TIN. TINNING.

It is generally believed that the metal called at present tin was known and employed in the arts, not only in the time of Pliny, but as early as that of Herodotus, Homer, and Moses. This I will not venture to deny; but I can only admit that it is probable, or that the great antiquity of this metal cannot be so fully proved as that of gold, silver, copper, iron, lead, and quicksilver.

Tin is one of those minerals which hitherto have been found in quantity only in a few countries, none of which ever belonged to the Greeks or the Romans[503], or were visited, at an early period, by their merchants. As it never occurs in a native state[504], the discovery of it supposes some accident more extraordinary than that of those metals which are commonly, or at any rate, often found native. I cannot, however, attach much importance to this circumstance, as the ancients became acquainted with iron at an early period, though not so early as with copper. I must also admit that tin might have been more easily discovered, because it is frequently found near the surface of the earth; does not require a strong heat or artificial apparatus for fusing it, and therefore can be more easily won than copper.

But if tin was known so early as has hitherto been believed, it must, on account of the circumstance here first remarked, have been scarce and therefore exceedingly dear. In this manner the aurichalcum or Corinthian brass, according to the expression of Plautus, was “auro contra carum.” The metal of the ancients, however, which is believed to have been tin, was not so rare and costly. Vessels of it are not often mentioned, in general; but they never occur among valuable articles. The circumstance also, that vessels of tin have never or very seldom been found among Greek or Roman antiquities, and that when discovered the nature of the metal has been very doubtful, though tin is not apt to change from the action of the air, water, or earth, and at any rate far surpasses in durability copper and lead, ancient articles made of which are frequently found, appears to me worthy of attention. It possesses also so many excellent properties, that it might be expected that the people of every age, to whom it was known, would have employed it in a great variety of ways. It recommends itself by its superior silvery colour; its ready fusion; the ease with which it can be hammered and twisted; its lightness, and its durability. It is not soon tarnished; it is still less liable to rust or to become oxidized; it retains its splendour a long time, and when it is lost easily recovers it again. It is not so soon attacked by salts as many other metals; and this till lately has been considered a proof of its being less pernicious than it possibly may be. After an accurate investigation, should everything said by the ancients of their supposed tin be as applicable to a metallic mixture as to our tin, my assertion, that it is probable, but by no means certain, that the ancients were acquainted with our tin, will be fully justified.

The oldest mention of this metal, as generally believed, is to be found in the sacred scriptures. In the book of Numbers, chap. xxxi. ver. 22, Moses seems to name all the metals then known; and, besides gold, silver, brass (properly copper), iron, and lead, he mentions also bedil, which all commentators and dictionaries make to be tin. When Ezekiel, chap. xxvii. ver. 12, gives an account of the commerce of Tyre, he names, among the commodities, silver, iron, copper, and bedil. In Zechariah, chap. iv. ver. 10, the plummet of the builder or architect is said to be made of the bedil stone. In Isaiah, chap. i. ver. 25, the word occurs in the plural number, and appears there to denote either scoriæ, or all those inferior metallic substances which must be separated from the noble metals. In the old Greek versions of these Hebrew books, bedil is always translated by cassiteros, except in the passage of Isaiah, where no metal is mentioned. In Zechariah, the translator calls the bedil stone τὸν λίθον κασσιτέρινον. There can hardly be a doubt, that for the purpose here mentioned, people would employ, not the lighter metal tin, but lead, and that the plummet was called the lead-stone, because at first a stone was used.

It seems, however, probable that in the first-quoted passage bedil is our tin; but must it not appear astonishing that the Midianites, in the time of Moses, should have possessed this metal? Is it not possible that the Hebrew word denoted a metallic mixture or artificial metal, which formerly was an article of commerce, as our brass is at present[505]?

The Greek translators considered bedil to be what they called cassiteros; and as the moderns translated this by stannum, these words have thus found their way into the Latin, German, and other versions of the Hebrew scriptures, which therefore can contribute very little towards the history of this metal. The examination of the word cassiteros would be of more importance; but before I proceed to it, I shall make some observations on what the ancients called stannum.

This, at present, is the general name of our tin; and from it seem to be formed the estain of the French, the tin of the Low German and English, and the zinn of the High German. It can, however, be fully proved that the stannum of the ancients was no peculiar metal; at any rate not our tin, but rather a mixture of two other metals, which, like our brass, was made into various articles and employed for different purposes, on which account a great trade was carried on with it. This, at least, may with great certainty be concluded from a well-known passage of Pliny[506]; though to us, because we are not fully acquainted with the metallurgic operations of the ancients, it is not sufficiently intelligible. What I have been able to collect, however, towards illustrating the passage, with the assistance of my predecessors, and by comparing myself the account of the Roman with our works, I shall here lay before the reader; and perhaps it may induce others to improve and enlarge it.

But I must first observe, that there can be no doubt that the nigrum plumbum of the ancients was our lead. This metal, according to Pliny’s account, they obtained in two ways. First, from their own lead mines or lead ore, which immediately on its fusion gave pure or saleable lead. To comprehend this, it is necessary to know that most kinds of lead ore contain also silver, and many of them in such quantity that they might with more propriety be called silver ores, or rather argentiferous lead ores or plumbiferous silver ores. Those which contain no silver are so scarce, that I am ignorant whether any other has yet been found, except that of Bleyberg, not far from Villach, in Carinthia. As Villach lead, according to some experiments made on a large scale, is entirely free from silver, it is well-known, and particularly useful for assaying.

It may therefore appear singular that the ancients had lead of this kind in such abundance that Pliny was able to make of it a particular division. But it is to be observed, that in ancient times people paid little attention to a small admixture of silver; and that they were accustomed to separate this metal only when it was capable, by the old imperfect process of smelting, to defray the expenses, which certainly would not be the case, when a quintal of ore contained only a few ounces, or even a pound of silver. Strabo says this expressly of some Spanish ores. Such poor ores were then used merely for lead; and our silver refiners, without doubt, would separate silver with considerable advantage from the lead of the ancients. Hence has arisen the common opinion, that lead and also copper, with which some of the oldest buildings are covered, had in the course of time become argentiferous. This is impossible; but it is possible for us to separate from them the noble metal, which the ancients either could not do, or did not think it worth the trouble to attempt.

Secondly, the ancients obtained, as we do, a great deal of lead from argentiferous ores, from which they separated the silver and revived the lead. The ore was pounded very fine, or, as we say, stamped; it was then washed and roasted, and formed into a powder or paste. This was then put into the furnace, and by the first fusion gave a regulus consisting of silver and lead, which was called stannum, and was the same substance as that known to our metallurgists by the name of werk. If it was required to separate the silver, it was again fused, not in the first furnace, but in a particular refining furnace with a hearth of lixiviated ashes. This circumstance Pliny has not mentioned; perhaps it appeared to him unnecessary; perhaps he did not fully understand every part of the process; and were one inclined to say anything in his defence, modern travels and other works might be quoted, in which metallurgic operations are described in a manner no less imperfect. The produce obtained by the second fusion, called in German treiben or abtreiben, was silver, and besides that half-vitrified lead, glätte, which in part falls into the hearth. This substance, called by Pliny galena, a word which denotes also molybdæna[507], was once more fused or revived, and then gave lead. In this manner were obtained three different productions, which were all used in commerce, namely, stannum, argentum and galena, or revived lead, plumbum nigrum. These Pliny seems to have considered as component parts of lead ore; but not indeed according to the present signification[508].

Though it must be confessed that this passage of Pliny cannot be fully understood by any explanation, it proves to conviction that the stannum of the ancients was neither our tin nor a peculiar metal, but the werk of our smelting-houses. This was long ago remarked by those writers who were acquainted with metallurgy, of whom I shall here mention Agricola[509], Encelius[510], Fallopius[511], Savot[512], Bernia[513], and Jung[514].

The ancients used, as a peculiar metal, a mixture of gold and silver, because they were not acquainted with the art of separating them, and afterwards gave it the name of electrum. In the like manner they employed werk or stannum, which was obtained almost in the same manner in the fusion of silver. In all probability it was employed before people became acquainted with the art of separating these two metals, and continued in use through habit, even after a method of separating them was discovered. If the ore subjected to fusion was abundant in silver, this mixture approached near to the noble metals; if poor in silver, it consisted chiefly of lead. When it consisted of silver and lead only, it was soft and ductile; but if other metals, difficult of fusion, such as copper, iron, or zinc, were intermixed, it was harder and more brittle, and in that case approached nearer to what the German silver refiners call abzug and abstrich.

That this stannum was employed as an article of commerce, and that the ancients made of it vessels of various kinds, cannot be doubted. The vasa stannea however may be considered as vessels which were covered with tin only in the inside; for that this was customary I shall prove hereafter. In general, these vasa stannea are named where mention is made of saline or oily things, or such as would readily acquire a taste and smell from other metals, were they boiled or preserved in them for any length of time[515].

It has been long ago remarked that most of the Roman vessels were made of copper, and that these people were acquainted with the art of tinning or silvering them; but that tinned vessels have never been found, and silvered ones very rarely. Hence so many things appear to have been made of what is called bronze, which is less liable to acquire that dangerous rust or oxide, known under the name of verdigris, than pure copper. This bronze is sometimes given out as Corinthian and sometimes Syracusan brass, as the gold-coloured coins of the first size were considered to be Corinthian brass also. But in my opinion, a great and perhaps the greater part of all these things were made of stannum, properly so called, which by the admixture of the noble metals, and some difficult of fusion, was rendered fitter for use than pure copper. We are told by Suetonius, that the emperor Vitellius took away all the gold and silver from the temples and substituted in their stead aurichalcum and stannum[516].

Whether the Greeks worked stannum, and under what name, I do not know: perhaps we ought to class here the κασσιτέρινα of the oldest times, of which I shall speak hereafter.

What I have already said in regard to werk will be rendered more certain by the circumstance, that even two centuries ago, vessels of all kinds called halbwerk were made of it in Germany. This we are told by Encelius[517] as a thing well-known in his time, which however I should wish to see further examined. I have searched in vain for this name in a great many works of the sixteenth century; but I have long entertained an idea, which I shall take this opportunity of mentioning:—Among the oldest church vessels I have seen some articles which I considered to be vasa stannea, I mean such as when newly scoured and polished had a silvery brightness, and when they remained long without being cleaned acquired a dull gray colour, and a greater weight than bronze. Those who show these things commonly say that the method of composing the metal is lost; but that it contains silver, and according to the assertion of many, even gold. Such articles deserve, undoubtedly, to be examined by our chemists.

I shall further remark, on this subject, that the abstrich, as it is called, which in many respects has a resemblance to stannum, and contains also lead and silver, but at the same time metals difficult of fusion, is employed in the arts, and collected for the use of the letter-founders[518]. For this purpose it is well-adapted, on account of its hardness and durability; and in want of it lead must be mixed with regulus of antimony. At the Lower Harze the workmen began so early as 1688 to revive this abstrich in particular; and as the lead thence obtained, on account of its hardness, could not be disposed of like common lead, it was sold to the letter-founders at Brunswick, at first at the rate of a hundred weight for two and a half dollars, and in the year 1689 for three dollars. But in Schlüter’s time a small quantity of it only was made annually, because the abstrich could be used with more advantage for other purposes. This lead, says Schlüter, had the appearance of bronze, and was so brittle, that a piece of it broke into fragments when struck[519].

Speise also, which is obtained at the blue colour-works, can be employed in the same manner. Under this term is understood a metallic mixture deposited during the preparation of blue glass, and which is composed of various metals combined with cobalt, but particularly nickel, iron, copper, arsenic, and perhaps also bismuth. It is hard, brittle, sonorous, and assumes a good polish, though it is not always of the same quality in all manufactories. As it contains some colouring particles, it is in general again added to the glass residuum. But when I lately paid a visit to the colour-mill at Carlshafen, M. Birnstein the inspector told me, that the speise was manufactured at Halle into buttons of every kind. This probably is the case there in those button-manufactories established by G. H. Schier, in which buttons of all patterns are made annually to the value of 30,000 dollars[520]. The ancients, in my opinion, employed in a similar manner the werk of their silver smelting-houses.

I shall now proceed to examine that metal which the Greeks named κασσίτερος, or, as Pliny says, Cassiteron, and which he expressly adds was called by the Latins plumbum candidum (white lead). I have no new hypothesis to recommend; my sole object is truth. I wish for certainty, and, when that is not to be obtained, probability; at the same time, however, I cannot rest satisfied with the judgement given by the compilers of dictionaries, and the translators and commentators of ancient authors, because I firmly believe that they never made any researches themselves on the subject.

That the ancients were acquainted with our tin as early as we find the word cassiteros mentioned by them, I am not able to prove, and I doubt whether it is possible to do so; the contrary seems to me to be more probable. In my opinion, it was impossible for the Phœnicians, at so early a period, to obtain this metal from Portugal, Spain, and England, in such quantity that it could be spread all over the old world. The carriage of merchandise was not then so easy. If all the cassiteron was procured from the north-west parts of Europe, it appears to me that it must have been much dearer than it seems to have been in the oldest times, to judge from the information that has been preserved.

In my opinion, the oldest cassiteron was nothing else than the stannum of the Romans, the werk of our smelting-houses, that is, a mixture of lead, silver, and some other accidental metals. That this has not been expressly remarked by any Greek writer, is to me not at all surprising. The works of those who might be supposed to have possessed knowledge of this kind have not been handed down to us. We should not have known what stannum was, had not the only passage of Pliny which informs us been preserved. I am as little surprised that Herodotus should say he did not know where cassiteron was obtained. How many modern historians are ignorant of the place from which zinc, bismuth, and tombac are brought! and however easy it might be for our historians to acquire knowledge of this kind if they chose, it was in the same degree difficult for Herodotus, in whose time there were not works on mineralogy, technology, and commerce, to furnish such information. At the period when he lived, cassiteron perhaps was no metallurgic production of any neighbouring mines, but a foreign commodity, a knowledge of which, mercantile people endeavoured in those early ages, much more than is the case in modern times, to conceal, and which also could be better concealed than at present.

That real tin was afterwards known to the Greeks, I readily believe; but I find no proof of it, nor can I determine the time at which they first became acquainted with this metal. It is not improbable that they considered it only as a variety of their old cassiteron, or the stannum of the Romans, as the latter declared both to be a variety of lead. It might be expected that the Greeks would have given a peculiar name to the new tin, in order to distinguish it from the old, as the Romans really did; but this appears not to have been the case. I think, however, to have remarked that, so early as the time of Aristotle, real foreign tin was called the Tyrian or Celtic, because Tyre undoubtedly was, at that period, the market for this commodity.

According to the conjectural accounts hitherto given, there is no necessity for believing the word cassiteron to be Phœnician or Celtic. The Greeks seem to have used it before they had Phœnician tin; and because they afterwards considered the Phœnician ware as a kind of their cassiteron, and at the same time heard of islands from which it was brought, they named these islands the Cassiterian, as Herodotus has done, though he expressly says that he did not know where they were situated. This ancient historian seems to have entertained nearly the same opinion in regard to the origin of the name, for he adds, “At any rate the name Eridanus is not foreign, but originally Greek[521].” It is, however, very possible that every thing said of these islands, in the time of Herodotus, was merely a fabrication of the Greek merchants, none of whom had the least knowledge of the Phœnician trade to England[522]. In this case the bedil of the Hebrews might be only stannum, and thus would be removed the wonder of Michaelis, how the Midianites could have obtained tin so early[523]. I will not, however, deny that the contrary of what has been here stated is equally possible. The Greeks might have obtained real tin at a very early period by trade, and along with it the foreign name, from which was formed cassiteros. The art of preparing stannum may not have been known among them, and therefore under the cassiteron of the Greeks we must undoubtedly understand tin. In this case one could comprehend why stannum is not mentioned in the works of the Greeks; and if the plumbum album of Pliny be our tin, of which there can be scarcely a doubt, his testimony that the cassiteron of Homer was the same belongs to this place.

In regard to the question, which opinion seems the most probable, I will not enter into any dispute; but I must maintain that, in regard to the periods of Homer and Herodotus, no certainty can be obtained. To justify this assertion, I shall here point out everything I have found relating to cassiteron, and, as far as possible, in the original words, quoting the different works in the manner in which all the words for dictionaries of natural history ought to be arranged.

I. Vocatur Latinis plumbum candidum[a] sive album[a][b], et Græcis jam Iliacis temporibus teste Homero cassiteron[a].

II. Mineræ (calculi) coloris nigri, quibus eadem gravitas quæ auro[a].

III. Non nascitur cum argento, quod ex nigro fit[a].

IV. Nascitur summa tellure arenosa[a]; sed etiam ex profunda effoditur[h].

V. Arenæ istæ lavantur a metallicis, conflatæque in album plumbum resolvuntur[a].

VI. Plumbum candidum est pretiosius nigro[a].

VII. Facile in igne fluit, ita ut plumbi albi experimentum in charta sit, ut liquefactum pondere videatur, non calore rupisse[a][c]. Celticum citius quam plumbum fluit, atque adeo in aqua; colore inficit, quæcunque tangat[c].

VIII. Nulli rei sine mixtura utile[a].

IX. Adulteratur plumbo nigro[d].

X. Stannum adulteratur addita æris candidi tertia portione in plumbum album[a].

XI. Incoquitur æris operibus, Galliarum invento, ita ut vix discerni possit ab argento, eaque incoctilia vocant[a].

XII. Adhibetur ad ocreas heroum[p]; ad thoraces exornandos[q][r]; ad scuta ornanda[s][t]; ad specula[y].

XIII. Ex eo nummos percussit Dionysius tyrannus Syrac.[u][v].

XIV. Secum jungi nequit sine plumbo nigro, nec plumbum nigrum inter se jungi potest sinealbo[a][x].

XV. Gignitur in Hispania[h]; Lusitania[a][h] Gallæcia[a], in Iberia[k][l], apud Artabros[h], in Britannia[j]: in insulis quæ Cassiterides dictæ sunt Græcis[e][f][h][k][w], in insula quam Mictim vocat Timæus, et a Britannia sex dierum navigatione abesse refert[g]; in insulis Hesperidibus[m][n][o] apud Drangas populos Persicos regionis Arianæ[i].[524]

To this I shall add the following illustration. The name cassiteron is supposed, in general, to be derived from the Phœnician or Chaldaic[525]; but on this point I am not able to decide. Mela, where he explains the name of the Cassiterian islands, calls it only plumbum, without the addition of any epithet, unless it has been lost in transcribing. But Pliny himself says[526], “Cassiterides dictæ Græcis a fertilitate plumbi.” It is possible, therefore, that the leaden vessels, which are often mentioned in the works of the ancients, were in part tin; but I cannot possibly agree with Millin[527], who makes the cyanos of Homer to be tin. This word evidently denotes mountain-green, or some species of stone coloured by it, which in former times, like the lapis lazuli at present, was employed for making various kinds of ornaments. Besides, cyanos and cassiteros are mentioned in the Iliad[528] as two different things[529].

What Pliny says of the colour and weight of those minerals that produced tin, corresponds exceedingly well with tin ore, which, as is well known, is among the heaviest of minerals, though the specific gravity of the metal itself is but small. It is also true that lead is seldom found without silver; and tin perhaps has never been found with the latter. What we read in regard to the obtaining of tin ore, agrees very well with our washing-works. Even at present the greater part of the tin ores are found in fragments and washed.

The smelting of this metal, even when all the rules of art are not employed, is attended with little difficulty, though Goguet is of a different opinion. As of all metals it melts easiest in the fire, it requires only a small degree of heat and no artificial furnace; but as it is readily calcined, and after repeated reduction loses its malleability, care must be taken that the reduced metal can immediately flow off; and on that account our furnaces have an aperture always kept open. It is probable that the ancients, in their small furnaces, could easily make a similar arrangement.

Tin at all times must have been dearer than lead, as the latter was found in abundance, but the former in small quantities. In England at present tin costs about four times as much as lead. At Hamburg, in 1794, a pound of English block tin cost eleven schillings and a half, and tin in bars thirteen schillings; but a hundred pounds of English lead were worth at that time only fourteen marks, and Goslar lead eleven and a half marks ready money.

That tin melts easier than lead is very true. According to the latest experiments the former fuses at 442°, whereas lead requires 612° of Fahrenheit’s thermometer. Both metals can be fused in paper when it is closely wrapped round them. Aristotle and Pliny meant to say the same thing of their paper; and the latter adds that the paper, even when it became torn, was not burnt. What the first says of melting in water, some have too inconsiderately declared to be a fable; but it is not entirely false. Tin, when mixed with lead and bismuth in certain proportions, is so fusible that it melts in boiling water, because it requires less heat to be fused than water does to be brought to a state of ebullition. That the Celtic tin contained a great deal of lead, appears from the observation, that when rubbed it made the fingers black; an effect which would not have been produced by pure tin.

That tin in the time of Pliny was mixed with lead, and in various proportions, we are told by himself. At that period a mixture of equal parts tin and lead was called argentarium; and that of two parts lead and one part tin, tertiarium. Others mixed the latter composition with an equal quantity of tin, and named the mixture also argentarium, and this was commonly used for tinning.

I must, however, acknowledge that the last words of Pliny I do not fully comprehend. They have not indeed been noticed by any commentator; but I do not on that account believe that I am the only person to whom they have been in part unintelligible. Savot and Watson[530], who were undoubtedly capable of giving some decisive opinion on them, have purposely left that part, which to me appears obscure, untranslated and without any explanation. Pliny says, “Improbiores ad tertiarium additis æquis partibus albi, argentarium vocant, et eo quæ volunt, incoquunt.” He seems here to throw out a reproach against those who melted together equal quantities of tertiarium and pure tin, and then gave it the name of argentarium, as if it had been of an inferior quality to the argentarium first named. But equal quantities of tertiarium and pure tin produced a mixture, in which for one part of lead there were two of tin. How then could those who made this mixture be called improbiores? To answer this question I shall venture to give my conjecture. Pliny perhaps meant to say, that tinning properly ought to be done with pure tin, but that unprincipled artists employed for that purpose tin mixed with lead. If this be the true meaning, his reproach was not unfounded. On the same account, because all tin was then adulterated with lead, Galen gives cautions against the use of tinned vessels, and advises people to preserve medicines rather in glass or in golden vessels. But why does Pliny add, “ideo album nulli rei sine mixtura utile?” In using these words, it is possible he may have alluded, not to tinning, but to things cast of tin, which, according to the ideas of that time or the nature of the tin, if of that metal alone, would be too brittle. This seems to be said by the preceding words, to which the ideo refers: “albi natura plus aridi habet, contraque nigri tota humida est, ideo album....” I hope the reader will forgive me for entering so deeply into criticism; but if Pliny’s valuable work is ever to become intelligible, occasional contributions of this kind must not be despised.

Of the process employed in tinning in ancient times, we have no account; but the words of Pliny incoquere and incoctilia seem almost to denote that it was performed, as in tinning our iron wares, by immersing the vessels in melted tin. It appears also to have been done at an early period in a very perfect manner, both because the tinned articles, as Pliny says, could scarcely be distinguished from silver, and because the tinning, as he adds, with an expression of wonder, did not increase the weight of the vessels. The metal, therefore, was applied so thin that it could make no perceptible addition to the weight. This is the case still, when the work has been skilfully executed; and it affords a remarkable proof of the astonishing divisibility of metal. Dr. Watson caused a vessel, the surface of which contained 254 square inches, and which weighed twenty-six ounces, to be tinned, and found that the weight was increased only half an ounce; consequently half an ounce of tin was spread over 254 square inches.

But, notwithstanding all this dexterity, which must be allowed to the Romans, they appear to have employed tinning at any rate for kitchen utensils and household furniture very seldom. It is scarcely ever mentioned, and never where one might expect it, that is to say, in works on cookery and domestic œconomy, where the authors give directions for preparing and preserving salt provisions. When they speak of the choice of vessels, they merely say that new earthen ones should be employed. Some of the physicians only have had the foresight to recommend tinned vessels. It does not appear indeed that the Romans, though copper vessels were in general use among them, employed any precautions to prevent them from being injurious to the health. Pliny only says that a coating of stannum improved the taste of food, and guarded against verdigris. The former part is to be thus understood; that the bad taste occasioned by copper was prevented; but he does not say that the health was secured by it. The term also incoctilia, usual in the time of Pliny, is found in his works alone. It is likewise remarkable, that among the numerous vessels found at Herculaneum, as I have already remarked, the greater part of them were of copper or stannum, few of which were silvered, and none tinned. Had tinning been then as much used as at present, some tinned vessels must have been found.

I shall further remark, that Pliny ascribes the invention of tinning to the Gauls; and that he extols in particular the work of the Bituriges, the old inhabitants of the province of Berry, and those articles made at Alexia or Alegia, which is considered to have been Alise in Auxois; that he speaks of tinning copper and not iron, and that according to his account not only tin was used for that purpose, but also stannum. By the passages already quoted, it is proved that in the time of Homer cassiteron was employed for ornamenting shields and certain kinds of dresses; but the further illustration of them I shall leave to others. The shields perhaps were inlaid with tin; and it is not improbable that threads were then made of this metal, and used for embroidering. That this art was at that period known may be readily believed, since the women of Lapland embroider their dresses, and particularly their fur cloaks, in so delicate and ingenious a manner, with tin threads drawn out by themselves, as to excite astonishment[531].

What Pliny says is true, that lead cannot be soldered without tin, or tin without lead. For this operation a mixture of both metals, which fuses more readily than each of them singly, is employed. Instead of oil, mentioned by Pliny, workmen use at present in this process colophonium, or some other resin.

That vessels were made of cast tin at an early period is highly probable; but I do not remember to have seen any of them in collections of antiquities. I am acquainted only with two instances of their being found, both of which occurred in England. In the beginning of the last century some pieces of tin were discovered in Yorkshire, together with other Roman antiquities[532]; and in 1756 some tin vessels of Roman workmanship with Roman inscriptions were dug up in Cornwall[533].

I shall pass over the history of the tin trade of the Phœnicians, the Greeks, the Gauls and the Romans, respecting which only scanty and doubtful information is to be found in the works of the ancients, but in those of the moderns a greater number of hypotheses. The situation even of the Cassiterides islands cannot with certainty be determined, though it is supposed in general, and not without probability, that they were the Scilly islands, which lie at the distance of about thirty miles from the most western part of the English coast; that is, the extremity of Cornwall, or, as it is called, the Land’s End. At the same time we must adopt the opinion of Ortelius, that under that appellation were included the coasts of Cornwall and Devonshire[534]. To those who are on the Scilly islands, Cornwall, as Borlase remarks, appears to be an island; and as it is impossible that the Scilly islands, which were called also Silures, could furnish tin sufficient for the ancient trade, especially as few and very small traces of old works are observed in them, it is more probable that the greater part of the metal was obtained from Cornwall. That the Phœnicians themselves worked mines there, cannot be proved; it is rather to be supposed that they procured the metal from the inhabitants by barter; but, on the other hand, there is reason to believe, from various antiquities, that the Romans dug up the ore themselves from the mine, and had works for extracting the metal.

The island Ictis of Diodorus Siculus, to which the ancient Britons carried tin, and from which it was conveyed by the Gallic merchants, is generally considered as the Isle of Wight; but Borlase remarks very properly[535], that Ictis, according to the account of the ancients, must have been much nearer to the coast of Cornwall. He conjectures therefore, and with great probability, that this word was the general appellation of a peninsula, or bay, or a place of depôt for merchandise[536]. If the Mictis of Timæus and the Vectis of Pliny are not this island Ictis, it will be difficult to find them. It is very singular, that Dionysius, a later writer, and his follower Priscian, and Avienus, call the Cassiterides islands the Hesperides[537].

That the Drangians had tin mines appears to me highly improbable; Strabo is the only writer who says so, in a few words; and nothing of the kind is to be found in any other author. If Drangiana be considered as a part of Persia, to which that district belongs at present, it is stated by all modern travellers that tin is not to be found anywhere in the Persian empire[538]. If we reckon it a part of India, Pliny asserts that no tin-works were then known in that country. In his time, this metal was sent thither as an article of commerce, and was purchased with precious stones and pearls. This last circumstance has by some been considered as a proof of the high price of the metal at that period; but he says nothing further than that tin was among the imports of India at that time, and that jewels and pearls formed a part of the exports. It may be said that the inhabitants of the Spanish colonies in America gave their silver for our linen, but we cannot thence prove that it bears a high price.

That the word stannum, in the time of Pliny, did not signify tin but a compounded metal, is as certain as that in later times it became the common name of tin. Hence arises the question, Since what time has our tin been known under the appellation of stannum?

This question, as far as I know, has never yet been examined; and this, I hope, will be a sufficient excuse if I should not be able to give an answer completely satisfactory. The first author in whom I find the Greek word cassiteros translated by stannum is Avienus, in the free translation of Dionysius; who, as proved by Wernsdorf, lived about the middle of the fourth century. The next who translates the Greek word in the same manner, is Priscian; who, according to the grounds alleged by Wernsdorf, must have lived in the beginning of the sixth century.

From what I already know, I suspect that the long and improper name plumbum candidum began in the fourth century to be exchanged for stannum; and it is probable that, at that time, tin was so abundant that it banished the old stannum, to which it might have a resemblance. In later centuries, then, stannum always signified tin; and in the middle ages various words were arbitrarily formed from it which do not occur in the Latin authors. The stannea tecta, or roof of the church at Agen, on the Garonne, in Guienne, described by the ecclesiastical poet Fortunatus[539], about the end of the sixth century, consisted undoubtedly of tinned plates of copper. Stagnare occurs often for tinning, as stagnator does for a tin-founder. In the thirteenth century, Henry III. of England gave as a present a stagnarium or a stannaria, a tin mine or tin work, or as others say, fodina stanni. In the fourteenth century, there was in England, under Edward III., a stannaria curia; and in the same century, besides various other ornaments, lunulæ stanneatæ were forbidden to the clergy. In a catalogue of the year 1379, the following articles occur: “tria parva stanna modici valoris ... item unum stannum parvum ... item duo magna stanna[540].”

In regard to the tin trade of the Spaniards, I can unfortunately say nothing: the tin-works in Spain, we are told, were abandoned under the government of the Moors. England, as is generally asserted, enjoyed an exclusive trade in this metal till the thirteenth century, when the tin mines were discovered and worked in Bohemia. But the exact time when this took place I am not able to determine. The Bohemian works, in all probability, are older than the Saxon; but it is still more certain that the account given by Hagec, that they were known so early as the year 798, is entirely void of foundation[541].

When the English writers[542] treat on the history of this metal, they seldom fail to repeat what has been said on the subject by Matthew Paris. This Benedictine monk, who was by birth an Englishman, and died in 1259, relates, in his History of England, that a Cornish-man having fled to Germany, on account of a murder, first discovered tin there in the year 1241. He adds, that the Germans soon after furnished this metal at so cheap a rate, that they could sell it in England, on which the price there fell, very much to the loss of Richard Earl of Cornwall, so well known by his having been elected king of the Romans[543]. Since Matthew relates this as an event which took place in his time, it would perhaps be improper to doubt it; but it still appears strange that no mention is to be found of this circumstance in the Bohemian or German Annals. Gmelin also must not have met with any account of it, else he would have announced it. Peithner likewise is silent respecting it: on the contrary, he says that the tin mines in the neighbourhood of the town of Grauppen were discovered as early as the year 1146, by a peasant named Wnadec, belonging to the village of Chodicze. Of the antiquity of the Saxon mines I can give no account: had any information on that subject existed, it would certainly have been noticed by Gmelin.

Brusch, who was murdered by two noblemen in 1559, seems to place the discovery of the tin mines at Schlackenwalde, which he says are younger than those of Schönfeld, in the thirteenth or twelfth century[544]. Albertus Magnus, who died in 1280, says that in his time a great deal of tin was dug up in various parts of Germany. At present the principal tin works are at Geyer, Ehrenfriedersdorf and Altenberg.

The art of tinning plate-iron was invented either in Bohemia or Germany, and introduced at a later period into England, France, and other countries. But as the whole history of the German mines is very defective and uncertain, the period when this useful and highly profitable branch of business was begun is not known. Yarranton, an English writer, of whom I shall speak more hereafter, relates that the first tinning of this kind was made in Bohemia; that a Catholic clergyman, who embraced the Lutheran religion, brought the art, about the year 1620, to Saxony, and that since that time all Europe has been furnished with tin-plate from Germany.

This much, however, is certain, that the tinning of iron is more modern than the tinning of copper. The first articles made by the bottle-makers were flasks of copper tinned, which in old times were used in war and on journeys, like the stagnone, still employed in Spain and Portugal, in which all kinds of distilled waters are sent from Malta[545].

Among the English, who formerly had a monopoly of the tin trade, and who still possess the best and richest tin mines, the introduction of this art of employing their native production did not at first succeed; and this circumstance afforded Becher a subject for raillery[546]. But about the year 1670, a company sent to Saxony, at their expense, an ingenious man named Andrew Yarranton, in order to learn the process of tinning. Having acquired there the necessary knowledge, he returned to England with some German workmen, and manufactured tin-plate, which met with general approbation. Before the company, however, could carry on business on an extensive scale, a man of some distinction, having made himself acquainted with Yarranton’s process, obtained a patent for this art; and the first undertakers were obliged to give up their enterprise, which had cost them a great deal of money, and yet no use was made of the patent which had been obtained[547].

About the year 1720, which, on account of the many new schemes and the deceptive trade carried on in consequence of them, will ever be memorable in the history of English folly, among the many bubbles, as they were then called, was an establishment for making tin-plate; and this was one of the few speculations of that period which were attended with advantage. The first manufactory of this kind was established in Monmouthshire, perhaps at the village of Pontypool, where tin-plate was at any rate made so early as 1730[548]. In France, the first experiment to introduce this branch of manufacture was made under Colbert, who procured workmen, some of whom were established at Chenesey, in Franche-Comté, and others at Beaumont-la-Ferriere in the Nivernois. But the want of skill and proper support rendered this expensive undertaking fruitless. Some manufactories, however, were brought to be productive in the last century; the oldest of which was established at Mansvaux in Alsace, in the year 1726. This was followed, in 1733, by another at Bain in Lorraine, which obtained its privilege from Duke Francis III., and this was confirmed by Stanislaus in 1745[549].

That tin, in modern times, has been brought from the East Indies to Europe is well-known; but I have never been so fortunate as to discover when this trade began. It is, however, known, that at the commencement of the sixteenth century a good deal of information had been obtained in Europe in regard to East Indian tin. Louis Barthema, who was then in India, speaks of Malacca tin[550], as does also F. Mendez Pinto, who was there in 1537, and Odoard Barbosa mentions that which was carried from Caranguor to Malacca. Barbosa wrote in 1516[551]. Munster, Mercator, and other old geographers relate, that before the establishment of the Portuguese dominion in India, large tin coins were in circulation in the island of Sumatra.

The greater part of the East-Indian tin comes from Siam, Malacca, and Banca. In the last-mentioned place, which is an island near the south-east coast of Sumatra, the mines are said to have been discovered in 1711. In 1776 there were ten pits, which were worked by Chinese, on account of the king of Palimbang. One hundred and twenty-five pounds cost him only five rix dollars; and for this quantity he received from the Dutch East-India company, to whose government he was subject, from thirteen to fifteen dollars. The greater part went to China, or was used in India; but in the year 1778 the company sent 700,000 pounds to Europe, which was sold at the rate of a hundred pounds for forty-two florins. Malacca furnishes yearly about three or four hundred thousand pounds; but the principal part of it remains in India. In the year 1778 the company sold 100,000 pounds in Amsterdam. A great deal of tin is sold also in its factory at Siam. All the tin sold by it at Amsterdam between the years 1775 and 1779 amounted to 2,421,597 pounds.

[Tin occurs native in two forms, as peroxide and as sulphuret of tin and copper. The last is rare; the former constitutes the great source of tin, and in its native state mixed with arsenic, copper, zinc and tungsten, is called tin-stone; but when occurring in rounded masses, grains, or sand in alluvial soil, is called stream-tin. The metal reduced from the tin-stone forms block-tin; whilst that from the stream-tin, and which is the purest, is called grain-tin.

The annual produce of the tin mines and works of Cornwall is estimated at 4000 tons, worth from £65 to £80 a ton. About 30,000 cwt. of unwrought tin are annually exported from Britain, chiefly to France, Italy and Russia; which is, exclusive of tin and pewter wares and tin-plates, in declared value nearly £400,000, sent to the United States, Italy, Germany, France, the colonies, &c. Moreover, from 10,000 to 30,000 cwt. of Banca and Malay tin are imported for re-exportation to the continent and the United States.

An important enamel has lately been patented for lining the interior of cast iron vessels and utensils used in cooking, chemical operations, &c., which will probably replace tinned articles in a great degree. To apply the process, the vessels are cleansed with weak sulphuric acid, then washed and dipped into a thin paste made with quartz first melted with borax, felspar and clay free from iron, then reduced to an impalpable powder, and sufficient water added to form thinnish paste. The vessels are then powdered inside with a linen bag, containing a very finely powdered mixture of felspar, carbonate of soda, borax, and a little oxide of tin. The articles are then dried and heated in an enamelling furnace. The coating is very white, bears the action of fire without cracking, and completely resists acid or alkaline solutions.]