(55) The Gyro Rotary Motor.

In the Gyro motor, made by the Gyro Motor Company of Washington, D. C., are embodied all of the principles of the typical revolving motor, but with extensive improvements in the design and in the details. It weighs 3¼ pounds per horse-power, complete. This light weight is due to the design of the motor and to the use of alloy steels, and is attained without sacrificing strength or durability.

Each cylinder is machined out of a heavy 3½ per cent tubular nickle steel forging that weighs nearly 40 pounds. After the metal is removed and the cylinder worked down to size, the shell weighs but 6½ pounds. The radiating ribs on the outside of the cylinder are machined out of the solid bar, and are arranged in helicoid or screw-like formation around the cylinder barrel. This adds to the strength of the cylinder and also aids in the circulation of the air. The comparative thickness of the cylinder wall may be seen from Fig. 44. The stiffening effect of the radiating ribs will also be noted. The crank case to which the cylinders are fastened is of vanadium steel, and is divided into two parts. In addition to supporting the cylinders, the crank case also serves as a mixing chamber for the gasoline and air. By removing the bolts seen between each cylinder, the entire working mechanism can be laid bare for inspection. The exterior of the case carries the exhaust valve mechanism and the ignition distributer. The crank shaft is a nickel steel forging with an elastic limit of 110,000 pounds. It is bored hollow throughout its length and serves as an intake manifold by conveying the mixture from the carbureter, attached to its outer end, to the crank case.

Fig. 45. Section Through Rotary Gyro Motor.

The intake valves in the heads of the piston are mechanically operated by a specially patented movement which consists of two parts, a counter-balancing member, and an operating member. The counter balance balances the valve against the disturbing influence of the centrifugal force, while the operating member, which is fastened to the connecting rod, controls the opening or closing of the valve by the angular position of the connecting rod. This valve action insures a full opening of the valve and a full charge during practically all of the suction stroke.

There are two separate paths provided for the exhaust gases, one being through the auxiliary exhaust ports at the end of the stroke, and the other path through the exhaust valve located in the cylinder head. The auxiliary ports may be seen in the cross-section directly below the piston head in cylinders 4 and 5. The auxiliary ports are uncovered by the piston at the inner end of the working stroke, and it is at this point that the greater percentage of the exhaust leaves the cylinder. These ports or holes are formed on a projecting annular ring in which enough material is provided to make up for the strength lost by boring the ports. As these ports are, in the majority of cases, bored at an acute angle with the center line of the cylinder, it is impossible for the cylinder oil to escape.

All exhaust valves are operated by levers and push rods connected to a cam mechanism on the outside of the crank case. A single cam ring operates all of the valves except where a step-by-step compression is desired. The exhaust mechanism is provided with a simple device by which the closing of the exhaust valve may be delayed through any portion of the exhaust stroke, thus reducing the compression and adding to the facility of cranking. The motor is started with the compression entirely released in which condition it can be spun about its shaft with ease.

After giving the motor its initial spin, the compression and spark are thrown in and the engine begins its normal operation. The compression release lever may be used for starting or slow running and in cutting off the power regardless of the ignition advance or retard.

One connecting rod, called the “master” rod, is an integral part of the spider that contains the ball bearings of the crank pin, thus controlling the angular relation between the connecting rods and cylinders. The remaining six rods are, of course, articulated on the spider by pins so that the rods may move in regard to the spider when in different parts of the stroke. The shell of the pistons is of a fine grade of iron, very thin and elastic, so that it may conform readily to the outline of the cylinder bore. The head of the piston consists principally of the intake valve cage, the cage carrying the piston pin as well as the valve.

Oil is supplied by a positive pump that measures the lubricant in exact proportion to the load on the engine. Both the oil and the gasoline mixture enter the crank case through the hollow crank shaft and mingle in the form of a vapor. This oil mist reaches every moving part and results in perfect lubrication. The pistons are provided with oil shields which carry the oil directly to the cylinder walls and prevent the loss of oil through the exhaust valve.

Ignition is performed by a high tension magneto through a distributer which directs the current to the proper cylinder. As in all rotary engines, the Gyro has an uneven number of cylinders (3, 5, and 7) in order that the cylinders receive firing impulses through equal angles of rotation. An even distribution of firing is impossible with an even number of cylinders, as two adjacent cylinders out of six alternately fire together and then 180° apart. This produces a very jerky turning movement, and is productive of much vibration. In the seven cylinder motor the magneto is driven by gears having a ratio of 4 to 7, and the high tension current is distributed to the cylinders by 7 brushes, the leads from the brushes being taken direct to the spark plugs.