perch. The chief merits of this vehicle consisted in its lightness as compared with barouches and briskas, and its shortness.
The cab phaeton was invented by Mr. Davies, of Albany Street, about 1835; it consisted of a cab body with a hood, hung upon four elliptic springs, and a low driving seat and dasher, for one horse. It met with great success and was soon in general use. It was introduced on the continent, where it became known under the name of “Milord,” and became the common hack carriage, after which it went out of fashion with the upper circles. It has, however, been recently revived under the name of “Victoria.” The Prince of Wales and Baron Rothschild set the fashion by using Victorias about 1869, and it really is a very elegant and useful vehicle.
In 1839 the first Brougham was built by Mr. Robinson, of Mount Street, for Lord Brougham, since when this has become the most common and the most fashionable vehicle in use. The size of the first brougham was in its chief dimensions similar to those now manufactured; it was hung on elliptic springs in front, and five springs behind. Coachmakers seemed to have lavished the greatest care and attention on these vehicles, in order to turn out the lightest, and at the same time the most artistic contrivance, and great success has attended their efforts.
The foregoing is a brief history of vehicular conveyances from the earliest times to the present. During the last ten or fifteen years many further improvements have been added, tending to produce more perfect vehicles in every respect; but these improvements have been more in matters of detail than those at the commencement of the century, and hence are more likely to escape ordinary observation; but the critical eye will soon discover these changes, and marvel at the short space of time in which the real work has been done.
A glance at public carriages may not be out of place. Hackney coaches were first used in England in 1605. These were similar to the coaches used by fashionable people, but they did not ply for hire in the streets, but remained at the hiring yards until they were wanted. Their number soon increased, owing to there being a greater number of persons who wished to hire than could afford to keep a conveyance of their own. In 1635 the number was limited to fifty, but in spite of the opposition of the King they continued to increase in number, and in 1640 there were 300 in London. In Paris they were introduced by Nicholas Sauvage, who lived in a street at the sign of St. Fiacre, and from this circumstance hackney carriages are called “fiacres” in France. In 1772 the hire of a fiacre in Paris was one shilling for the first hour and tenpence for the second. There were 400 hackney coaches in London in 1662, and the Government then levied a yearly duty of £5 each upon them. In spite of this their number had in 1694 increased to 700, a substantial proof of their usefulness.
In 1703 a stage coach performed the journey from London to Portsmouth, when the roads were good, in fourteen hours. From this time there was a gradual increase in the number and destinations of stage coaches.
In 1755 stage coaches are described as being covered with dull black leather, studded with broad-headed nails by way of ornament, and oval windows in the quarters, with the frames painted red. On the panels the destination of the coach was displayed in bold characters. The roof rose in a high curve with a rail round it. The coachman and guard sat in front upon a high narrow boot, sometimes garnished with a hammercloth ornamented with a deep fringe. Behind was an immense basket supported by iron bars, in which passengers were carried at a cheaper rate than in other parts of the vehicle. The wheels were painted red. The coach was usually drawn by three horses, on the first of which a postillion rode, dressed in green and gold, and with a cocked hat. This machine groaned and creaked as it went along, with every tug the horses gave, though the ordinary speed was somewhere about four miles an hour.
One hundred years ago news and letters travelled very slowly, the post-boys to whom the letter bags were intrusted progressing at the rate of three and a half miles an hour! In 1784 a proposal was laid before Government by Mr. John Palmer, the originator of mail coaches, to run quicker vehicles, though at much dearer rates of postage. This scheme was at first opposed by Parliament, but after a struggle of some two years, Palmer’s coaches were adopted for the conveyance of the mails, though the rate at which these travelled was only six miles an hour for a long time after their introduction.
A great impetus was given to the production of better forms of stage coaches by gentlemen taking to drive them as an amusement, and two clubs were soon formed of noblemen and gentlemen who took an interest in four-in-hand driving and in vehicles in general. Several clubs of this kind are now flourishing to encourage manly sport, and with the capacity to promote improvements in the form of the “drag,” as it is now called.
It is to an architect that we owe the invention of the Hansom cab. The safety consisted in the arrangement of the framework at the nearest part to the ground, so as to prevent an upset if the cab tilted up or down. The inventor was Mr. Hansom, the architect of the Birmingham Town Hall. Numberless improvements have been made on this idea, but the leading principles are the same.
In 1829 the first omnibus was started in London by Mr. Shillibeer, who some time previously had been a coachmaker in Paris. It was drawn by three horses, and carried twenty-two passengers, all inside. The fare was a shilling from the “Yorkshire Stingo,” in Marylebone Road, to the Bank. This vehicle was found too large for the streets of London, so a smaller one was started, drawn by two horses and carrying twelve passengers inside. In 1849 an outside seat was added along the centre of the roof, and by 1857 the omnibus had become pretty nearly the same form as we now know it. Our present omnibus is probably the lightest vehicle of its kind for carrying such a large number of passengers. Its average weight is about 25 cwt. The London General Omnibus Company have, on an average, 626 omnibuses running on week-days, and 6,935 horses to work them. They build their own vehicles, and each runs about sixty miles a day, at a speed of about six miles an hour, and nearly all are supplied with brake retarders, worked by the foot, which effect a great saving in the strain put upon the horses in stopping.
CHAPTER II.
PREPARATION OF THE DESIGN AND SETTING OUT THE FULL-SIZED DRAUGHT.
In coach-building, as in building construction, the first thing to be done is to prepare a design of the vehicle proposed to be built according to the requirements of the customer. A scale of one inch to a foot is a very good one for the purpose, though the scale drawings are more often made to a scale of one and a half or two inches to a foot. These drawings (or draughts as they are technically termed), are prepared by specially trained draughtsmen, and it requires no mean skill to produce, on a small scale, a pictorial representation of the future vehicle, truly proportioned in all its parts, and a delicacy of touch in order that the parts may not look coarse. These drawings, if well made (and they generally are), give a very accurate picture of the carriage, and a purchaser is generally able from this to say what peculiar feature he requires, or where he thinks it should be altered; if he can do this it saves a great deal of trouble in the future, whilst the coach is being built.
For this work the draughtsman requires a drawing-board and T square, and two set squares; as he never has to prepare very large drawings, a board of imperial size will be amply sufficient, and the T square to have a corresponding length of blade. T squares are made of a variety of woods, but the most serviceable is one made of mahogany, with an ebony edge; the most important consideration being that the edge should be truly “shot” from end to end. The set squares should either be vulcanite or skeleton mahogany with ebony edges; the latter are preferable, as they work more cleanly than the vulcanite, which, unless kept very clean, are apt to make black smears across the drawing. In order to fasten the paper down to the drawing board, drawing pins will be required; they are simple pins of iron or steel, with a large flat brass head; four is the number required for each sheet of paper, one at each corner. A very much better way to fix the paper down is to “strain” it to the board. It is done in the following way:—The sheet of paper to be fastened down is thoroughly well wetted, by means of a sponge or large flat brush, on one side (which, it does not matter, but see that your board is perfectly clean before starting); it should then be left for five or ten minutes for the water to well soak into the pores of the paper; when this is done, the paper will be quite limp. Now take a perfectly clean straight edge, or the back edge of the T square, and turn up one of the edges of the paper ¼ or ½ an inch against it; along this edge run a brush charged with glue from the glue pot, or a piece of ordinary glue dipped into boiling water and rubbed along the edge will do just as well, and when you think there is enough sticky matter to promote adhesion between the paper and the board, turn the edge of the paper back on the board (without removing the straight edge or T square), and quickly rub it with the tips of the fingers until it goes down flat all along without any air bubbles: do this to all four edges of the paper, and place in a perfectly flat position to dry; and if the operation has been carefully conducted the paper will be beautifully flat to draw upon, and there can be no fear of its shifting. When the drawing is finished, all that has to be done is to cut round the edges of the paper just inside the glued edge, and take it off. A little hot water will take off the glued strip, and take care to wash all the glue off at the same time, otherwise a smaller piece of paper might stick in some important part, and the drawing spoilt in order to detach it.
Fig. 7.—Coach.
The draughtsman will do well to have a few French curves, for drawing the “sweeps” or curved lines of the carriage bodies, and scales of various sizes, which are slips of boxwood or ivory, on which are marked at the edges various scales, from ¹⁄₁₆th of an inch to a foot up to 3 inches to a foot; and last, though not by any means least, a good box of compasses or mathematical instruments. We shall not discuss the merits of the various kinds of instruments here, but any one wishing to go into the matter may do so by reading “Mathematical Instruments” in Weale’s Series. But we should strongly advise the draughtsman to go to some good maker, as bad drawing instruments only lead to bad drawing.
The drawing paper used should be of a kind having a slight gloss on the surface, like “hot-pressed” paper, but without its granular texture. This kind of paper is usually called a “board,” as Bristol board, and kept in various sizes, and sold by all colour dealers. Various names are given to it, but it is all pretty nearly alike.
The paper being fastened, the drawing is commenced by drawing the ground line A ([Fig. 7]); from that set off the height that the body is to be from the ground, indicated by the dotted line B, and draw the line C, which is the depth of the rocker. This latter is the real bottom of the vehicle, and from it is measured the height of the seat, about 12 inches, shown by the dotted lines on the body. Then from the seat measure 42 inches, the length of the roof D. Lay off 23 inches for the width of the door, and draw E and F. From F measure 28 inches, the depth of the back quarter G, and from E measure 25 inches, which will give the front quarter H. Now the curves or sweeps of the body can be put in by means of French curves. From the hinge pillar measure 26 inches, shown by dotted line I, and this is the centre of the hind wheel, which is 4 feet 3 inches high. The spring is 1¼ inches thick, and consists of 5 plates 42 inches long. The opening between the springs is 12½ inches, the lower one being clipped beneath the axle. Measure 12½ inches from the underside of the axle, which will give the underside of the top spring. 1¼ inches must also be allowed for the back bar J, and the pump-handle K will be ½ an inch thick. Then draw the boot L in such a position that the front wheels will lock or turn under it freely. This may be found by drawing a plan of the wheel as shown, and with the centre of the lock bolt produced to N, strike the lines M, and it will be seen that the wheels will just clear the body, which is all that is necessary. From this it will be noticed that the centre on which the fore carriage turns is not in the same plane as the axle. This is more particularly discussed in the chapter on wheel-plates. The front wheel is 42 inches high, the springs the same size as the back springs. The draught may be now completed from [Fig. 7], after having settled on the various heights and sizes, and can be inked in with Indian ink. The dotted lines, being merely constructional, are rubbed out when the drawing is inked in. To complete the drawing, the spokes of the wheels must be shown. These should be neither too many nor too few, but there is no rule which regulates their number, except that there should be two to each felloe. Having inked the parts in and cleaned the pencil lines off, the drawing is ready to be coloured. The colours applied to the drawing are the same as will be used for painting the carriage, so we shall not detail them here.
Fig. 8.—Brougham with Cant-Board. S, Standing pillar (developed). B, Bottom bar. R, Rocker. L, Seat.
From this drawing is constructed the full-size draught, which is prepared before a tool is touched. On the walls of the body-making shop are large black-boards, 10 or 12 feet square, and on these the draughts are prepared just in the same way as described for the scale drawing, except that all the heights are marked up a vertical line which runs through the centre of the doorway, and from this the various widths are also set off. This and the ground line are the first two lines drawn, and it is imperative that they should make a perfect right angle with each other, otherwise the draught will not be true, and the material worked from it will be wasted. This full-sized draught requires the greatest care in preparation, as all the patterns to which the materials are cut or shaped are taken from it, even to the smallest parts.
The full-size draught also differs from the scale draught, inasmuch as all the details of the construction of the vehicle are shown as in the accompanying cut ([Fig. 8]), which shows the construction of a small doctor’s brougham, and [Fig. 9], which shows the construction of a landau. This latter is a representation of the working draught for the vehicle, and, in fact, is a reduced copy of what would be drawn upon the black-board in the shop, except that some of the minor details are omitted to avoid confusion.
Fig. 9.—Landau.
CHAPTER III.
VARIOUS MATERIALS USED IN COACH-BUILDING.
The materials employed in coach-building number a great many: various kinds of wood—ash, beech, elm, oak, mahogany, cedar, deal, pine, &c.; hides, skins, hair, wool, silk, glue, whalebone, ivory, &c.; iron, steel, copper, brass, lead, tin, glass, &c.
The timber principally used in the construction of carriages is the ash. This is not an elastic, but rather a tough and fibrous wood, capable of altering its form by the application of pressure, and therefore when not in large masses requires iron plates to secure it. By boiling it becomes very pliable, and may be formed into almost any shape, provided that it is not too thick. For this purpose it is better to use steam than boiling water, as the latter is likely to dissolve and carry off the gluten which unites the fibres, thus rendering the timber useless. Some ash timber is white at heart, and some red; the white is usually the strongest and best. Some trees which have been grown on hillsides much exposed to constant winds present a remarkably wrinkled appearance through their whole length, and it is scarcely possible to plane their timber smooth; this is the toughest of all ash timber. Parts of ash-trees are sometimes found of a yellowish-brown colour, accompanied by a fetid acid smell. This is sometimes attributed to the effect of lightning, but more probably it is a putrid fermentation of the sap, owing to imperfect drying. All other circumstances being equal, the timber is best which is cut down when the circulation of the sap is slowest, as the pores are then open. In the process of drying or seasoning the bulk diminishes considerably. One of the qualities which render ash peculiarly fit for carriage construction is the absence of elasticity, and consequent indisposition to alter its form by warping or twisting. It is not well adapted for boards or planks in which much width is required, as in drying it cracks a great deal. The diameter of ash-trees used by carriage-builders varies from 1 foot to 3 feet 6 inches. It should be borne in mind in cutting ash, that the interior and the outer casing under the bark are rather softer and less durable than the parts between them.
Beech is sometimes used by carriage-builders and by wheelwrights, on account of its cheapness; but it is very liable to warp and rot, and consequently unworthy of the attention of the conscientious manufacturer.
Elm is largely used for planking where strength is required. The grain is wavy, hard to work, brittle, and apt to split without care. It is not a good surface to paint on, as the grain shows through several coats of colour. It is also used for the naves or stocks of wheels.
Oak is used for the spokes of wheels. The best kinds are made from the timbers of saplings, which are not sawn but cleft, in order that the grain may be not cut across and render the spoke unfit to resist the strains it will be subject to. Spokes are also made from the limbs of large trees.
Mahogany is largely used for panels, as when painted it shows a very even surface. There are two kinds, the “Spanish” and the “Honduras.” The former is unfit for the purposes of the carriage-builder. It is heavy and very difficult to work, requiring special tools for this purpose, as the edges of ordinary tools are rapidly destroyed by it. The Honduras is very much lighter and cheaper than Spanish, and the grain and colour more even. It takes the sweeps and curves required for body-work very easily. It can be procured up to 4 feet in width, straight-grained, and free from knots and blemishes.
A coarse-grained species of cedar is brought from the same district as Honduras mahogany, and is sometimes used for panels which have to be covered with leather, &c. Its extreme porosity renders it unfit for the application of paint.
Deal is largely used for the flooring of carriages, and for covered panels, and for any rough work that is not exposed to great wear and tear.
The wide American pine is chiefly used in very thin boards to form the covered panels and roofing of carriages.
Lancewood is a straight-grained, elastic wood, but very brittle when its limit of elasticity is reached. It comes from the West Indies in taper poles about 20 feet long and 6 or 8 inches diameter at the largest end. It was formerly much used for shafts, but since curved forms have been fashionable it has fallen into disuse. It can be bent by boiling, but is a very unsafe material to trust to such an important office as the shafts.
American birch is a very valuable wood for flat boarding, as it can be procured up to 3 feet in width. It is of a perfectly homogeneous substance, free from rents, and with scarcely a perceptible pore. It works easily with the plane and yields a very smooth surface, and the grain does not show through the most delicate coat of paint. Its chief disadvantage is its brittleness, which will not permit of its being used for any but plane surfaces, and some care is required in nailing and screwing it.
Hides are used chiefly for coverings, but also in some parts strips are used for the purposes of suspension. The hides are those of horses and neat cattle. For covering they are converted into leather by the action of oak and other bark. They are afterwards smoothed and levelled by the currier, and sometimes split into two equal thicknesses by machinery. They are then rendered pliable by the action of oil and tallow, and finished to a clear black or brown colour as may be required. This is called dressed leather. For some purposes the hides are merely levelled, put on wet to the object they are intended to cover, and left to shrink and dry. Others are covered with a coat of elastic japan, which gives them a highly glazed surface, impermeable to water; in this state they are called patent leather. In a more perfectly elastic mode of japanning, which will permit folding without cracking the surface, they are called enamelled leather. They are generally black, but any colour desired may be given to them. All this japanned leather has the japan annealed, somewhat in the same mode as glass. The hides are laid between blankets, and are subjected to the heat of an oven raised to the proper temperature during several hours.
The skins used are those of the sheep and goat. The former are converted into leather by the action of oak bark. In one form of dressing them they are known as basil leather, which is of a light brown colour and very soft. Sometimes they are blacked, and occasionally japanned like the hides. In all these forms sheep skins are only used for inferior purposes, as mere coverings, where no strength is required.
Goat skins are used in the preparation of the leather known as “Spanish” and “Morocco.” They are not tanned in oak bark like other leather, but very slightly in the bark of the sumach-tree. They pass through many processes previous to that of dyeing, for which purpose they are sewn up with the grain outwards and blown out like a bladder. This is to prevent the dye from getting access to the flesh side. This beautiful leather was originally manufactured by the Moors, who afterwards introduced the process into Spain, by which means it came to be known under two names. The English have greatly improved on the manufacture, so much so that few others can vie with it. These skins are used for the inside linings of carriages.
Hair is used as an article of stuffing. To give it the peculiar curl which renders it elastic, it is forcibly twisted up in small locks, and in that state baked in an oven to fix it. Horse-hair is the best, being the strongest and longest; but various other kinds are used. Sometimes it is adulterated with fibres of whalebone. Doe-hair is also much used as an article for stuffing, but as it is very short it cannot be curled, and there is not much elasticity in it.
Wool in its natural state is not used for carriage purposes. In the form of “flocks,” which are the short combings and fibres produced in the process of manufacturing it, it is very largely used for stuffing. In its manufactured state wool is used in great quantities, as cloth, lace, fringe, carpeting, &c.
The iron used is that known as wrought iron. To judge of its quality break a piece over the anvil; if it breaks off brittle it is of no use for the purposes it is required for. If it is good wrought iron the fracture will present a bluish, fibrous, silky texture, without any crystalline portions. Inferior iron will either appear bright and glistening (when it partakes of the properties of cast iron) or dull and greyish in tone at the fracture.
It may also be tested by bringing it to a red heat and bending it, when any flaws, &c., will at once become apparent.
Cast iron is also used in the shape of axle-boxes.
Great quantities of wrought iron are used in the construction of modern carriages. One of the best qualities is that known as the “King and Queen,” so called from its brand. This iron is manufactured from pieces of old iron, called scrap iron, which are placed in furnaces and welded under a heavy tilt-hammer, after which it is passed between rollers and converted into bars.
Steel also enters largely into carriage construction in the shape of springs, &c. Axles are made of Bessemer steel, and are found to wear very well. Steel consists of iron in which is combined a large proportion of carbon; the more carbon the higher the elasticity of the steel. If steel is over-heated, it gives up a portion of its carbon and approaches once again its original form of iron.
CHAPTER IV.
POINTS TO BE CONSIDERED BEFORE COMMENCING THE CONSTRUCTION OF A CARRIAGE.—COMPONENT PARTS OF THE BODY.—SMITH’S WORK.—GLUE.
As previously remarked the vehicle is divided into two parts—the carriage and the body. After the drawing or draught is carefully worked out to full-size on the black-board in the shop, with all the curves and sweeps developed, and shown in elevation and plan, patterns or templates are made from the draught, and from these the construction of the body proceeds.
In commencing the construction of a vehicle there are several things to be borne in mind; such as the purpose to which the vehicle is to be applied, the size of horses to draw it, and other considerations arising from these two. It is popularly believed that the shorter the carriage the lighter it will run; in ascending an incline this may be true, but on ordinary level ground a long carriage and short one must be alike in friction, provided the total amount of weight and other circumstances be equally balanced.
Another consideration is the height of the wheels. On level ground, draught is easiest when the centre of the wheel is a little lower than the point of draught, viz. the point where the traces are affixed to the collar; but this in practice would be found rather inconvenient, as very high wheels would be required, and consequently the height of the whole vehicle would have to be increased, causing great trouble and annoyance in getting in and out of the vehicle, and the driver’s seat would have to be raised to a corresponding height. Under equal circumstances a high wheel is more efficient than a low one, and requires less power to draw it; though it may be mentioned that a low wheel on a good and level road will do its work far better than a very much higher wheel on a rougher road. The sizes of the wheels of two-wheeled vehicles vary from 3 feet to 4 feet 6 inches.
It would be a very good thing if four-wheeled vehicles were to have the wheels of equal size, in order that the friction and power might be equal. But with the present mode of construction this is an impossibility, as we have only one mode of making the lock or turn. Therefore the height of the fore wheels must be regulated by the height at which the body hangs, so that the wheels may pass beneath it without striking, when the springs play. In practice this height varies from 2 feet to 3 feet 8 inches, according to the kind of carriage the wheels are intended for. The hind wheels vary from 3 feet to 4 feet 8 inches.
The next point is the dishing of the wheel, which is necessary for strength to take the strain off the nuts, to throw off the mud and prevent it clogging either the wheel or the body, and to give greater room for the body between the wheels without increasing the track on the ground. Whatever be the amount of dishing or coning, which varies from 1½ to 2½ inches, one rule should always be observed, viz. so to form the wheel that when running the lower spokes should maintain a true vertical position both in the fore and hind wheels. This is mainly accomplished by the dip of the axle, but if the fore and hind wheels have the same dish, they will take the same track along the ground. The dish of a wheel will be understood by referring to [Fig. 10], in which it will be seen that the extremities of the spokes are not in the same plane, thus forming a dish or hollow in the surface of the wheel.
Some ingenious persons have deduced from the foregoing that a wheel runs best on an axle having a conical arm (the arm is the extremity of the axle which fits into an axle-box in the nave or stock of the wheel), in which case the axle would not dip, but the wheel would be put on to a perfectly horizontal axle. The motion of a wheel thus placed would be anything but artistic, though there would not be so much friction on an arm of this sort as on an arm of the dipped axle. Dipping the axle is shown at [Fig. 10]. It merely consists in bending it so far out of the horizontal as to give the lower spokes a vertical position. But in practice this theory of the conical arm will not answer, inasmuch as curving the arm will reduce the front bearing surface so much that the oil would be squeezed out, and it would run dry, and the total amount of friction would be greatly increased. Long practice has shown that a cylindrical or slightly conical arm is the best that can be used.
Fig. 10.
We have now to settle the form, combination, and proportion of the springs. Springs which are laid on the axle at right angles have to carry the whole of the weight of the carriage, save only the wheels and axles. Where other springs are used in addition it is not necessary that the axle-springs should have much play. It will be sufficient to give them just so much play as will intercept the concussion caused by moving over a road. The strength of the springs must of course be adjusted to the weight they have to carry, for it is evident that if they be made sufficiently elastic to carry the weight of six persons, they will be found hard if only three enter the carriage. This is a disadvantage all carriages must labour under, for it is ridiculous to suppose that if a carriage is constructed to hold six that number will always want to use it at the same time. There would seem to be room for some improvement in the way of introducing springs adjustable to any weight, though, to give spring-makers their due, they do turn out really a first-class article in this respect; this is more noticeable because it is so recent. Light carriages are never so easy to ride as heavy ones, even when the springs are well adjusted, because on meeting with an obstacle there is not a sufficient resistance to the bound or jerk upwards of the spring, which makes riding in a light carriage over a rough road rather unpleasant.
The position of the front wheels next demands attention. As these have to turn under the body it requires some skill to fix them, and the play of the springs, the height of the axletree, and the height of the arch (the portion of the body under which they turn) have all to be considered. This will be more particularly described when dealing with wheel-plates.
The rule for the height of the splinter-bar, to which the traces or shafts are fixed, is that it should fall on a line drawn from the horse’s shoulder to the centre of the hind wheel. This, however, is not always convenient in practice, as the fore wheels regulate the height of the framing of the under carriage, to which the splinter-bar is fixed. The distance of the splinter-bar from the central pin, on which the wheel-plate and fore carriage turn, is regulated by the size of the wheels and the projection of the driving seat footboard.
All the above particulars are considered when setting out the full-sized draught, and all points capable of delineation are put on the board in some convenient part. In [Fig. 9] the outline is simply given, as to show everything would only confuse the reader. Such other details as are required are filled in after the draught has reached the stage shown in the figure.
It is most necessary for the safe conduct of a coach and carriage builder’s business that there should be a goodly stack of well-seasoned timber of the various kinds required, otherwise great trouble and vexation will arise in the course of business from a good piece of timber being perhaps spoilt in working, and there not being another piece in the factory to replace it.
Where there is sufficient accommodation it is usual for makers to season their own timber in specially constructed sheds, which are kept from bad weather, but at the same time thoroughly well ventilated. In these the timber is stacked, with small fillets between each plank or board, to insure a free current of air circulating all round. One year should be allowed for seasoning for every inch of thickness in the timber, and none should be used in which this rule has not been observed.
Thin portions of timber, such as panel stuff and the like, should be treated in the same way, and in addition the ends should be secured to prevent splitting. The panel stuff undergoes another process of seasoning after it is planed up; in fact, all the thin timber required for roofs, sides, &c., does. And about the first thing done in commencing to build a carriage is for the body-maker to get his thin stuff ready, as far as planing it up goes, and then to put it aside in some moderately dry place, with slips of wood between each board to allow a circulation of air round them. The other stuff that is likely to be required should also be selected and put aside. If all these things be strictly attended to, there is not likely to be much trouble about bad joints; and it will be to the employer’s interest to look after such workmen who have not enough scientific knowledge to see the reason of things themselves, and put them in the right direction. But an intelligent workman will soon appreciate the advantage of getting his stuff ready at the commencement, instead of waiting till he wants to use it.
The parts composing the body may be thus enumerated:—
The frame or case.
The doors.
The glasses, which are fixed in thin frames of wainscot, covered with cloth or velvet. It is a very good thing to have india-rubber for these to fall on, and little india-rubber buffers would prevent them from rattling.
The blinds, which are sometimes panel, but more generally Venetian, so adjusted with springs that the bars may stand open at any required angle.
The curtains, of silk, which slide up and down on spring rollers.
The lining and cushions, of cloth, silk, or morocco, as the case may be, ornamented with lace, &c. The cushions are sometimes made elastic with small spiral springs.
The steps, which are made to fold up and fit into recesses in the doors, or in the bottom, when they are not in use.
The lamps, which are fixed to the fore part of the body by means of iron stays.
The boot, on which is carried the coachman’s seat.
In carriages suspended from C springs we have in addition:—
The check-brace rings, to which are attached leather braces from the spring heads, to prevent the body from swinging too much backwards and forwards.
The collar-brace rings, to which are attached leather braces from the perch, to prevent the body swinging too much upwards or sideways.
The curve or rounding given to the side of the body from end to end is called the side-cant, and the rounding from the top to the bottom the turn-under. Some makers arrive at this curve by framing the skeleton of the body together with square timber, and then round these off to the required curve after they are put together. It must be evident to any one that this proceeding will greatly strain the joints, and under any circumstances will never give thorough satisfaction or good results, and the waste of time and material must be very considerable.
The proper way is to set the curve out beforehand on a board called the “cant” board, and the method of doing this is as follows:—
Take a clean pine board, plane it up to a smooth surface. Shoot one edge perfectly true with a trying-plane. This straight edge may be taken to represent the side of the carriage if it were a straight line. Apply this edge to the full-sized draught, and mark along it the various parts of the body (see [Fig. 8], in which the numbered points are those required to form the side-cant). By means of these points the required sweep can be set up or drawn, as shown by the dotted line C in the figure. Now, if you choose, you can cut away the portion between A and B, and a template will be formed to which the constructional timbers can be cut; and it possesses the advantage of being easily applied to the carriage as it proceeds, to see that the curve is true and uniform. As this template forms the pattern to which the timber, &c., is cut, great care is requisite in forming it, so that it shall be perfectly true.
In order to get the turn-under, the same process is gone through on another board. This gives what is called the “standing” pillar pattern, the standing pillar being the upright timber to which the door is hinged.
There is no rule in particular for determining the amount of side-cant or turn-under to be given to a vehicle, 2½ or 3 inches on each side making the outside width of the body; 5 or 6 inches less at the bottom than at the elbow line is a usual allowance, but this is entirely dependent on the will or taste of the workman.
The cant-board described above is one having a “concave” surface; but it quite as often has a convex surface, and it is just as well to have one of each, and use the convex for cutting the timbers to, and the concave for trying them when in place, though, if this be done, it is imperative that the curves on the two boards should be one and the same. The same remarks apply to the standing pillar pattern.
The body is a species of box, fitted with doors and windows, and lined and wadded for the purpose of comfort. As the greatest amount of strain is put upon the bottom part, and the forces acting on the other parts are transmitted to the bottom, it is necessary that it should be very strongly put together. The two side bottom timbers are bonded, or tied together, by two cross timbers called bottom bars, which are firmly framed into them. To give depth to the floor, without destroying the symmetry of the side, deep pieces of elm plank are fixed to the inside of the side bottom pieces, and to these the flooring-boards are nailed, being additionally secured by iron strap plates, nailed or screwed beneath them. In the central portion of the bottom sides are framed the door-posts, called standing pillars. At the angles of the bottom framework are scarfed the corner pillars. The cross framing pieces, which connect the pillars, are called rails. Two of these rails stretch across the body inside, on which the seats are formed; these are called seat rails. The doors are framed double, to contain a hollow space for the glasses and blinds, and they are fastened by means of a wedge lock, forced into a groove by a lever handle. There is a window in each door and one in front of an ordinary carriage, say a brougham. The doors are hinged with secret or flush hinges.
Before cutting the timber to the various sizes required, patterns or templates of all the parts are made in thin wood from the full-sized draught; also of the various curves likely to be given to the different parts of the body.
Before a workman could be trusted with the making of a body, he must of course have considerably advanced in the knowledge of his craft beyond the mere use of his tools, because the success of a carriage depends very largely upon the individual skill of the workman, more so than perhaps in any other trade.
The stuff is marked out from the thin patterns before mentioned by means of chalk, and in doing so care should be taken to lay the patterns on the timber so that the grain may run as nearly as possible in a line with it, and thus obtaining the greatest possible strength in the wood, which lies in the direction of the grain. Thus if the pattern be straight, lay it down on a piece of straight-grained timber; if the pattern sweep round, then get a piece of timber the grain of which will follow, or nearly follow, the line of pattern.
The strongest timber that can be obtained is necessary for the construction of the hind and front bottom sides; for the weight is directly transmitted to these, more particularly the hind bottom sides, where the pump-handles are fixed.
The body-maker, having marked and cut out the various pieces of timber he will require, planes a flat side to each of them, from which all the other sides, whether plain or curved, are formed and finished. They are then framed and scarfed together, after which the various grooves are formed for the panels and rebates, for the floor-boards to fit on to. Then, if there is to be any carved or beaded work, it is performed by the carver. Previous to being fitted in, some of the panels have strong canvas glued firmly on their backs, and when fitted in blocks are glued round the internal angles to give greater security to the joints, and to fix the panels firmly in their places. Before the upper panels are put in, the roof is nailed on, and all the joints stuck over with glued blocks inside. The upper panels are then put on, united at the corners, and blocked inside.
If the foreman who superintends all this be a thoroughly skilful artisan, and the men under him possess equal intelligence and skill, the work might be distributed amongst almost as many men as there are parts in the framework of the body. These parts will be worked up, the mortises and tenons, the rabbets and tongues, being all cut to specified gauges; and when they are all ready it will be found that they go together like a Chinese puzzle.
The woodwork being completed, the currier now takes the body in hand, and a hide of undressed leather, specially prepared for it, is strained over the roof, the back, and the top quarters of the body whilst in a soft pulpy state, and carefully sleeked or flattened down till it is perfectly flat. This sleeking down is a rather tedious process, and takes a long time and a great amount of care to bring it to a successful issue; when it is flattened down satisfactorily, it is nailed round the edges and left to dry, which will take several days.
Such panels as require bending may be brought to the required sweep by wetting one side and subjecting the other to heat, as of a small furnace.
The doors are now made and hinged, and the hollow spaces intended to hold the glasses and blinds are covered in with thin boards, to prevent any foreign matter from getting down into the space, and being a source of trouble to dislodge.
In constructing the body the aid of the smith is called in. His services are required to strengthen the parts subjected to great strain, more particularly the timbers forming the construction of the lower portion. All along each side of the body should be plated with iron; this should be of the best brand and toughest quality. It is several inches wide, and varies from ¼ to ¾ of an inch in thickness. This is called the “edge plate,” and is really the backbone of the body, for everything depends on its stability. It should run from one extremity to the other, commencing at the hind bottom bar, on to which it should be cranked, and ending at the front part of the front boot, bottom side. This plate should take a perfectly flat bearing at every point. Great care must be taken in fitting it, for although the plate may be of the requisite strength the absence of this perfect fitting will render it comparatively weak, the result of which will be found, when the carriage is completed and mounted on the wheels, by the springing of the sides, which will cause the pillars of the body to press on the doors, and it will be a matter of great difficulty to open them.
In the application of smith’s work to coach-building, it is often necessary to fit the iron to intricate parts while it is red hot, and if due precaution be not taken the wood becomes charred and useless, and in cases where there are glued joints it may cause the loosening or breaking of these joints and other material defects. It is an easy matter to have the means at hand to get over the difficulty. All that is necessary is to have handy some heat neutraliser. One of the commonest things that can be used is chalk, and no smith’s shop should ever be without it. If chalk is rubbed over the surface to which the hot iron is to be applied it will not char or burn. Plaster of Paris is a still more powerful heat neutraliser, and it is freer from grit. A small quantity of the plaster mixed with water, and worked up to the proper consistency, will be ready for use in about two hours. Many smiths will say that they never have any accidents in applying heated iron, but on inquiry the reason is apparent, for it will generally be found that such men use chalk, in order to see that the iron plate takes its proper bearings, thus inadvertently using a proper heat neutraliser. If it were more generally known that the difficulty could be met by such simple means, there would be less material spoilt in the smith’s shop.
It has been very common of late years for body-makers to use glue instead of screws and nails for panel work, &c.; but it requires a great deal of experience for a man to use glue with successful results. It is useless for the tyro to try it; he will only spoil the work. So, unless the artisan be well experienced in the treatment and application of glue, he had better leave it alone. To render the operation successful two considerations must be taken into account. First: To do good gluing requires that the timber should be well seasoned and the work well fitted. Second: In preparing for gluing use a scratch plane or rasp to form a rough surface of the pieces to be joined together, for the same purpose that a plasterer scores over his first coat of plaster-work, in order to give a key or hold. The shop in which the gluing is done should be at a pretty good temperature, and so should the material, so that the glue may flow freely. Having the glue properly prepared, spread it upon the parts, so as to fill up the pores and grain of the wood, and put the pieces together; then keep the joints tight by means of iron cramps where it is possible, and if this cannot be done the joints must be pushed tightly up, and held till the glue is a little set and there is no fear of its giving way. All superfluous glue will be forced out by this pressure and can be cleaned off.
A great cause of bad gluing is using inferior glue and laying it on too thick. Before using a new quality of glue, the body-maker should always test it by taking, say a piece of poplar and a piece of ash, and glue them together, and if when dry the joints give way under leverage caused by the insertion of the chisel, the glue is not fit for the purposes of carriage-building and should be rejected. With good glue, like good cement, the material should rather give way than the substance promoting adhesion. This is a very severe test, but in putting it into practice you will be repaid by the stability of your work.
Waterproof Glue.
It is often found that joints glued together will allow water to dissolve the glue, and thereby destroy its adhesive power. It may have been well painted and every care taken to make it impervious to water, but owing to its exposed position water has managed to get in. Often where screws are put in the glue around them will be dissolved, caused by the screws sweating; and it is very often found, where the screws are inserted in a panel, that the glue loses its strength and allows the joint to open, and there is little or no appearance of glue on the wood, which shows that it has been absorbed by the moisture.
To render ordinary glue insoluble, the water with which it is mixed should have a little bichromate of potash dissolved in it. Chromic acid has the property of rendering glue or gelatine insoluble. And, as the operation of heating the glue pot is conducted in the light, no special exposure of the pieces joined is necessary.
Glue prepared in this manner is preferable in gluing the panels on bodies, which are liable to the action of water or damp. The strength of the glue is not affected by the addition of the potash.
In plugging screw holes glue the edge of the plug; put no glue into the hole. By this means the surplus glue is left on the surface, and if the plug does not hit the screw it will seldom show.
Where brads are used the heads should be well set in; then pass a sponge well saturated with hot water over them, filling the holes with water. This brings the wood more to its natural position, and it closes by degrees over the brad heads. The brad must have a chance to expand, when exposed to the heat of the sun, without hitting the putty stopping; if it does it will force the putty out so as to show, by disturbing the surface, after the work is finished.
CHAPTER V.
PARTS COMPOSING THE UNDER-CARRIAGE.—FRAMING THEM TOGETHER.—WROUGHT-IRON PERCHES.—BRAKES.
We have now to consider the construction of the lower framework, or carriage.
The following is a list of the chief parts of a coach, as generally known:—
Wheels.
Axles.
Springs.
Beds, or cross framing timbers, which are technically termed the fore axle bed, the hind axle bed, fore spring bed or transom, hind spring bed, and horn bar.
Perch, or central longitudinal timber connecting the axletrees.
Wings, which are spreading sides, hooped to the perch and framed to the hind beds.
Nunters, or small framing pieces, which help to bind the hind beds together.
Hooping-piece. A piece of timber scarped and hooped to the fore end of the perch to secure it to the
Wheel plate, which is the circular iron beneath which the fore carriage turns.
The fore carriage consists of the fore axle beds, into which are framed the
Futchells (French, fourchil, a fork), which are the longitudinal timbers supporting the
Splinter-bar and the
Pole, to which the horses are attached.
The hinder ends of the futchells support the
Sway-bar—a circular piece of timber working beneath the wheel-plate.
A circular piece of timber of smaller size, supported on the fore part of the futchells for a similar purpose, is called the
Felloe-piece (often made of iron).
On the splinter-bar are fixed the
Roller bolts, for fastening the traces.
On the pole is fixed the
Pole hook, to secure the harness.
The perch and beds are strengthened with iron plates, where necessary, and the other ironwork consists of
Splinter-bar stays, to resist the action of the draught. Formerly these were affixed to the ends of the axles and called “wheel-irons.”
Tread-steps, for the coachman to mount by.
Footman’s step.
Spring-stays.
On the beds are placed
Blocks, to support the
C springs; to which are attached
Jacks, or small windlasses, and
Leathern suspension braces.
These parts fitted together would form what is generally known as a coach, or a vehicle, the body of which is large, and suspended by leathern braces from the ends of C springs. They enter into the formation of all vehicles more or less, but for the other kinds some part or parts are omitted, as in a brougham hung on elliptic springs, the C springs, perch, leather braces, &c., would be omitted, and, of course, elliptic springs and a pump-handle would be added. All the woodwork is lightened as much as possible by the introduction of beading, carving, chamfering, &c.
In starting the carriage part the workman first takes the perch and planes a flat side to it, and then works it taper from front to back. The top and bottom curves are then worked up, or at least some portion of them, and then the front and hind spring beds are framed on. A pair of spreading wings are then fitted to the sides of the perch; these are simply circular iron stays, swelled and moulded to take off their plainness. A pair is fitted at each end of the perch. The hind axletree bed is then scarfed upon the top of the perch and wings, and is connected with the hind spring bed by two small framing pieces called nunters. At the front end of the perch a cross bed called a horn-bar is scarfed on the perch, at the same distance from the fore spring bed as the hind axle bed is from the hind spring bed, viz. the length of the bearing of the spring, or about 15 inches. The horn-bar is connected with the fore spring bed by the two spring blocks, which are either framed into them or scarfed down on them, and also by the hooping-piece, which is scarfed on the top of the perch. The perch is then planed up to the curve it is to have when finished, and it is then taken to the smith, who fits and rivets on the side plates, which have ears at the ends for the purpose of bolting them to the beds. The carver then does his work by beading the perch and beds, having due regard to the finish of the parts, rounds and curves all the ends. On the under side of the perch is riveted an iron plate, and on this plate is an iron hook for hanging the drag shoe and chain (if such be used). The hind framing is now put together, all connections being by means of mortises and tenons secured by screw-bolts. The wings used to be, and sometimes still are, of wood, in which case they are hooped to the perch by iron hoops, and are rebated to receive the perch plates. The hooping-piece is then hooped in a similar way to the fore end of the perch, and the transom firmly bolted. The carriage is then turned bottom upwards, and the smith fits to the fore part the wheel plate or turning iron, across which runs a broad plate the width and length of the fore spring bed. A similar plate runs across the hind spring bed. The hind axle is then fitted to the wings and perch, and let into its bed at the ends, where screw clips secure it, the bolts passing through the perch.
The carriage is then turned up into its old position; the wheel-plate is cased on the top with carved wood, and a plate is riveted to the side of the horn-bar. The springs are now fitted to their blocks and bolted firmly down. Iron stays are bolted to the springs beneath the beds to render them still firmer. The footman’s step, and the steps for the coachman to mount to his box by, and other ironwork that may be required in the shape of stays, &c., are then fixed in their place.
The under portion of the fore carriage is framed to the fore axletree bed, which is a very stout piece of timber. Through this are framed the two futchells which receive the pole. The upper part of the axletree bed is covered with a strong plate to match the wheel-plate. A circular piece of timber, called a sway-bar, is bolted behind the axletree bed, and this is also plated beneath for security. In front is a smaller piece of the same kind, and they both serve for the circumference of the wheel to rest on. The splinter-bar is bolted on to the fore end of the futchells and secured by branching stays, one at either end connecting it with the axletree bed. As an additional security, iron stays are fitted to the bottoms of the futchells passing over the axle, which, in addition to bolts, is secured by screw clips at the ends, the same as the hind one.
The carriage above described is one suspended only on C springs. Sometimes elliptic springs are used in conjunction with C springs, and the former are then termed under-springs. In the latter case, of the double combination of springs, the constructional timbers may be of a less size or scantling, owing to some of the strain and concussion being removed. In this case the axles are clipped to the under-springs; but the general mode of construction is the same.
In first-class work a wrought-iron perch is used instead of the before described wooden one. This generally follows the contour of the underside of the body, and is called a swan neck. It enables the perch to be constructed of a much lighter appearance, and being really light, and to a certain extent elastic, all the beds and iron stays may be proportionately reduced in weight. The wheels and axles also, having less to carry, may also be made lighter. The system was introduced by Messrs. Hooper about 1846, and at first was only applied to broughams and sociables, but it has gradually been applied to the largest carriages, especially barouches and landaus. These perches are supported on horizontal under-springs, and are not now made so light as at first, for it is found that unless the hind wheels follow steadily, not only is the carriage heavier behind the horse, but the perch itself is frequently bent against very small obstructions; a stronger and stiffer perch is therefore now used, and it is found easier both to the horse and to the passengers.
When the body is suspended from C springs by leather braces, great care should be used in the selection of the material for these latter, and for this purpose the best and strongest leather is required.
The use of brake retarders to the hind wheels has now for some years superseded the old-fashioned drag shoes. It is evident that the action on two wheels must be better than on one only. The brake can be applied or removed without stopping the carriage, which is necessary if a drag shoe be used. This is rather an important consideration in undulating country, for it would be a great inconvenience to have to get down and put on the drag shoe when descending a hill, and when at the bottom to stop and get down again to remove it, in order to proceed along level ground or up the next hill, and so keep on like this all day. The lever brake was the original form, as still seen on drags, &c., but in many parts it is superseded by the foot or treadle brake, more especially in Scotland. This kind of brake is also the one used by the London Omnibus Company. The blocks which press upon the wheels have been made of various substances—cast iron, wrought iron, brass, wood, india-rubber, and leather. The wood is the best for the hold on the iron tyre and absence of noise and smell, but it wears out fast. India-rubber, especially for light carriages, seems to be the most satisfactory.
We have given, generally, the operation of framing together the under or carriage parts of the vehicle. But as some very important considerations regulate the shape, construction, and formation of most of these parts, they must be discussed separately. For this purpose they will be considered under the following headings:—
Wheels.
Axles.
Springs.
Wheel-plates and fore-carriages.
Ironwork generally.
CHAPTER VI.
WHEELS.
A wheel for a locomotive vehicle is a circular roller, either cylindrical or conical, the width or thickness of which is considerably less than its diameter. It may be either solid or constructed of various pieces, in which latter case it is called a framed wheel. It may also be made of wood or metal, or a combination of both.
Wheels which were made before the introduction of iron were of course very clumsy in their construction, in order to obtain the requisite strength. Specimens may still be seen in the broad wheels of waggons, technically termed rollers. The naves of these wheels are of enormous size. But when the naves of wheels were reduced for the purposes of elegance, a thin hoop of iron was applied both to the front and back, to prevent them from bursting by the strain on the spokes. When the felloes of wheels were reduced in size, straps of iron, called strakes or streaks, were applied to their convex surfaces covering the joints. But the last improvement was the most important of all, namely, the application of a “hoop-tire” instead of what was called the “strake-tire.” Mr. Felton, in his treatise on coach-building, 1709, says, “Many persons prefer the common sort of wheel on account of their being more easily repaired than the hoop-tyre wheel; but though repairing the latter is more difficult, they are much less subject to need it.”
The earliest form of wheel was no doubt a slice of the trunk of a tree; portions of this being cut out for the purpose of lightening it would be the forerunner of spokes, or we should think the pieces left running from the nave to the felloe would be. The only improvement then effected for a very long period was making them of different pieces of timber instead of all from one piece, though of course the proportions of the parts would be considerably improved, if only for the sake of appearance.
At the end of the seventeenth century, among the wealthier classes, decoration was applied to coaches generally, and wheels in particular, to an extent which would surprise us nowadays. These latter were again ornamented as in the times of the old Roman Empire; the spokes were shaped and carved, the rim moulded, and the naves highly embossed; though, as may be imagined, there was a great want of taste in the application of all this ornament.
Towards the end of the eighteenth century, the extreme height of wheels extended to 5 feet 8 inches, which had but 14 spokes; wheels 5 feet 4 inches high had 12 spokes; wheels 4 feet 6 inches had 10 spokes; and the lowest wheels, 3 feet 2 inches high, had 8 spokes. The naves were of elm, the spokes of oak, and the rims or felloes of ash or beech. The rims of the higher wheels were often of bent timber, in two or more pieces, and were bolted to the tires by one bolt between each pair of spokes. The tire was put on in pieces, until the hoop-tire came into general use, when it superseded the old ones entirely. In consequence of the great height of the wheels it was necessary to make the carriages very long, and the distance from the front to the hind axletree was 9 feet 2 inches in a chariot, and 9 feet 8 inches in a coach, or about 8 inches longer than we should consider necessary now.
These extreme sizes are now very seldom used, except in the case of large dress or state carriages and coaches.
The form of wheel now generally preferred in practice is of the dished or conical kind, and the axle-arm on which it revolves is sloped or bent so far out of the horizontal that the lower spokes are in a vertical position. Undoubtedly the friction is increased by this arrangement, because a wheel on a horizontal axle runs easiest and smoothest; and when the axle-arm is slanted downwards towards the point the wheel has a tendency to bind harder against the shoulder which butts against the nave of the wheel, and the friction between the two is greater than would be the case if the axle-arm were perfectly horizontal. This, however, is a very small objection, inasmuch as this collar is firm and strong, and well fitted to bear any strain that may be thrown on it by the wheel; whereas, if the force acted in the other direction, or against the nuts and linch-pins, there are very few that would last out a day’s journey. The advantage of throwing the strain on the firm and strong shoulder, which is well able to withstand it, is evident; and in this case, in the event of the nuts or linch-pins falling off or giving way, there is not so much danger of the wheel coming off at the moment the nuts go, as its tendency when on a level road is to run upwards towards the shoulder. Besides this, as the lower spokes are in a vertical position, the upper ones spread considerably outwards, and thus afford a greater space for the body between the wheels without the track on the ground being increased; and another advantage is that the mud collected by these conical wheels is thrown off away from the carriage.
The hind wheels of an ordinary carriage vary from 4 feet 3 inches to 4 feet 8 inches; the fore wheels are from 3 feet 4 inches to 3 feet 8 inches. The number of felloes in each circumference varies according to the number of spokes, two spokes being driven into each felloe; 14 to 20 spokes are a usual number for a hind wheel, 12 to 18 for a fore wheel; however, there is no rule to guide one in the matter, experience being the only teacher.
The wheels should be made with a due regard to the offices they have to fulfil; but we are inclined to think that this branch of the trade has not received that careful study which it deserves. Coachmakers seem in such a hurry to produce a perfect vehicle all at once, instead of beginning by improving the parts and then applying these improvements to the whole.
Fig. 11.
The mode of constructing a wheel is as follows:—
The timbers that are to be used should be well and carefully selected. The nave or stock, which is sliced from the limb of a tree, should be as nearly as possible the size required in its natural growth, so that it will require little reduction beyond what it receives in the lathe in bringing it up to the true circular form. The reason of this is that the annual rings which mark the grain of the timber should be as little disturbed as possible, as they are not all of equal strength and durability, the outer rings being pretty strong, but as they get nearer to the centre the wood is much softer. If, then, this outer hard casing is cut away, even only in part, it is signing the death-warrant of the poor nave, for the interior parts of the timber are not nearly so capable of resisting the destructive influences around, and in a very short time they will become completely soft and rotten.
Fig. 12.
As already remarked, the spokes should be cleft, not cut. The felloes which form the outer periphery of the wheel should also be cut as closely following the grain as possible.
When the wheelwright has carefully selected his timbers, he commences work by turning the stock in the lathe to the size required. Then he marks with a gauge of the same width as the spokes 4 circles as shown at a a a a, [Fig. 13]. The first and third of these mark the position of the front or face spoke, and the second and fourth mark the position of the back spoke. Two holes are then bored in each mortise in succession, after which they are squared out with proper chisels. Truth of eye and skill of hand are the workmen’s only guide in this operation, though it is evident that it is the most important operation of the whole, as upon it depend the accuracy and solidity of the wheel when finished. The tenons of the spokes are then cut to fit the mortises, parallel in their thickness, but in width they are cut slightly taper-wise, i.e. the extremity of the tenon is made about the same size as the mortise, but at the shoulder it is about one sixteenth of an inch larger, so as to make sure of the tenon filling the mortise when driven home.
Fig. 13.
Before cutting the mortises the stock should be fixed at some convenient angle, regulated by the amount of dish it is intended to give the wheel. This is particularly necessary, or when the felloes come to be fitted, if the mortise-cutting has been done in a slovenly way, the dish will not exist at all, or if it does it will be in the wrong direction.
Each alternate spoke is now driven in by the blows of a mallet to a perfectly close bearing of the shoulder of the tenon, the workman guiding it as best he can. But it is evident that the position that the spokes will take is by no means certain. Owing to the wedge-like form given to the tenon, the spokes are driven home very tight, and wood not being of a homogeneous texture will yield more in one part than in another; and the mortise, cut in the way that it is, must be to some extent uncertain. Every alternate spoke being driven, or those in the same plane, the remainder are driven in between them in the same manner.
Fig. 14.
In [Fig. 13], b, b, b, are the mortises for the face spoke, and c, c, c, the mortises for the back spoke. [Fig. 14] shows a section of an ordinary spoke, the hatched part showing the form of the greater part of its length, and the plain lines completing the rectangle show the extent of the swelling at the shoulder of the tenon at the nave.
Fig. 15.
[Fig. 15] shows a very handy adjunct to the wheelwright’s shop; it is called the “centring square.” It is found extremely useful in marking and setting out the mortises for the spokes. Its construction is very simple, being but a T square, whose stock is the segment of a circle. A is the blade, B the circular stock, the extremities of which should be protected by steel or brass, or, better still, have a steel edge round the whole of the inner surface of the stock, so that it will always keep true; for if it wears at all, of course its true circular form will be destroyed, and it will be rendered useless. And another important thing should be borne in mind, and that is to make the upper edge, C, of the blade in a line with the centre of the curve from which the circular head is struck; the reason of this will be apparent to the most obtuse, for unless the lines radiate from the given centre it is useless for the wheelwright’s purpose.
After the spokes have been driven in they are shaved off by the spokeshave to their proper form, [Fig. 14]; and the lengths being measured from the nave, the outer tenons are cut, sometimes square, sometimes cylindrical, but leaving the back shoulder square to abut on the felloe with greater firmness. In the manner of tonguing there is a great deal of difference of opinion amongst wheelwrights; that the tongues in size should be slightly in excess of the hole or mortise to receive them, is a generally received idea, but a difference of opinion exists as to the length. But certainly it seems more reasonable to cut the tongues a little shorter than the length of the hole in the felloe to receive them, because when the tyre is put on it shrinks in cooling and draws up all the joints. Now suppose the tongues are a little longer than the holes, the shrinking of the tire causes it to press on these; and as they are firmly fixed at the nave, there is no escape for them, and the result is that the spoke is seriously crippled. It is fair to say that there are many good practical men who work in this latter way, and with to all appearance good results, but it is evident that the principle is not a good one.
One of the difficulties in making light carriage wheels is to get the spoke tightly into the felloe without splitting it, and the manner of accomplishing this is more successfully done, not by making the tongue on the spoke so large that it will fill the hole in the felloe of itself, but by making the tongue rather smaller and slitting the edges after it has been driven in, and then wedging up with small wedges, just in the same manner that a joiner would wedge up the mortises and tenons of a door.
When the wheel is so far progressed with it is laid on the ground, and the felloes are ranged round it in the order they are to be fitted. It is of the greatest importance that the holes should be bored in the felloe in an exact radial line from the nave; if this is not done, the spoke will have to be strained out of the straight line in order to get it into the hole; this will put an undue pressure upon it, and it is very likely that before the wheel has been long in use the spoke will break off short at the felloe. The exact position of all the mortises and joints should, therefore, be worked out on a full-sized drawing, and this being accurately done, there will not be much danger of going wrong. As the construction of a wheel is somewhat analogous to the arch, it is considered that by giving the felloes a number of joints the strength of the wheel is very much increased. Whether this be so or not must be left to the theorists to determine, as we have no trustworthy results from the various experiments under this heading.
The number of felloes in a wheel is decided by its size and number of spokes, two spokes being driven into each felloe. For an ordinary-sized brougham the felloes should be seven in number for the hind wheels, and six for the front wheels, or fourteen and twelve spokes respectively. For the purpose of connecting the felloes, a dowel or pin is cut on the end of one of them, and a corresponding hole bored on another, and they are fitted together; in common work holes are bored in each felloe, and an independent pin of hard wood or iron fitted into them. There is less time and labour consumed in this latter method; but the felloes constructed on this plan are not very reliable, and their weakness is soon shown by what is known as “dropping,” which is simply caused by the wear and tear to which wheels are subject working the dowels in the holes and enlarging them (the holes), and destroying the truth of the joint, which loss is soon discovered by the play or freedom given to the felloes allowing them to slip out of their place. But it must be borne in mind that this defect is just as liable to take place in felloes put together in the other way if the holes are not truly bored, and the joints are not well fitted.
The following directions as to putting on the tires are given in the “Coachmaker’s Handbook,” an American work:—
“First examine the wheels and see what condition they are in for the tire, so that we can determine what draught to give them. See if the felloes are drawn snug on the shoulder of the spokes, and how much open there is in the rim; for instance, one set we will suppose to be 1½-inch felloe, open ³⁄₁₆ of an inch, give a good ¼-inch draught; 1⅜-inch felloe, ³⁄₁₆ open, just ¼-inch draught; 1¼-inch felloe, ³⁄₁₆ open, ³⁄₁₆-draught, and so on.
“Now in determining what draught to give the above wheels, we supposed them all to be good, sound, hard, hickory felloes; if the felloes are of soft timber just give them a trifle more draught. If the wheels should be above ¼-inch dish, the felloes would want only one-half the opening, but give them the same draught as the above. In running the tire, lay all the above tire in sets on the floor, roll the wheels on them, and allow 1 inch for taking up in bending; then mark the end of the nave with chalk, 1, 2, 3, 4, &c., and the tire with a sharp cold chisel mark I., II., III., IV., &c. Then straighten on a block set up endwise about 2 feet high, a little concave or hollow in the centre, letting the helper strike while the smith manages the tires until the kinks are all taken out of them. Then bend one end a little, so that it can be got into the machine, and take pains to get them as round as possible.
“In running the wheels with a ‘traveller,’ a wedge must be driven in one of the joints of the felloe for the purpose of tightening the other joints in the rim. Then get the length of the felloe, and in running the tire cut it ⅛ inch shorter than the rim measures. In this explanation we are supposed to have steel tire, and we have a kind of steel tire now that is very high and difficult to weld, and there are many smiths that will profit by this lesson if they attend to the precaution we give. This tire steel will not stand as heavy heat as even cast steel, and if it is over-heated in the least it will crack or break in two while hot.
“There is one peculiar fact connected with it that we find in no other kind of steel, and that is this: it is apt to slip, however good the heat, and to obviate this, after scaffing the ends down to a sharp edge, make a rather sharp lap, and while hot take a sharp-pointed punch and punch a hole nearly through both laps, and drive in a sharp pin made of ³⁄₁₆-inch steel wire and ½ inch long. This will not show on the outside of the tire when on the wheel, neither does it weaken the tire like a rivet. We have often seen tires broken where the rivet went through.
“In welding, first have your fire perfectly clean, the coal pretty well charred, and the fire hot, but rather small, for the smaller the fire, if hot, the less it will waste your tire each side of the weld; have the borax charred; put a little on the weld while hot, pull the fire open with the poker and place the lap in the hottest part; roll a few pieces of coked coal on the weld, blow steadily, carrying your tire back and forward through the fire, or stop the blast a moment until the lap is heated alike all through; take it out and weld with hammer and sledge. With this precaution you will never fail getting a good welding heat, and need not upset your tire before welding. If your tire is upset before welding it makes the lap so much thicker that before it can be heated through alike there is a liability to over-heat, and waste away the tire on each side of the weld.
“In laying the tires down the heaviest should be laid at the bottom, and levelled with brick, so that the tire will rest permanently on every brick or bearing, and the rest laid on top the way they will fit best, to prevent warping the tire in the fire. A level stone should be used to lay the wheel on when the tire is put on. If the tires do not get warped in the fire do not hammer them at all, without there are some kinks left in the tires in fitting them; avoid hammering if possible, for it marks the tire; cool off, gradually pouring the water on out of the spout of a tea-kettle until it shrinks enough so it can be taken up; then roll it in soap-water to prevent it from hardening, until it is so cool that it will not burn the felloes, truing up while the helper is rolling it in the water with a mallet covered with thick leather at both ends; let the third person take the wheel and finish truing the tire with a leather-covered mallet; while it is so hot that you cannot bear your hand on it the felloes move easily under the tire, and it should not be moved after it has cooled off if it can be otherwise avoided, for this reason, when the tire gets cold all its roughness and imperfections become embedded in the felloe.”
“The tire once moved will move the easier next time. After the tires are all on examine the wheels, and see if there are any crooked spots in the tire that do not set down to the rim; should there be any, heat a short piece of iron and lay on the tire, it will soon heat it enough to burn the felloe, but take it off before that time, and rap it down with a hammer. It is a bad practice to heat the tires on a forge as some do, for in truing them in fitting we have to bend them cold, and if heated on the forge and one place red hot, you will often find there a short crook edgewise. If some of the wheels are dished more than the others, put them on the off-side of the carriage. Never take a tire off if it can be avoided, without it is so loose or tight as to spoil the wheel when run.”
When the tire has got sufficiently cold it is riveted to the felloe by countersunk rivets, one on each side of the felloe joints.
The strength or weakness of wheels plays an important part in the durability of the vehicle, for in whatever manner the various forces are mechanically met they at last concentrate themselves on the wheel; it is highly necessary, therefore, that great pains should be taken in constructing them. The stock is not necessarily the foundation on which to build a wheel, and, further, there are many objections to its being so constituted. In the first place, when its centre is all scooped out for the reception of the axle-box, and its sides are mortised out to receive the ends of the spokes, it is nothing but a mere shell. Every mortise hole is more or less a receptacle for water, which the best workmanship cannot wholly exclude; and as one part of the stock is always more porous than another, that is the part that will soonest absorb wet and begin to decay. If, therefore, the stock could be dispensed with greater durability would be insured.
Fig. 16. Fig. 17.
A thoughtful inventor, turning over these things in his mind, has, during the last few years, produced a wheel of novel construction, which is found practically to be superior to the one in common use. All the spokes, instead of being shouldered down to enter the stock, are made wedge-shaped at the end, and instead of the wheel being constructed from the centre to the felloe, it is constructed from the felloe to the centre. Every felloe is made and fitted with its two spokes, which, as they converge towards the centre, press upon each other in such a manner that when the whole periphery is put together a solid centre is produced by the spokes themselves, as shown in [Figs. 16 and 17]; so that instead of being dependent on wooden stocks the spokes are dependent upon each other, and by being tightly wedged together create a mutual support and resistance. The whole are secured by two metal flanges, one at the back and one at the front of the centre of the wheel, which are tightly screwed up, by which means the greatest amount of solidity is obtained for the entire structure of the wheel.
This invention is due to the Messrs. McNeile Brothers, of the Patent Steam Wheel and Axle Company, and it is a significant fact that wheels similarly constructed have for a considerable time been adopted by the Royal Artillery; moreover, they have been extensively used on street cabs, heavy carts, more particularly the latter, and have invariably maintained their character for superiority. For ourselves, we can see that a wheel so constructed must possess peculiar advantages. There is no stock to rot, and the wheel cannot in any sense be spoke-bound, as is frequently the case with wheels of ordinary construction, by the mortise in the stock and the bore in the felloe not ranging in a true line with the spoke. In the growing desire to produce wheels of light construction, great efforts have been made to reduce the size of the centre, and the inventors of these wheels have been very successful in obtaining this object. At the centre their wheels are exceedingly light and ornamental in appearance, and to render them still more uniform they have shortened the arm of their axles, and consequently curtailed the length of the axle-box, so that there is the smallest possible projection at the centre of the wheel. At the same time all the advantages and peculiarities of Collinge’s principle are retained. In the ordinary Collinge axle the bearing is not upon the whole length of the arm, and practically speaking Messrs. McNeile have in their axles cut out all that part which is useless in this respect, so that although their axle-arm is considerably shorter, the bearing is the same as in the Collinge axle of ordinary construction.
One of the greatest disadvantages in the manufacture of wheels is the want of uniformity between one another. Scarcely any two wheels are alike. Scarcely any spokes in a wheel radiate alike; some are as much as an inch apart more than others at the felloe; and as the shrinking of the tire varies, some wheels, as a consequence, get more dish than others, the spokes either compressing in the nave mortises, or yielding by elasticity in the direction of their length. To get them at all accurate, it is necessary to employ very skilful workmen, and as skilful workmen are not so numerous as they might be, the cost of wheels is very much increased. Another disadvantage attends them: a workman may put his work badly together, and there is no means of detecting it till the wheel is in actual use. A badly framed wheel will show as well to the eye as a good one, and until it breaks down, no one, whether maker or customer, can detect the inaccuracy. Unless the master watches every wheel while the spokes are driving he can only depend on the good faith of his workmen.
There is no remedy for this evil except substituting machines for men’s hands. The machine, if it cuts true once, will cut true always. Every piece of wood in a wheel ought to be shaped by machinery. The felloes should be sawn to their exact size, curve, and length by machine saws; they should be bored by machine augurs, and rounded by machine shavers. The spokes should be tenoned by machine saws, and shaped by machine lathes. The naves should be cut by a machine lathe, and the mortises in the same cut by a machine chisel. The spokes should not be driven in by the irregular strokes of a mallet, but be forced into their places by the regular pressure of a machine. And when the tire is put on the wheel should be fixed in a frame, in order to preserve an exact size and shape. When all these things are done, we may hope to procure wooden wheels alike in form and quality, and moreover, accurately circular, which very often they are not at present. All the machines should be worked by a steam engine. There is scarcely any article of manufacture for which there is so large a demand, and there is no great variation in their mode of construction. Coachmakers generally seem to cling to the old traditions of their craft with great tenacity; possibly they think it savours of sacrilege to let progress enter their workshops too rapidly.
Fig. 18.
The above remarks may be qualified by stating that some of the largest manufacturers have introduced machinery, generally, into the departments in which it is applicable, and more particularly in the wheelwrights’ department. Some years since Messrs. Holmes, of Derby, had mechanical appliances worked by steam power for the following purposes:—Cutting tenons on the spokes, squaring the ends of the felloes, also regulating their length according to the size of wheel required; a narrow upright saw for cutting curved timber; machine for cutting felloes of the required size and curve; machine for boring felloes for the ends of spokes, and many other appliances for lightening hand-labour and insuring greater accuracy in the manufacture. But workshops filled up in this way are not yet the rule, though their number is increasing, and so are the inventions for application of mechanical power to the various processes.
Fig. 19.
It seems rather paradoxical to state that the dished or conical wheel is the strongest. But the fact is, its strength arises from the solid hoop-tyre; with a strake tyre the upright wheel would be the strongest. When running, the great lateral strain on the wheel is from the outside. Consequently, if the wheel be dished in an opposite direction, the thrust will be in the direction of the greatest resistance. The spokes cannot yield, because in yielding they would increase the area of the circle, and this the tyre will not permit. Upon the same principle in carpentry, which constitutes the curved or cambered beam the strongest, the dished wheel is stronger than the straight one.
Here is one very important item which must not be overlooked in the wheelwright department, and that is, the size of the axle-box. The axle-box is a lining of cast iron, on which the axle-arm takes its bearing. Two forms of these are given in Figs. [18] and [19].
Fig. 20.
[Fig. 20] shows an improved form of stock. It will be seen it is to be applied to straight wheels, and requires no further description beyond noting that the stock is not weakened so much as in the ordinary way by mortising, an iron band, A, circumscribing the nave and forming a hold for the spokes.
Wheels should be made with a sufficient number of spokes to properly divide the space at the felloes, and afford sufficient support to prevent sinking in between the spokes, and at the same time avoid too many to weaken the stock. The less the number of spokes, the stronger the hub and the weaker the felloe. Judgment should be used in dividing the difference, so as to make each part of the wheel strong in proportion.
CHAPTER VII.
AXLES.
An axle, or an axletree, for a locomotive wheel vehicle, is that portion of wood or metal, or both combined, which serves as the axis or centre for the wheels to turn round on.
The name axle-tree at once indicates the substance originally employed for it, viz. wood. Axletrees are of two kinds; those which are fixed firmly in the wheels and revolve in gudgeons beneath the wheels, and those in which the wheel moves independently of the axle. The former, as being the rudest, was probably the first kind used. The earliest fixed axletrees were simply pieces of hard timber, with the ends rounded down into a conical form, that form being the easiest to fit to the wheel. Subsequently they were plated with iron to resist wear.
In the earliest iron axles the conical form was still preserved, for the obvious reason of easy adjustment to the wheel. These iron axles were not made in a solid piece, but were merely short ends bedded in and bolted to a wooden centre. Examples of these axles may still be seen in heavy carts and waggons.
The next improvement was to make the axles of a single bar of iron, and this practice has now become common. An axle is technically divided into three parts—the two arms, or extremities, on which the wheel revolves, and the bed, or that portion which connects the two arms together. The commonest axles, which are manufactured for the sake of greater cheapness, are formed of a square bar simply rolled to shape between mill rollers. This iron is uncertain in its quality, as it is liable to have sand cracks, blisters, and other imperfections, which cause axletrees when made from it to break down under strong concussion. To guard against this, the best axletrees are formed of several flat bars or rods of iron welded together in a mass; this is technically called “faggoting.” If you wish to discover whether an axle has been made in this way heat it to a red heat, and if it has been faggoted the grain or lines of the rods of iron running in different directions will be plainly discerned. The size is regulated by the weight it is intended to carry.
For a very heavy coach from 2 to 2¼ inches in diameter and 10 to 11 inches long in the arm is a fair size. For light carriages, both four and two-wheeled, 1½ inches in diameter and 8 inches length in the arm is a common size. Occasionally some are made as small as 1¼ inches in diameter. It should be remarked that a less size of axle would perform the work required of it if it were stationary, as in mill-work; but for locomotive vehicles it is necessary to provide against the greatest concussion they can meet with in ordinary application.
When iron axles were first used it was customary to drive an iron ring or hoop, 2 or 3 inches broad, into either end of the nave, to prevent too rapid wear. This plan is still used occasionally in heavy carts, but otherwise axles are always fitted with iron boxes, adjusted to the arms with more or less accuracy, according to the price and the material used for lubrication. For the prevention of friction in wooden axles soap or black-lead is the best materials; for common, coarse axles, a thick unctuous grease is the best adapted; but for axles that are accurately made and fitted to the boxes there is no lubricating material equal to oil of the purest kind which can be prepared, i.e. freest from mucilage or gelatine, according as it may be of vegetable or animal production.
The commonest axles now used are of a conical form, with a box of plate iron fitted to them. This box is made by welding the two edges of the iron together in a broad projecting seam, which helps to secure it to the nave. The inside of the box is sunk into hollows for the purpose of holding the lubricating grease. At the upper end of the arm the axle is left square, and against this a large iron washer is usually shrunk on hot. Against this washer the box works. To secure the wheel against coming off a small iron collar is placed on the reduced outer end of the arm, and a linch-pin is driven through the arm beyond it.
An improvement on this kind of axle is when the collar at the upper end or shoulder is made solid by welding, and a screw nut with a linch-pin through it is substituted for the collar and linch-pin. These nuts are commonly made six-sided, with a mortise or slot for the linch-pin through each side, in order to afford greater facility for adjustment. In all other particulars this axle is the same as the last, except that it is occasionally case-hardened to prevent wear and friction.
In travelling, these axles require to be fresh greased every two or three days, and the trouble thus caused is very considerable, besides the risk of omission, in which case the axle is likely to be entirely spoiled.
The commonest kind of oil axle is called the “mail,” because the peculiar mode of fastening was first used in the mail coaches. The arm is not conical, but cylindrical, in the improved kind. At the shoulder of this axle a solid disc collar is welded on for the box to work against. Behind this shoulder collar revolves a circular flange-plate of wrought iron, pierced with three holes corresponding with holes in the wheel from front to back, through which long screw-bolts are driven, and their nuts screwed sufficiently tight against the circular flange-plate to allow easy motion. The wheel, when in motion, thus works round the shoulder collar, while the flange-plate secures it against coming off. This is not neat or accurate, but it is simple and secure, and no nut or linch-pin is required to the axle in front, while the front of the nave can be entirely covered in. When screwed up for work, a washer of thick leather is placed between the shoulder collar and the box, and another between the shoulder collar and the circular disc, which extends over the whole surface of the back of the nave. The box of this axle is of cast iron. The front is closed with a plate of metal, between which and the end of the axle-arm a space is left of about 1 inch as a reservoir for oil, which is poured in through a tube passing through the nave of the wheel and closed by a screw pin. At the back of the box there is a circular reservoir for oil, ¾ inch in depth and ½ inch wide. When the wheel is in motion the revolving of the box keeps the lubricating material in circulation between the two reservoirs; any portion getting below the arm at the shoulder gradually works its way out and is wasted. The oil in the back reservoir does not waste by leakage so rapidly as that in the front; but when the leather washer becomes saturated with water the oil is liable, by reason of its lightness, to float on the water in or about the washer, and thus get wasted.
This axle requires frequent examination when very much in use; but as it is neat in appearance, and under ordinary circumstances tolerably safe in working, and is not very expensive, it is much used. Both axle-box and axle-arm are case-hardened.
The other kind of axle used by carriage-builders is that known as “Collinge’s Patent.” The original intention of the inventor was to make it a cylindrical arm, with the box running round it against a coned shoulder, and secured by a coned nut in front; but, as it was found in practice that a leather washer was necessary at the shoulder to prevent jarring, this part of the plan was abandoned.
The commonest form of this axle now in use consists of a cylindrical arm with a broad shoulder collar. The box is of cast iron, and the back of it is similar to that of the mail axle before described. The front of it has a rebate cut in the box to receive a small conical collar and the screw of an oil cap. The arm of the axle is turned down in the lathe to two-thirds of the total thickness from the point where the rebate of the box begins. A flat side is filed on this reduced portion, and along it is made to slide a small collar of gun metal, with a conical face in the interior to fit against the coned interior of the rebate in the box. Against this collar, technically called the “collet,” a nut of gun metal is screwed, and against that again a second nut of smaller size, with a reversed thread, is tightly fixed. These two nuts, thus screwed in different directions, become as firm as though they were part of the axle itself, and no action of the wheel can loosen them, because the collet, which does not turn, removes all friction from them. But, as a further security, the end of the axle-arm projects beyond the farthest nut, and is drilled to receive a spring linch-pin. Over all a hollow cap of gun metal is screwed into the end of the box. This contains a supply of oil for lubricating purposes.
When the wheel is in motion the oil is pumped upwards from the cap and passes along the arm to the back reservoir, constantly revolving round the cap with the wheel. If the cap be too full of oil—that is, if the summit of the column of oil in the cap be at a horizontal level above the leakage point at the shoulder—it will pump away rapidly, and be wasted till it comes to the level of the leak, where it will be economically used. It is essential to the perfection of an oil action that the oil should not be permanently above the level of the leak, but that small portions should be continually washing up into that position by the action of the wheel in turning.
In order to insure their greater durability and freedom from friction these axles and their boxes are always case-hardened, i.e. their rubbing surfaces are converted into steel to a trifling depth by the process of cementation with animal charcoal for about two hours, when they are plunged into water. The boxes are ground on to the arms with oil and emery, either end being applied alternately, until a true fit between the two is accomplished.
The mode in which oil acts as a lessener of friction is by its being composed of an infinite number of movable globules, over which the fixed surfaces of the arm and box roll without causing that friction and wearing away which would be the result of the two iron surfaces worked together without any lubricant. This saving in the wear and tear of the axle-arm is accomplished by the destruction of the oil. From this we deduce that the greater the mass of oil or grease used the longer will the axle run, and in order to facilitate this as much as possible there should be so much space left between the bearing surfaces of the arm and the box as will allow of a film of oil to be between them.
A highly polished surface is desirable in an axle and box, as the bearing is more perfect and true. A rough surface is a surface of sharp angles, which will pierce through the oil and cause friction by contact.
To guard against the axle running dry, the arm is reduced in thickness at the centre for about an inch to allow a lodgment for the oil, and in the process of working this constitutes a circular pump, which draws up the oil from the front cap and distributes it over the area of the arms. But this, of course, will soon run dry, so that the best remedy to prevent the oil being exhausted and the sticking of the axle-arm in the box is careful attention.
A danger arising from careless fitting is the introduction of grit into the box. This grit is composed of small grains of silex, which is very much harder than iron or steel; the consequence is that it cuts and scores the bearing surfaces in all directions, and keys them firmly together, so that it is sometimes necessary to break the box to pieces in order to get it off the arm.
A patent was taken out to remedy these defects by casting three longitudinal triangular grooves in each box. The advantages gained by this are, that if grit gets in it finds its way to the bottom of the grooves and does not interfere with the action of the wheel, and, moreover, the grooves keep up a constant surface of oil in contact with the arm, instead of trusting to the mere capillary attraction. This does not interfere with the bearing surface in any marked degree.
In order that the axle shall be perfect the following considerations are necessary:—
That there be sufficient bearing surface for the arm to rest on.
That the box be of a convenient shape for insertion in the wheel.
That as large a body of oil as possible be kept in actual contact with the arm by washing up as the wheel revolves.
That the column of oil may be in no case above the horizontal level of the leakage point while the wheel is at rest.
Welding Steel Axles.
Many axles are now made of Bessemer steel. Generally speaking this is neither more nor less than iron, the pores of which are filled up with carbon or charcoal. The higher the steel the more carbon it contains. If steel be heated it loses a portion of this carbon, and the more it is heated the more it approaches its original state, viz. iron.
The welding of steel axles is said to be considerably assisted by the use of iron filings and borax. This is only true in case the steel should be over-heated, and even then only in degree.
Borax by itself is a very useful adjunct to this process, and it should have a small quantity of sal-ammoniac added, to assist its fusion or melting. The furnace or fire, which is to be used for the welding process, should be clean and free from new coal, to prevent sulphur getting on the steel. Of course, all coal has more or less sulphur in it; but iron or steel cannot be successfully welded when there is much sulphur in the fire, so it is well to be as careful in this respect as possible.
Place the ends of the axles in a clean bright fire, heat to a bright red heat, take them out, lap them over each other, and give them a few smart blows with the sledge. Now well cover them with powdered borax, and again put them into the fire and cover them up with coked coal, give a strong even blast, and carefully watch the appearance of the steel as the heat penetrates it, and see that all parts of the weld are equally well heated. When the heat is raised as high as the steel will safely bear (this knowledge can only be gained by experience, so no rule can be given for ascertaining the degree of heat, as it varies with the quality of the steel) take them out. Have two men ready to use the sledges. Place the axles on the anvil, securing them to prevent their slipping, and while one man places his hammer full on the weld, give the extremity of the lap or weld a smart blow or two, and if it adheres then both sledges can be applied until a true and workmanlike weld is formed.
It sometimes happens that when the axles are heated ready for welding and lapped, a light or a heavy blow, instead of uniting the laps, only jars them apart. This is a sure sign that they have been over-heated, and in this case it will be very difficult to form a weld at all. The only way of getting over this difficulty is to heat it to as high a degree as necessary, and put it in a vice and screw it up; the surfaces will adhere in this way when the other means fail.
Another cause of failure is the too free use of borax. If too much is used, it melts and runs about in the fire, unites with the dirt, and generally blocks up the nozzle of the blast, causing a great deal of trouble to dislodge. If the blast is not sufficient, then less heat is generated than is necessary, and it is impossible to form a good weld unless sufficient heat is applied.
Steel axles do not find great favour with the trade, although a large quantity of them are used. They are unreliable, breaking and fracturing without a moment’s warning, whereas an axle of faggoted iron would only twist under the same circumstances, and could easily be re-forged and set right again.
Setting Axles.
Setting axles is giving them the bend and slope required, in order to fall in with the principles of the dished wheel. It is chiefly applied to the axle-arm, and this is the most important part, setting the beds being mere caprice.
The great object to be obtained is, to give the arm the right pitch every way, to make the carriage run easy and as light as possible, even in the absence of a plumb spoke. All carriages do not look best, when running, with the bottom spoke plumb or vertical. In some of the heavier coaches or carriages more slope or “pitch” has to be given to the arm to carry the wheel away from the body, so as to bring them to some specified track, in order to suit some particular customer, so that we must be governed by circumstances.
There is a patent “axle-set,” but it is not of much assistance, for half the smiths know nothing about it, and if they did it would not be generally used, as the advantages derived from its use are not equal to the trouble of using it. Besides, the wheels are not always dished exactly alike, and it would require adjusting to each variety of wheel; and again, the wheels are not always (though they ought to be) ready; and when the smith knows the sort of vehicle he is working upon he can give his axles the required pitch, within half a degree or so, and the patent axle-set is, unfortunately, not capable of being adjusted to an idea.
Fig. 21.
[Fig. 21] shows a contrivance for setting the axles when cold, and consists of an iron bar A, 2 feet 1 inch long, and about 2 inches square at the fulcrum B. A hole is punched through the end to allow the screw C to go through; this hole to be oval, to allow the screw to move either way. At the end of this screw is an eye of sufficient size to go on to the axle-arm. In setting the axle the eye is slipped on to about the centre of the arm; the clevis, D, is placed on the bar A, near the end; the fulcrum, B, is placed at the shoulder, either on top or underneath, according as the axle may be required to set in or out. When the fulcrum is laid on top, a strip of harness leather should be placed on the axle bed, and on that, an iron E, of the shape of the axle bed, and on the end of this the fulcrum is placed; then by turning the screw the axle may be bent or set to any required pitch.
Fig. 22.
Fig. 23.
The figure shows the two ways of doing this, one with the bar or lever on top and the other with the lever below.
Figs. [22] and [23] show two improved forms of axles.
Fig. 24.
[Fig. 24] shows another variety of the axle-set. It consists of a bar hooked on to the axletree in two places. The bar is fastened by the clamp M, and fulcrum block F. The eyebolt, L, is hooked over the end of the spindle or arm, and the adjustment of the latter is accomplished by the screw, S, and the nuts J, K.
Weight of Round Iron per Foot.
| Diameter. Inch. | lbs. | Diameter. Inch. | lbs. |
| ¼ | ·163 | 2⅜ | 14·7 |
| ⅜ | ·368 | 2½ | 16·3 |
| ½ | ·654 | 2⅝ | 18·0 |
| ⅝ | 1·02 | 2¾ | 19·7 |
| ¾ | 1·47 | 2⅞ | 21·6 |
| ⅞ | 2·00 | 3 | 23·5 |
| 1 | 2·61 | 3⅛ | 25·5 |
| 1⅛ | 3·31 | 3¼ | 27·6 |
| 1¼ | 4·09 | 3⅜ | 29·8 |
| 1⅜ | 4·94 | 3½ | 32·0 |
| 1½ | 5·89 | 3⅝ | 34·4 |
| 1⅝ | 6·91 | 3¾ | 36·8 |
| 1¾ | 8·01 | 4 | 41·8 |
| 1⅞ | 9·20 | 4¼ | 47·2 |
| 2 | 10·4 | 4½ | 53·0 |
| 2⅛ | 11·8 | 5 | 65·4 |
| 2¼ | 13·2 | ||
Weight of Square Iron per Foot.
| Side of Square. Inch. | lbs. | Side of Square. Inch. | lbs. |
| ¼ | ·208 | 2⅜ | 18·8 |
| ⅜ | ·468 | 2½ | 20·8 |
| ½ | ·833 | 2⅝ | 22·9 |
| ⅝ | 1·30 | 2¾ | 25·2 |
| ¾ | 1·87 | 2⅞ | 27·5 |
| ⅞ | 2·55 | 3 | 30·0 |
| 1 | 3·33 | 3⅛ | 32·5 |
| 1⅛ | 4·21 | 3¼ | 35·2 |
| 1¼ | 5·20 | 3⅜ | 37·9 |
| 1⅜ | 6·30 | 3½ | 40·3 |
| 1½ | 7·50 | 3⅝ | 43·8 |
| 1⅝ | 8·80 | 3¾ | 46·8 |
| 1¾ | 10·2 | 4 | 53·3 |
| 1⅞ | 11·7 | 4¼ | 60·2 |
| 2 | 13·3 | 4½ | 67·5 |
| 2⅛ | 15·0 | 5 | 83·3 |
| 2¼ | 16·8 | ||
CHAPTER VIII.
SPRINGS.
Springs in locomotive vehicles are the elastic substances interposed between the wheels and the load or passengers in order to intercept the concussion caused by running over an uneven road, or in meeting with any slight obstacle.
A great variety of substances have been used for this purpose, such as leather, strips of hide, catgut, hempen cord, &c.; but these have now been totally superseded by metal springs, so that what is technically understood by the word “spring” is a plate or plates of tempered steel properly shaped to play in any required mode.
It is very probable that the earliest steel springs were composed of only one plate of metal. This was very defective in its action; and unless it was restrained somewhat in the manner of the bow by the string, it was liable to break on being subjected to a sharp concussion.
There is no hard and fast rule by which the spring-maker can be guided so as to proportion the strength and elasticity of his springs to the load they are required to bear; and even were such a rule in existence it would be practically useless, because the qualities of spring steel differ so much that what is known in mathematics as a “constant” could hardly be maintained. The only guide to the maker in this respect is observation of the working of certain springs under given loads, such springs being made of a certain quality of steel, and any peculiar features that appear should be carefully noted down for future reference and application.
Springs are of two kinds, single and double; i.e. springs tapering in one direction from end to end, and those which taper in two opposite directions from a common centre, as in the ordinary elliptic spring.
The process of making a spring is conducted in the following manner:—
The longest or back plate being cut to the proper length, is hammered down slightly at the extremities, and then curled round a mandrel the size of the suspension bolt. The side of the plate which is to fit against the others is then hollowed out by hammering; this is called “middling.” The next plate is then cut rather shorter than the first; the ends are tapered down so as not to disturb the harmony of the curve. This plate is middled on both sides. A slit is then cut at each end about ¾ of an inch in length and ⅜ inch wide, in which a rivet head slides to connect it with the first plate, so that in whatever direction the force acts these two plates sustain each other. At a little distance from this rivet a stud is formed upon the under surface by a punch, which forces out a protuberance which slides in a slit in the next plate. The next plate goes through precisely the same operations, except that it is 3 or 4 inches shorter at each end, and so on with as many plates as the spring is to consist of. The last plate, like the first, is of course only middled on one side.
The plates of which the spring is to be composed having thus been prepared, have next to undergo the process of “hardening” and “tempering.” This is a very important branch of the business, and will bear a detailed description. There is no kind of tempering which requires so much care in manipulation as that of springs. It is necessary that the plates be carefully forged, not over-heated, and not hammered too cold; one is equally detrimental with the other. To guard against a plate warping in tempering, it is requisite that both sides of the forging shall be equally well wrought upon with the hammer; if not, the plates will warp and twist by reason of the compression on one side being greater than on the other.[1]
The forge should be perfectly clean, and a good clean charcoal fire should be used. Or if coal be used it must be burned to coke in order to get rid of the sulphur, which would destroy the “life” of the steel. Carefully insert the steel in the fire, and slowly heat it evenly throughout its entire length; when the colour shows a light red, plunge it into lukewarm water—cold water chills the outer surface too rapidly—and let it lie in the water a short time. Animal oil is better than water; either whale or lard oil is the best, or lard can be used with advantage. The advantage of using oil is that it does not chill the steel so suddenly, and there is less liability to crack it. This process is called “hardening.”
Remove the hardened spring-plate from the water or oil and prepare to temper it. To do this make a brisk fire with plenty of live coals; smear the hardened plate with tallow, and hold it over the coals, but do not urge the draught of the fire with the bellows while so doing; let the fire heat the steel very gradually and evenly. If the plate is a long one, move it slowly over the fire so as to receive the heat equally. In a few moments the tallow will melt, then take fire, and blaze for some time; while the blaze continues incline the plate, or carefully incline or elevate either extremity, so that the blaze will circulate from end to end and completely envelop it. When the flame has died out, smear again with tallow and blaze it off as before. If the spring is to undergo hard work the plates may be blazed off a third time. Then let them cool themselves off upon a corner of the forge; though they are often cooled by immersion in water, still it is not so safe as letting them cool by themselves.
After tempering the spring-plates are “set,” which consists in any warps or bumps received in the foregoing processes being put straight by blows from a hammer. Care should be taken to have the plates slightly warm while doing this to avoid fracturing or breaking the plates.
The plates are now filed on all parts exposed to view, i.e. the edges and points of the middle plates, the top and edges of the back plate, and the top and edges of the shortest plate. They are then put together and a rivet put through the spring at the point of greatest thickness, and this holds, with the help of the studs before mentioned, the plates together.
It is evident from the above description of a common mode of making springs, that the operation is not quite so perfect as it might be. The plates, instead of being merely tapered at the ends, ought to be done so from the rivet to the points. And another thing, it would surely make a better job of it if the plates were to bear their whole width one on the other; in the middled plates they only get a bearing on the edges, and the rain and dust will inevitably work into the hollows in the plates, and it will soon form a magazine of rust, and we all know what an affinity exists between iron and oxygen and the result of it; as far as carriage springs are concerned, it very soon destroys their elasticity and renders them useless and dangerous.
To prevent oxidation some makers paint the inner faces of the springs, and this is in a measure successful, but the play of the spring-plates one upon the other is sure to rub off some portions of the paint, and we are just as badly off as ever. A far better plan would be to cleanse the surfaces by means of acid, and then tin them all over, and this would not be very expensive, and certainly protect the plates of the spring longer than anything else.
The spiral springs, used to give elasticity to the seats, &c., are tempered by heating them in a close vessel with bone dust or animal charcoal, and, when thoroughly heated, cooled in a bath of oil. They are tempered by putting them into an iron pan with tallow or oil, and shaking them about over a brisk fire. The tallow will soon blaze, and keeping them on the move will cause them to heat evenly. The steel springs for fire-arms are tempered in this way, and are literally “fried in oil.” If a long slender spring is needed with a low temper, it can be made by simply beating the soft forging on a smooth anvil with a smooth-faced hammer.
Setting and Tempering old Springs.
In setting up old springs where they are inclined to settle, first take the longest plate (having separated all the plates) and bring it into shape; then heat it for about 2 feet in the centre to a cherry red, and cool it off in cold water as quick as possible. This will give the steel such a degree of hardness that it will be liable to break if dropped on the floor. To draw the temper hold it over the blaze, carrying backward and forward through the fire until it is so hot that it will sparkle when the hammer is drawn across it, and then cool off.
Another mode is to harden the steel, as before stated, and draw the temper with oil or tallow—tallow is the best. Take a candle, carry the spring as before through the fire, and occasionally draw the candle over the length hardened, until the tallow will burn off in a blaze, and then cool. Each plate is served in the same way.
Varieties of Springs.
The names given to springs are numerous, but the simple forms are few, the greater part of the varieties being combinations of the simple forms.
Fig. 25. Fig. 26.
The simple forms are the elliptic spring, the straight spring, and the regular curve or C spring ([Fig. 25]). There are also one or two forms of spring which have become obsolete. Such are the whip spring ([Fig. 26]), and the reverse curved spring, which was superseded by the last.
The elliptic spring is the one most commonly used at the present day. [Fig. 27], b, shows two of these united at the extremities by means of a bolt; this is called a double elliptic spring. The elliptic spring is sometimes used single in what are called under-spring carriages, where the spring rests on the axle and is connected with the framework of the body with an imitation spring or dumb iron to complete the ellipse. Its technical name is an “under-spring.”
When four pairs of these springs are hinged together so as to form four ellipses they constitute a set, and are used in carriages without perches. Their technical name is “nutcracker spring.”
The straight springs are used in phaetons and tilburies, and are called “single-elbow springs.”
The double straight spring is used in omnibuses, carts, &c., where it is fixed across the angle at right angles. It is called a “double-elbow spring.”
The regular curved spring is in form generally two-thirds of a circle, one end of which is lengthened out into a tangent, which serves as a base to fix it by in an upright position; the body is suspended from the other extremity by means of leathern braces. Its general figure has caused it to acquire the technical name of C spring. (See [Fig. 25].)
The combination known as “telegraph spring” consists of eight straight springs, when used for a four-wheeled carriage, and four springs for a two-wheeled carriage. The Stanhope is suspended on four of these springs. Two springs are fixed longitudinally on the framework, and two transverse ones are suspended from these by shackles, and on these latter the weight rests. They will bear a great weight, and the body has the advantage of being placed two removes from the concussion.
Fig. 27.
[Fig. 27] shows some varieties of springs.
a Has semi-elliptical springs, hung upon the ends of C springs attached to the axles.
b Has the usual elliptical springs between the bolster and axle.
c Has elastic wooden springs, which connect the axles and support the beds.
d Has some elliptical springs, which also couple the axles A and B.
e Has a bolster hung upon C springs.
f Is a system of curved springs, with three points of connection to the bed and two to the axles.
Weight of Elliptic Springs.
| 1¼ × 3 × 36 | inch, | weight about | 28 | lbs. | per pair. |
| 1¼ × 4 × 36 | „ | „ | 34 | „ | „ |
| 1¼ × 4 × 38 | „ | „ | 36 | „ | „ |
| 1½ × 3 × 36 | „ | „ | 37 | „ | „ |
| 1½ × 4 × 36 | „ | „ | 41 | „ | „ |
| 1½ × 4 × 38 | „ | „ | 45 | „ | „ |
| 1½ × 5 × 36 | „ | „ | 48 | „ | „ |
| 1½ × 5 × 38 | „ | „ | 51 | „ | „ |
| 1½ × 5 × 40 | „ | „ | 54 | „ | „ |
| 1¾ × 4 × 36 | „ | „ | 49 | „ | „ |
| 1¾ × 4 × 38 | „ | „ | 52 | „ | „ |
| 1¾ × 4 × 40 | „ | „ | 55 | „ | „ |
| 1¾ × 5 × 36 | „ | „ | 56 | „ | „ |
| 1¾ × 5 × 38 | „ | „ | 60 | „ | „ |
| 1¾ × 5 × 40 | „ | „ | 64 | „ | „ |
| 1¾ × 6 × 36 | „ | „ | 64 | „ | „ |
| 1¾ × 6 × 38 | „ | „ | 68 | „ | „ |
| 1¾ × 6 × 40 | „ | „ | 73 | „ | „ |
| 2 × 4 × 36 | „ | „ | 58 | „ | „ |
| 2 × 4 × 38 | „ | „ | 62 | „ | „ |
| 2 × 4 × 40 | „ | „ | 65 | „ | „ |
| 2 × 5 × 36 | „ | „ | 63 | „ | „ |
| 2 × 5 × 38 | „ | „ | 67 | „ | „ |
| 2 × 5 × 40 | „ | „ | 72 | „ | „ |
| 2 × 6 × 36 | „ | „ | 75 | „ | „ |
| 2 × 6 × 38 | „ | „ | 78 | „ | „ |
| 2 × 6 × 40 | „ | „ | 85 | „ | „ |