(108) Kingston Carburetors.

The Kingston Carburetor shown by Fig. 117 differs from the Schebler in many details, the principal difference being in the construction of the spray nozzle and the construction of the auxiliary air valve. The throttle valve E controls the exit of the mixture through the engine connection C which is an extension of the mixing chamber. The spray nozzle J which is surrounded by a hood or tube is controlled by the needle valve A which is threaded into the top of the mixing chamber, this latter adjustment being locked into place by a button head screw and a slot in the casting.

Fig. 117. Cross-Section Through Kingston Carburetor Showing Balls Used for Auxiliary Air Valves.

Surrounding the nozzle tube or hood is a curved restriction in the air intake passage, is known as a Venturi tube, which insures a constant relation between the air and fuel supplies. As the action of the Venturi tube is rather complicated, it will not be taken up in detail. Air is supplied to the Venturi passage through the intake (D). An annular float (K) surrounds the mixing chamber that acts on the gasoline supply valve (I) through a short lever arm. This valve is accessible for cleaning on the removal of the cap H that covers the valve chamber. Gasoline enters the float chamber through the fuel pipe G, and enters the spray nozzle through the two ports in the base of the mixing chamber.

The auxiliary air valve is a particularly novel feature of this carburetor, as no springs nor disc valves are used in its construction. Five balls (M) of different weights and sizes act as air valves, the balls covering the inlet ports (L) under normal operation. As the speed increases, the balls are lifted off their seats in order of their weight or size by the increase in suction. With a slight increase of suction, the lightest ball covering the smallest hole is lifted first, a further increase in suction lifts the next largest ball which still further increases the auxiliary air intake, and so on until at the highest speed all of the balls are off their seats. Access to the ball valves is had through the valve caps (N). The constant supply inlet is circular and may be set at any desired angle, as can the float chamber and gasoline supply connection. Control and adjustment are entirely by the needle valve.