III. Anaximenes

Life.

23. Anaximenes of Miletos, son of Eurystratos, was, according to Theophrastos[Theophrastos], an “associate” of Anaximander.[[145]] Apollodoros said, it appears, that he “flourished” about the time of the fall of Sardeis (546/5 B.C.), and died in Ol. LXIII. (528/524 B.C.).[[146]] In other words, he was born when Thales “flourished,” and “flourished” when Thales died, and this means that Apollodoros had no definite information about his date at all. He most probably made him die in the sixty-third Olympiad because that gives just a hundred years, or three generations, for the Milesian school from the birth of Thales. We cannot, therefore, say anything positive as to his date, except that he must have been younger than Anaximander, and must have flourished before 494 B.C., when the school was, of course, broken up by the destruction of Miletos.

His book.

24. Anaximenes wrote a book which certainly survived until the age of literary criticism; for we are told that he used a simple and unpretentious Ionic,[[147]] very different, we may suppose, from the poetical prose of Anaximander.[[148]] We may probably trust this criticism, which comes ultimately from Theophrastos; and it furnishes a good illustration of the truth that the character of a man’s thoughts is sure to find expression in his style. We have seen that the speculations of Anaximander were distinguished for their hardihood and breadth; those of Anaximenes are marked by just the opposite quality. He appears to have thought out his system carefully, but he rejects the more audacious theories of his predecessor. The result is that, while his view of the world is on the whole much less like the truth than Anaximander’s, it is more fruitful in ideas that were destined to hold their ground.

Theory of the primary substance.

25. Anaximenes is one of the philosophers on whom Theophrastos wrote a special monograph;[[149]] and this gives us an additional guarantee for the trustworthiness of the tradition derived from his great work. The following[[150]] are the passages which seem to contain the fullest and most accurate account of what he had to say on the central feature of the system:—

Anaximenes of Miletos, son of Eurystratos, who had been an associate of Anaximander, said, like him, that the underlying substance was one and infinite. He did not, however, say it was indeterminate, like Anaximander, but determinate; for he said it was Air.—Phys. Op. fr. 2 (R. P. 26).

From it, he said, the things that are, and have been, and shall be, the gods and things divine, took their rise, while other things come from its offspring.—Hipp. Ref. i. 7 (R. P. 28).

“Just as,” he said, “our soul, being air, holds us together, so do breath and air encompass the whole world.”—Aet. i. 3, 4 (R. P. 24).

And the form of the air is as follows. Where it is most even, it is invisible to our sight; but cold and heat, moisture and motion, make it visible. It is always in motion; for, if it were not, it would not change so much as it does.—Hipp. Ref. i. 7 (R. P. 28).

It differs in different substances in virtue of its rarefaction and condensation.—Phys. Op. fr. 2 (R. P. 26).

When it is dilated so as to be rarer, it becomes fire; while winds, on the other hand, are condensed Air. Cloud is formed from Air by felting;[[151]] and this, still further condensed, becomes water. Water, condensed still more, turns to earth; and when condensed as much as it can be, to stones.—Hipp. Ref. i. 7 (R. P. 28).[[152]]

Rarefaction and condensation.

26. At the first glance, this undoubtedly looks like a falling off from the more refined doctrine of Anaximander to a cruder view; but a moment’s reflexion will show that this is not altogether the case. On the contrary, the introduction of rarefaction and condensation into the theory is a notable advance.[[153]] In fact, it makes the Milesian cosmology thoroughly consistent for the first time; since it is clear that a theory which explains everything by the transformations of a single substance is bound to regard all differences as purely quantitative. The infinite substance of Anaximander, from which the opposites “in it” are “separated out,” cannot, strictly speaking, be thought of as homogeneous, and the only way to save the unity of the primary substance is to say that all diversities are due to the presence of more or less of it in a given space. And when once this important step has been taken, it is no longer necessary to make the primary substance something “distinct from the elements,” to use Aristotle’s inaccurate but convenient phrase; it may just as well be one of them.

Air.

27. The air that Anaximenes speaks of includes a good deal that we should not call by that name. In its normal condition, when most evenly distributed, it is invisible, and it then corresponds to our “air”; it is identical with the breath we inhale and the wind that blows. That is why he called it πνεῦμα. On the other hand, the old idea, familiar to us in Homer, that mist or vapour is condensed air, is still accepted without question. In other words, we may say that Anaximenes supposed it to be a good deal easier to get liquid air than it has since proved to be. It was Empedokles, we shall see, who first discovered that what we call air was a distinct corporeal substance, and was not identical either with vapour or with empty space. In the earlier cosmologists “air” is always a form of vapour, and even darkness is a form of it. It was Empedokles who cleared up this point too by showing that darkness is a shadow.[[154]]

It was natural for Anaximenes to fix upon Air in this sense as the primary substance; for, in the system of Anaximander, it occupied an intermediate place between the two fundamental opposites, the sphere of flame and the cold, moist mass within it ([§ 19]). We know from Plutarch that he fancied air became warmer when rarefied, and colder when condensed. Of this he satisfied himself by a curious experimental proof. When we breathe with our mouths open, the air is warm; when we breathe with our lips closed, it is cold.[[155]]

The world breathes.

28. This argument from human breathing brings us to an important point in the theory of Anaximenes, which is attested by the single fragment that has come down to us.[[156]] “Just as our soul, being air, holds us together, so do breath and air encompass the whole world.” The primary substance bears the same relation to the life of the world as to that of man. Now this, we shall see, was the Pythagorean view;[[157]] and it is also an early instance of the argument from the microcosm to the macrocosm, and so marks the first beginnings of an interest in physiological matters.

The parts of the world.

29. We turn now to the doxographical tradition concerning the formation of the world and its parts:—

He says that, as the air was felted, the earth first came into being. It is very broad and is accordingly supported by the air.—Ps.-Plut. Strom. fr. 3 (R. P. 25).

In the same way the sun and the moon and the other heavenly bodies, which are of a fiery nature, are supported by the air because of their breadth. The heavenly bodies were produced from the earth by moisture rising from it. When this is rarefied, fire comes into being, and the stars are composed of the fire thus raised aloft. There were also bodies of earthy substance in the region of the stars, revolving along with them. And he says that the heavenly bodies do not move under the earth, as others suppose, but round it, as a cap turns round our head. The sun is hidden from sight, not because it goes under the earth, but because it is concealed by the higher parts of the earth, and because its distance from us becomes greater. The stars give no heat because of the greatness of their distance.—Hipp. Ref. i. 7, 4-6 (R. P. 28).

Winds are produced when air is condensed and rushes along under propulsion; but when it is concentrated and thickened still more, clouds are generated; and, lastly, it turns to water.[[158]]—Hipp. Ref. i. 7, 7 (Dox. p. 561).

The stars are fixed like nails in the crystalline vault of the heavens.—Aet. ii. 14, 3 (Dox. p. 344).

They do not go under the earth, but turn round it.—Ib. 16, 6 (Dox. p. 346).

The sun is fiery.—Ib. 20, 2 (Dox. p. 348).

It is broad like a leaf.—Ib. 22, 1 (Dox. p. 352).

The heavenly bodies are diverted from their courses by the resistance of compressed air.—Ib. 23, 1 (Dox. p. 352).

The moon is of fire.—Ib. 25, 2 (Dox. p. 356).

Anaximenes explained lightning like Anaximander, adding as an illustration what happens in the case of the sea, which flashes when divided by the oars.—Ib. iii. 3, 2 (Dox. p. 368).

Hail is produced when water freezes in falling; snow, when there is some air imprisoned in the water.—Aet. iii 4, 1 (Dox. p. 370).

The rainbow is produced when the beams of the sun fall on thick condensed air. Hence the anterior part of it seems red, being burnt by the sun’s rays, while the other part is dark, owing to the predominance of moisture. And he says that a rainbow is produced at night by the moon, but not often, because there is not constantly a full moon, and because the moon’s light is weaker than that of the sun.—Schol. Arat.[[159]] (Dox. p. 231).

The earth was like a table in shape.—Aet. iii. 10, 3 (Dox. p. 377).

The cause of earthquakes was the dryness and moisture of the earth, occasioned by droughts and heavy rains respectively.—Ib. 15, 3 (Dox. p. 379).

We have seen that Anaximenes was quite justified in going back to Thales in regard to his general theory of the primary substance; but it cannot be denied that the effect of this upon the details of his cosmology was unfortunate. The earth is once more imagined as a table-like disc floating upon the air. The sun, moon, and planets are also fiery discs which float on the air “like leaves.” It follows that the heavenly bodies cannot be thought of as going under the earth at night, but only as going round it laterally like a cap or a millstone.[[160]] This curious view is also mentioned in Aristotle’s Meteorology,[[161]] where the elevation of the northern parts of the earth, which makes it possible for the heavenly bodies to be hidden from sight, is referred to. In fact, whereas Anaximander had regarded the orbits of the sun, moon, and stars as oblique with reference to the earth, Anaximenes regarded the earth itself as inclined. The only real advance is the distinction of the planets, which float freely in the air, from the fixed stars, which are fastened to the “crystalline” vault of the sky.[[162]]

The earthy bodies, which circulate among the planets, are doubtless intended to account for eclipses and the phases of the moon.[[163]]

Innumerable worlds.

30. As might be expected, there is the same difficulty about the “innumerable worlds” ascribed to Anaximenes as about those of Anaximander, and most of the arguments given above ([§ 18]) apply here also. The evidence, however, is far less satisfactory. Cicero says that Anaximenes regarded air as a god, and adds that it came into being.[[164]] That there is some confusion here is obvious. Air, as the primary substance, is certainly eternal, and it is quite likely that Anaximenes called it “divine,” as Anaximander did the Boundless; but it is certain that he also spoke of gods who came into being and passed away. These arose, he said, from the air. This is expressly stated by Hippolytos,[[165]] and also by St. Augustine.[[166]] These gods are probably to be explained like Anaximander’s. Simplicius, indeed, takes another view;[[167]] but he may have been misled by a Stoic authority.

Influence of Anaximenes.

31. It is not quite easy for us to realise that, in the eyes of his contemporaries, and for long after, Anaximenes was a much more important figure than Anaximander. And yet the fact is certain. We shall see that Pythagoras, though he followed Anaximander in his account of the heavenly bodies, was far more indebted to Anaximenes for his general theory of reality ([§ 53]). We shall see further that when, at a later date, science revived once more in Ionia, it was “the philosophy of Anaximenes” to which it attached itself ([§ 122]). Anaxagoras adopted many of his most characteristic views ([§ 135]), and some of them even found their way into the cosmology of the Atomists.[[168]] Diogenes of Apollonia went back to the central doctrine of Anaximenes, and once more made Air the primary substance, though he also tried to combine it with the theories of Anaxagoras ([§ 188]). We shall come to all this later on; but it seemed desirable to point out at once that Anaximenes marks the culminating point of the line of thought which started with Thales, and to show how the “philosophy of Anaximenes” came to mean the Milesian doctrine as a whole. This it can only have done because it was really the work of a school, of which Anaximenes was the last distinguished representative, and because his contribution to it was one that completed the system he had inherited from his predecessors. That the theory of rarefaction and condensation was really such a completion of the Milesian system, we have seen already ([§ 26]), and it need only be added that a clear realisation of this fact will be the best clue at once to the understanding of the Milesian cosmology itself and to that of the systems which followed it. In the main, it is from Anaximenes that they all start.


[52]. Herod. i. 29. Some other points may be noted in confirmation of what has been said as to the “Hellenism” of the Mermnadai. Alyattes had two wives, one of whom, the mother of Croesus, was a Karian; the other was an Ionian, and by her he had a son called by the Greek name Pantaleon (ib. 92). The offerings of Gyges were pointed out in the treasury of Kypselos at Delphoi (ib. 14), and those of Alyattes were one of the “sights” of the place (ib. 25). Croesus also showed great liberality to Delphoi (ib. 50), and to many other Greek shrines (ib. 92). He gave most of the pillars for the great temple at Ephesos. The stories of Miltiades (vi. 37) and Alkmeon (ib. 125) should also be mentioned in this connexion.

[53]. Herod. i. 75. He disbelieves it because he had heard, probably from the Greeks of Sinope, of the great antiquity of the bridge on the royal road between Ankyra and Pteria (Ramsay, Asia Minor, p. 29). Xanthos recorded a tradition that it was Thales who induced Croesus to ascend his pyre when he knew a shower was coming (fr. 19).

[54]. Milesians at Naukratis, Herod. ii. 178, where Amasis is said to have been φιλέλλην. He subscribed to the rebuilding of the temple at Delphoi after the great fire (ib. 180).

[55]. Simplicius, indeed, quotes from Theophrastos the statement that Thales had many predecessors (Dox. p. 475, 11). This, however, need not trouble us; for the scholiast on Apollonios Rhodios (ii. 1248) tells us that Theophrastos made Prometheus the first philosopher, which is merely an application of Peripatetic literalism to a remark of Plato’s (Phileb. 16 c 6). Cf. Appendix, [§ 2].

[56]. Herod. i. 170 (R. P. 9 d.); Diog. i. 22 (R. P. 9).

[57]. Strabo, xiv. pp. 633, 636; Pausan. vii. 2, 7. Priene was called Kadme, and the oldest annalist of Miletos bore the name Kadmos. See E. Meyer, Gesch. des Alterth. ii. § 158.

[58]. Diog. i. 23, Καλλίμαχος δ’ αὐτὸν οἶδεν εὑρετὴν τῆς ἄρκτου τῆς μικρᾶς λέγων ἐν τοῖς Ἰάμβοις οὕτως—

καὶ τῆς ἁμάξης ἐλέγετο σταθμήσασθαι

τοὺς ἀστερίσκους, ᾗ πλέουσι Φοίνικες.

[59]. See Diels, “Thales ein Semite?” (Arch. ii. 165 sqq.), and Immisch, “Zu Thales Abkunft” (ib. p. 515). The name Examyes occurs also in Kolophon (Hermesianax, Leontion, fr. 2, 38 Bgk.), and may be compared with other Karian names such as Cheramyes and Panamyes.

[60]. Herod. i. 74.

[61]. For the theories held by Anaximander and Herakleitos, see infra, §§ [19], [71].

[62]. Diog. i. 23, δοκεῖ δὲ κατά τινας πρῶτος ἀστρολογῆσαι καὶ ἡλιακὰς ἐκλείψεις καὶ τροπὰς προειπεῖν, ὥς φησιν Εὔδημος ἐν τῇ περὶ τῶν ἀστρολογουμένων ἱστορίᾳ, ὅθεν αὐτὸν καὶ Ξενοφάνης καὶ Ἡρόδοτος θαυμάζει.

[63]. The first to call attention to the Chaldaean cycle in this connexion seems to have been the Rev. George Costard, Fellow of Wadham College. See his Dissertation on the Use of Astronomy in History (London, 1764), p. 17. It is inaccurate to call it the Saros; that was quite another thing (see Ginzel, Klio, i. p. 377).

[64]. See George Smith, Assyrian Discoveries (1875), p. 409. The inscription which follows was found at Kouyunjik:—

“To the king my lord, thy servant Abil-Istar.


“Concerning the eclipse of the moon of which the king my lord sent to me; in the cities of Akkad, Borsippa, and Nipur, observations they made, and then in the city of Akkad, we saw part.... The observation was made, and the eclipse took place.


“And when for the eclipse of the sun we made an observation, the observation was made and it did not take place. That which I saw with my eyes to the king my lord I send.”

[65]. For the literature of this subject, see R. P. 8 b, adding Ginzel, Spezieller Kanon, p. 171. See also Milhaud, Science grecque, p. 62.

[66]. Pliny, N.H. ii. 53.

[67]. For Apollodoros, see Appendix, [§ 20]. The dates in our text of Diogenes (i. 37; R. P. 8) cannot be reconciled with one another. That given for the death of Thales is probably right; for it is the year before the fall of Sardeis in 546/5 B.C., which is one of the regular eras used by Apollodoros. It no doubt seemed natural to make Thales die the year before the “ruin of Ionia” which he foresaw. Seventy-eight years before this brings us to 625/4 B.C. for the birth of Thales, and this gives us 585/4 B.C. for his fortieth year. That is Pliny’s date for the eclipse, and Pliny’s dates come from Apollodoros through Nepos. For a full discussion of the subject, see Jacoby, pp. 175 sqq.

[68]. Diog. i. 22 (R. P. 9). I do not discuss the Pythian era and the date of Damasias here, though it appears to me that the last word has not yet been said upon the subject. Jacoby (pp. 170 sqq.) argues strongly for 582/1, the date now generally accepted. Others favour the Pythian year 586/5 B.C., which is the very year of the eclipse, and this would help to explain how those historians who used Apollodoros came to date it a year too late; for Damasias was archon for two years and two months. It is even possible that they misunderstood the words Δαμασίου τοῦ δευτέρου, which are intended to distinguish him from an earlier archon of the same name, as meaning “in the second year of Damasias.” Apollodoros gave only Athenian archons, and the reduction to Olympiads is the work of later writers. Kirchner, adopting the year 582/1 for Damasias, brings the archonship of Solon down to 591/0 (Rh. Mus. liii. pp. 242 sqq.). But the date of Solon’s archonship can never have been doubtful. On Kirchner’s reckoning, we come to 586/5 B.C., if we keep the traditional date of Solon. See also E. Meyer, Forschungen, ii. pp. 242 sqq.

[69]. Herod. ii. 20.

[70]. Aet. iv. I. 1 (Dox. p. 384).

[71]. Dox. pp. 226-229. The Latin epitome will be found in Rose’s edition of the Aristotelian fragments.

[72]. Hekataios, fr. 278 (F.H.G. i. p. 19).

[73]. See Cantor, Vorlesungen über Geschichte der Mathematik, vol. i. pp. 112 sqq.; Allman, “Greek Geometry from Thales to Euclid” (Hermathena, iii. pp. 164-174).

[74]. Proclus, in Eucl. pp. 65, 7; 157, 10; 250, 20; 299, 1; 352, 14; (Friedlein). Eudemos wrote the first histories of astronomy and mathematics, just as Theophrastos wrote the first history of philosophy.

[75]. Proclus, p. 352, 14, Εὔδημος δὲ ἐν ταῖς γεωμετρικαῖς ἱστορίαις εἰς Θαλῆν τοῦτο ἀνάγει τὸ θεώρημα (Eucl. i. 26)· τὴν γὰρ τῶν ἐν θαλάττῃ πλοίων ἀπόστοσιν δι’ οὗ τρόπου φασὶν αὐτὸν δεικνύναι τούτῳ προσχρῆσθαί φησιν ἀναγκαῖον. For the method adopted by Thales, see Tannery, Géométrie grecque, p. 90. I agree, however, with Dr. Gow (Short History of Greek Mathematics, § 84) that it is very unlikely Thales reproduced and measured on land the enormous triangle which he had constructed in a perpendicular plane over the sea. Such a method would be too cumbrous to be of use. It is much simpler to suppose that he made use of the Egyptian seqt.

[76]. The oldest version of this story is given in Diog. i. 27, ὁ δὲ Ἱερώνυμος καὶ ἐκμετρῆσαί φησιν αὐτὸν τὰς πυραμίδας, ἐκ τῆς σκιᾶς παρατηρήσαντα ὅτε ἡμῖν ἰσομεγέθης ἐστίν. Cf. Pliny, H. Nat. xxxvi. 82, mensuram altitudinis earum deprehendere invenit Thales Milesius umbram metiendo qua hora par esse corpori solet. (Hieronymos of Rhodes was contemporary with Eudemos.) This need imply no more than the simple reflexion that the shadows of all objects will probably be equal to the objects at the same hour. Plutarch (Conv. sept. sap. 147 a) gives a more elaborate method, τὴν βακτηρίαν στήσας ἐπὶ τῷ πέρατι τῆς σκιᾶς ἣν ἡ πυραμὶς ἐποίει, γενομένων τῇ ἐπαφῇ τῆς ἀκτῖνος δυοῖν τριγώνων, ἔδειξας ὃν ἡ σκιὰ πρὸς τὴν σκιὰν λόγον εἶχε, τὴν πυραμίδα πρὸς τὴν βακτηρίαν ἔχουσαν. This, as Dr. Gow points out, is only another calculation of seqt, and may very well have been the method of Thales.

[77]. Herod. i. 170 (R. P. 9 d).

[78]. The story of Thales falling into a well (Plato, Tht. 174 a) is nothing but a fable teaching the uselessness of σοφία; the anecdote about the “corner” in oil (Ar. Pol. Α, 11. 1259 a 6) is intended to inculcate the opposite lesson.

[79]. See R. P. 9 e.

[80]. R. P. ib.

[81]. Arist. Met. Α, 3. 983 b 21 (R. P. 10); de Caelo, Β, 13. 294 a 28 (R. P. 11). Later writers add that he gave this as an explanation of earthquakes (so Aet. iii. 15, 1); but this is probably due to a “Homeric allegorist” (Appendix, [§ 11]), who wished to explain the epithet ἐννοσίγαιος. Cf. Diels, Dox. p. 225.

[82]. Met. Α, 3. 983 b 20 (R. P. 10). I have said “material cause,” because τῆς τοιαύτης ἀρχῆς (b 19) means τῆς ἐν ὕλης εἴδει ἀρχῆς (b 7).

[83]. Arist. de An. Α, 5. 411 a 7 (R. P. 13); ib. 2. 405 a 19 (R. P. 13 a). Diog. i. 24 (R. P. ib.) adds amber. This comes from Hesychios of Miletos; for it occurs in the scholium of Par. A on Plato, Rep. 600 a.

[84]. Met. Α, 3. 983 b 22; Aet. i. 3, 1; Simpl. Phys. p. 36, 10 (R. P. 10, 12, 12 a). The last of the explanations given by Aristotle, namely, that Thales was influenced by early cosmogonical theories about Okeanos and Tethys, has strangely been supposed to be more historical than the rest, whereas it is merely a fancy of Plato’s taken literally. Plato says more than once (Tht. 180 d 2; Crat. 402 b 4) that Herakleitos and his predecessors (οἱ ῥέοντες) derived their philosophy from Homer (Il. xiv. 201), and even earlier sources (Orph. frag. 2, Diels, Vors. 1st ed. p. 491). In quoting this suggestion, Aristotle refers it to “some”—a word which often means Plato—and he calls the originators of the theory παμπαλαίους, as Plato had done (Met. 983 b 28; cf. Tht. 181 b 3). This is a characteristic example of the way in which Aristotle gets history out of Plato. See Appendix, [§ 2].

[85]. Compare Arist. de An. Α, 2. 405 b 2 (R. P. 220) with the passages referred to in the last note. The same suggestion is made in Zeller’s fifth edition (p. 188, n. 1), which I had not seen when the above was written. Döring, “Thales” (Zschr. f. Philos. 1896, pp. 179 sqq.), takes the same view. We now know that, though Aristotle declines to consider Hippon as a philosopher (Met. Α, 3. 984 a 3; R. P. 219 a), he was discussed in the history of medicine known as Menon’s Iatrika. See Diels in Hermes, xxviii. p. 420.

[86]. The view here taken most resembles that of the “Homeric allegorist” Herakleitos (R. P. 12 a). That, however, is also a conjecture, probably of Stoic, as the others are of Peripatetic, origin.

[87]. Arist. de An. Α, 5. 411 a 7 (R. P. 13).

[88]. Aet. i. 7, 11 = Stob. i. 56 (R. P. 14). On the sources here referred to, see Appendix, [§§ 11], [12].

[89]. Cicero, de Nat. D. 1. 25 (R. P. 13 b). On Cicero’s source, see Dox. pp. 125, 128. The Herculanean papyrus of Philodemos is, unfortunately, defective just at this point, but it is not likely that the Epicurean manual anticipated Cicero’s mistake.

[90]. See Introd. [§ VIII].

[91]. Plato refers to the saying πάντα πλήρη θεῶν in Laws, 899 b 9 (R. P. 14 b), without mentioning Thales. That ascribed to Herakleitos in the de part. An. Α, 5. 645 a 17 seems to be a mere variation on it. So in Diog. ix. 7 (R. P. 46 d) Herakleitos is credited with the saying πάντα ψυχῶν εἶναι κα δαιμόνων πλήρη.

[92]. Bäumker, Das Problem der Materie, p. 10, n. 1.

[93]. R. P. 15 d. That the words πολίτης καὶ ἑταῖρος, given by Simplicius, de Caelo, p. 615, 13, are the original words of Theophrastos is shown by the agreement of Cic. Acad. ii. 118, popularis et sodalis. The two passages represent quite independent branches of the tradition. See Appendix, [§§ 7], [12].

[94]. Diog. ii. 2 (R. P. 15); Hipp. Ref. i. 6 (Dox. p. 560); Plin. N.H. ii. 31. Pliny’s dates come from Apollodoros through Nepos.

[95]. Rhein. Mus. xxxi. p. 24.

[96]. Xenophanes, fr. 22 (fr. 17, Karsten; R. P. 95 a). Jacoby (p. 190) thinks that Apollodoros fixed the floruit of Anaximander forty years before that of Pythagoras, that is, in 572/1 B.C., and that the statement as to his age in 547/6 is a mere inference from this.

[97]. The statement that he “died soon after” (Diog. ii. 2; R. P. 15) seems to mean that Apollodoros made him die in the year of Sardeis (546/5), one of his regular epochs. If this is so, Apollodoros cannot have said also that he flourished in the days of Polykrates, and Diels is probably right in supposing that this notice refers to Pythagoras and has been inserted in the wrong place.

[98]. For the gnomon, see Introd. p. 31, [n. 44]; and cf. Diog. ii. 1 (R. P. 15); Herod. ii. 109 (R. P. 15 a). Pliny, on the other hand, ascribes the invention of the gnomon to Anaximenes (N.H. ii. 87). The truth seems to be that the erection of celebrated gnomons was traditionally ascribed to certain philosophers. That of Delos was referred to Pherekydes. For the map see Agathemeros, i. 1, Ἀναξίμανδρος ὁ Μιλήσιος ἀκουστὴς Θαλέω πρώτος ἐτόλμησε τὴν οἰκουμένην ἐν πίνακι γράψαι, μεθ’ ὃν Ἑκαταῖος ὁ Μιλήσιος ἀνὴρ πολυπλανὴς διηκρίβωσεν, ὥστε θαυμασθῆναι τὸ πρᾶγμα. This is from Eratosthenes. Cf. Strabo, i. p. 7.

[99]. See the conspectus of extracts from Theophrastos given by Diels, Dox. p. 133; Vors. pp. 13 sqq. In this and other cases, where the words of the original have been preserved by Simplicius, I have given them alone. On the various writers quoted, see Appendix, [§ 9] sqq.

[100]. Simplicius says “successor and disciple” (διάδοχος καὶ μαθητής) in his Commentary on the Physics; but see above, p. 52, [n. 2].

[101]. For the expression τὰ καλούμενα στοιχεῖα, see Diels, Elementum, p. 25, n. 4. In view of this, we must keep the MS. reading εἶναι, instead of writing νυνί with Usener.

[102]. Diels (Vors. p. 13) begins the actual quotation with the words ἐξ ὧν δὲ ἡ γένεσις.... The Greek practice of blending quotations with the text tells against this. It is very rare for a Greek writer to open a verbal quotation abruptly. Further, it is safer not to ascribe the terms γένεσις and φθορά in their technical Platonic sense to Anaximander.

[103]. The conception of elements is not older than Empedokles ([§ 106]), and the word στοιχεῖα, which is properly translated by elementa, was first used in this sense by Plato. For the history of the term, see Diels, Elementum (1899).

[104]. The important word ἀλλήλοις was omitted in the Aldine Simplicius, but is in all the MSS. We shall see that in Herakleitos “justice” means the observance of an equal balance between what were called later the elements ([§ 72]). See also Introd. p. 32, [n. 45].

[105]. If the words quoted from Theophrastos by Simplicius, Phys. p. 24, 15 (R. P. 16), stood by themselves, no one would ever have supposed them to mean that Anaximander called the Boundless ἀρχή. They would naturally be rendered: “having been the first to introduce this name (i.e. τὸ ἄπειρον) for the ἀρχή”; but the words of Hippolytos (Ref. i. 6, 2), πρῶτος τοὔνομα καλέσας τῆς ἀρχῆς, have led nearly all writers to take the passage in the less obvious sense. We now know, however, that Hippolytos is no independent authority, but rests altogether on Theophrastos; so the natural view to take is that either his immediate source, or he himself, or a copyist, has dropped out τοῦτο before τοὔνομα, and corrupted κομίσας into καλέσας. It is not credible that Theophrastos made both statements. The other passage from Simplicius compared by Usener (p. 150, 23), πρῶτος αὐτὸς ἀρχὴν ὀνομάσας τὸ ὑποκείμενον, does not seem to me to have anything to do with the question. It means simply that Anaximander was the first to name the substratum as the “material cause,” which is a different point altogether. This is how Neuhäuser takes the passage (Anaximander, pp. 7 sqq.); but I cannot agree with him in holding that the word ὑποκείμενον is ascribed to the Milesian.

[106]. Arist. Met. Λ, 2. 1069 b 18 (R. P. 16 c).

[107]. This is taken for granted in Phys. Γ, 4. 203 a 16; 204 b 22 (R. P. 16 b), and stated in Γ, 8. 208 a 8 (R. P. 16 a). Cf. Simpl. Phys. p. 150, 20 (R. P. 18).

[108]. Aristotle speaks four times of something intermediate between Fire and Air (Gen. Corr. Β, 1. 328 b 35; ib. 5. 332 a 21; Phys. Α, 4. 187 a 14; Met. Α, 7. 988 a 30). In five places we have something intermediate between Water and Air (Met. Α, 7. 988 a 13; Gen. Corr. Β, 5. 332 a 21; Phys. Γ, 4. 203 a 18; ib. 5. 205 a 27; de Caelo, Γ, 5. 303 b 12). Once (Phys. Α, 6. 189 b 1) we hear of something between Water and Fire. This variation shows at once that he is not speaking historically. If any one ever held the doctrine of τὸ μεταξύ, he must have known perfectly well which two elements he meant.

[109]. Arist. de Caelo, Γ, 5. 303 b 12, ὕδατος μὲν λεπτότερον, ἀέρος πυκνότερον, ὃ περιέχειν φασὶ πάντας τοὺς οὐρανοὺς ἄπειρον ὄν. That this refers to Idaios of Himera, as suggested by Zeller (p. 258), seems very improbable. Aristotle nowhere mentions his name, and the tone of his reference to Hippon in Met. Α, 3. 984 a 3 (R. P. 219 a) shows that he was not likely to pay so much attention to the ἐπίγονοι of the Milesian school.

[110]. Cf. Phys. Γ, 5. 204 b 22 (R. P. 16 b), where Zeller rightly refers τὸ παρὰ τὰ στοιχεῖα to Anaximander. Now, at the end (205 a 25) the whole passage is summarised thus: καὶ διὰ τοῦτ’ οὐθεὶς τὸ ἓν καὶ ἄπειρον πῦρ ἐποίησεν οὐδὲ γῆν τῶν φυσιολόγων, ἀλλ’ ἢ ὕδωρ ἢ ἀέρα ἢ τὸ μέσον αὐτῶν. In Gen. Corr. Β, 1. 328 b 35 we have first τι μεταξὺ τούτων σῶμά τε ὂν καὶ χωριστόν, and a little further on (329 a 9) μίαν ὕλην παρὰ τὰ εἰρημένα. In Β, 5. 332 a 20 we have οὐ μὴν οὐδ’ ἄλλο τί γε παρὰ ταῦτα, οἶον μέσον τι ἀέρος καὶ ὕδατος ἢ ἀέρος καὶ πυρός.

[111]. Met. Λ, 2. 1069 b 18 (R. P. 16 c). Zeller (p. 205, n. 1) assumes an “easy zeugma.” I should prefer to say that καὶ Ἐμπεδοκλέους τὸ μῖγμα was an afterthought, and that Aristotle really meant τὸ Ἀναξαγόρου ἓν ... καὶ Ἀναξιμάνδρου. Met. Α, 4. 187 a 20 does not assign the “mixture” to Anaximander.

[112]. For the literature of this controversy, see R. P. 15. A good deal of light is thrown on this and similar questions by W. A. Heidel, “Qualitative Change in Pre-Socratic Philosophy” (Arch. xix. p. 333).

[113]. Phys. Γ, 8. 208 a 8 (R. P. 16 a). That this refers to Anaximander is shown by Aet. i. 3, 3 (R. P. 16 a). The same argument is given in Phys. Γ, 4. 203 b 18, a passage where Anaximander has just been quoted by name, τῷ οὕτως ἂν μόνον μὴ ὑπολείπειν γένεσιν καὶ φθοράν, εἰ ἄπειρον εἴη ὅθεν ἀφαιρεῖται τὸ γιγνόμενον. I cannot, however, believe that the arguments given at the beginning of this chapter (203 b 7; R. P. 17) are Anaximander’s. They bear the stamp of the Eleatic dialectic, and are, in fact, those of Melissos.

[114]. I have assumed that the word ἄπειρον means spatially infinite (though not in any precise mathematical sense), not qualitatively indeterminate, as maintained by Teichmüller and Tannery. The decisive reasons for holding that the sense of the word is “boundless in extent” are as follows: (1) Theophrastos said that the primary substance of Anaximander was ἄπειρον and contained all the worlds, and the word περιέχειν everywhere means “to encompass,” not, as has been suggested, “to contain potentially.” (2) Aristotle says (Phys. Γ, 4. 203 b 23) διὰ γὰρ τὸ ἐν τῇ νοήσει μὴ ὑπολείπειν καὶ ὁ ἀριθμὸς δοκεῖ ἄπειρος εἶναι καὶ τὰ μαθηματικὰ μεγέθη καὶ τὰ ἔξω τοῦ οὐρανοῦ· ἀπείρου δ’ ὄντος τοῦ ἔξω, καὶ σῶμα ἄπειρον εἶναι δοκεῖ καὶ κόσμοι. (3) Anaximander’s theory of the ἄπειρον was adopted by Anaximenes, and he identified it with Air, which is not qualitatively indeterminate.

[115]. Plato, Tim. 52 e, where the elements are separated by being shaken, stirred, and carried in different directions: “just as by sieves and instruments for winnowing corn, the grain is shaken and sifted, and the dense and heavy parts go one way, and the rare and light are carried to a different place and settle there.” For the relation of Pythagoreanism to Anaximander, see below, [§ 53].

[116]. Arist. de Caelo, Β, 13. 295 a 9. The identification of the eternal motion with the diurnal revolution is insisted on by Teichmüller and Tannery, and is the real source of the very unnatural interpretation which they give to the word ἄπειρον. It was obviously difficult to credit Anaximander with a belief in an infinite body which revolves in a circle. The whole theory rests upon a confusion between the finite spherical κόσμος within the οὐρανός and the infinite περιέχον outside it.

[117]. [Plut.] Strom. fr. 2 (R. P. 21 b). The words ἀνακυκλουμένων πάντων αὐτῶν are most naturally to be interpreted as referring to an ἀνακύκλησις or cycle of γένεσις and φθορά in each of a multitude of coexistent worlds. It would be a very strange phrase to use of a succession of single worlds.

[118]. Zeller, pp. 234 sqq.

[119]. Aet. ii. 1, 3 (Dox. p. 327). Zeller is wrong in understanding κατὰ πᾶσαν περιαγωγήν here of the revolution of a cycle. It means simply “in every direction we turn,” and so does the alternative reading κατὰ πᾶσαν περίστασιν. The six περιστάσεις are πρόσω, ὀπίσω, ἄνω, κάτω, δεξιά, ἀριστερά (Nicom. Introd. p. 85, 11, Hoche), and Polybios uses περίστασις of surrounding space.

[120]. Aet. ii. 1, 8 (Dox. p. 329), τῶν ἀπείρους ἀποφηναμένων τοὺς κόσμους Ἀναξίμανδρος τὸ ἴσον αὐτοὺς ἀπέχειν ἀλλήλων, Ἐπίκουρος ἄνισον εἶναι τὸ μεταξὺ τῶν κόσμων διάστημα.

[121]. For Anaximenes, see [§ 30]; Xenophanes, [§ 59]; Archelaos, Chap. X.

[122]. This is shown by the fact that the list of names is given also by Theodoret. See Appendix, [§ 10].

[123]. Simpl. Phys. p. 1121, 5 (R. P. 21 b). Zeller says (p. 234, n. 4) that Simplicius elsewhere (de Caelo, p. 273 b 43) makes the same statement more doubtfully. But the words ὡς δοκεῖ, on which he relies, are hardly an expression of doubt, and refer, in any case, to the derivation of the doctrine of “innumerable worlds” from that of the ἄπειρον, not to the doctrine itself.

[124]. Cicero, de Nat. D. i. 25 (R. P. 21).

[125]. Aet. i. 7, 12 (R. P. 21 a). The reading of Stob., ἀπείρους οὐρανούς, is guaranteed by the ἀπείρους κόσμους of Cyril, and the ἀπείρους νοῦς (i.e. οὐνους) of the pseudo-Galen. See Dox. p. 11.

[126]. It is simplest to suppose that Cicero found διαστήμασιν in his Epicurean source, and that is a technical term for the intermundia.

[127]. Arist. Phys. Γ, 4. 203 b 25, ἀπείρου δ’ ὄντος τοῦ ἔξω (sc. τοῦ οὐρανοῦ), καὶ σῶμα ἄπειρον εἶναι δοκεῖ καὶ κόσμοι (sc. ἄπειροι). It is to be observed that the next words—τί γὰρ μᾶλλον τοῦ κενοῦ ἐνταῦθα ἢ ἐνταῦθα;—show clearly that this refers to the Atomists as well; but the ἄπειρον σῶμα will not apply to them. The suggestion is rather that both those who made the Boundless a body and those who made it a κενόν held the doctrine of ἀπειροι κόσμοι in the same sense.

[128]. See below, [§ 53]. Cf. Diels, Elementum, pp. 63 sqq.

[129]. Zeller’s difficulty about the meaning of τροπαί here (p. 223, n. 2) seems to be an imaginary one. The moon has certainly a movement in declination and, therefore, τροπαί (Dreyer, Planetary Systems, p. 17, n. 1).

[130]. I assume with Diels (Dox. p. 560) that something has fallen out in our text of Hippolytos. I have, however, with Tannery, Science hellène, p. 91, supplied “eighteen times” rather than “nineteen times.” Zeller (p. 224, n. 2) prefers the text of our MS. of Hippolytos to the testimony of Aetios.

[131]. Aetios goes on to say that the moon also is like a hollow cart-wheel full of fire with an ἐκπνοή. The difference in the figures of Hippolytos and Aetios is due to the fact that one refers to the internal and the other to the external circumferences of the rings. Cf. Tannery, Science hellène, p. 91; and Diels, “Ueber Anaximanders Kosmos” (Arch. x. pp. 231 sqq.).

[132]. As Diels points out (Arch. x. p. 229) the explanation given by Gomperz, p. 53, cannot be right. It implies the fifth century theory of μύδροι. Anaximander knew nothing of the “great mass” of the sun.

[133]. The true meaning of this doctrine was first explained by Diels (Dox. pp. 25 sqq.). The flames rush forth per magni circum spiracula mundi, as Lucretius has it (vi. 493). The πρηστῆρος αὐλός, to which these are compared, is simply the nozzle of a pair of bellows, a sense which the word πρηστήρ has in Apollonios Rhodios (iv. 776), and has nothing to do with the meteorological phenomenon of the same name, for which see Chap. III. [§ 71]. It is not now necessary to refute the earlier interpretations.

[134]. It cannot be the Zodiac; for the planets were not separately studied yet.

[135]. The Placita and Eusebios both have τοὺς ἀστέρας οὐρανίους instead of τοὺς ἀπείρους οὐρανούς (see above, p. 65, [n. 2]), and it seems just possible that this is not a mere corruption of the text. The common source may have had both statements. I do not, however, rest the interpretation given above on this very insecure basis. Quite apart from it, it seems to be the only way out of the difficulty.

[136]. The MSS. of Hippolytos have ὑγρὸν στρογγύλον. Roeper read γυρὸν [στρογγύλον], supposing the second word to be a gloss on the first; but Diels has shown (Dox. p. 218) that both are wanted. The first means “convex,” and applies to the surface of the earth; while the second means “round,” and refers to its circuit. As to κίονι λίθῳ, it is not easy to say anything positive. It might, possibly, be a mere corruption of κυλίνδρῳ (cf. Plut. Strom. fr. 2; R. P. 20 a); but, if so, it is a very old one. Aetios (iii. 10, 2), who is quite independent of Hippolytos, has λίθῳ κίονι; Roeper suggested κιονέῃ λίθῳ; Teichmüller, κίονος λιθῷ; while Diels doubtfully puts forward λιθῷ κίονι, which he suggests might be a Theophrastean modernisation of an original λιθέῃ κίονι (Dox. p. 219).

[137]. See above, p. 58, [n. 48].

[138]. Arist. de Caelo, Β, 13. 295 b 10, εἰσὶ δέ τινες οἳ διὰ τὴν ὁμοιότητά φασιν αὐτὴν (τὴν γῆν) μένειν, ὥσπερ τῶν ἀρχαίων Ἀναξίμανδρος· μᾶλλον μὲν γὰρ οὐθὲν ἄνω ἢ κάτω ἢ εἰς τὰ πλάγια φέρεσθαι προσήκειν τὸ ἐπὶ τοῦ μέσου ἱδρυμένον καὶ ὁμοίως πρὸς τὰ ἔσχατα ἔχον. That Aristotle is really reproducing Anaximander seems to be shown by the use of ὁμοιότης in the old sense of “equality.”

[139]. This is to be understood in the light of what we are told about γαλεοί below. Cf. Arist. Hist. An. Ζ, 10. 565 a 25, τοῖς μὲν οὖν σκυλίοις, οὓς καλοῦσί τινες νεβρίας γαλεούς, ὅταν περιρραγῇ καὶ ἐκπέσῃ τὸ ὄστρακον, γίνονται οἱ νεοττοί.

[140]. Reading ὥσπερ οἱ γαλεοί for ὥσπερ οἱ παλαιοί with Doehner, who compares Plut. de soll. anim. 982 a, where the φιλόστοργον of the shark is described. See p. 74, [n. 141].

[141]. On Aristotle and the galeus levis, see Johannes Müller, “Ueber den glatten Hai des Aristoteles” (K. Preuss. Akad., 1842), to which my attention has been directed by my colleague, Prof. D’Arcy Thomson. The precise point of the words τρεφόμενοι ὥσπερ οἱ γαλεοί appears from Arist. Hist. An. Ζ, 10. 565 b 1, οἱ δὲ καλούμενοι λεῖοι τῶν γαλεῶν τὰ μὲν ᾠὰ ἴσχουσι μεταξὺ τῶν ὑστερῶν ὁμοίως τοῖς σκυλίοις, περιστάντα δὲ ταῦτα εἰς ἑκατέραν τὴν δικρόαν τῆς ὑστέρας καταβαίνει, καὶ τὰ ζῷα γίνεται τὸν ὀμφαλὸν ἔχοντα πρὸς τῇ ὑστέρᾳ, ὥστε ἀναλισκομένων τῶν ᾠῶν ὁμοίως δοκεῖν ἔχειν τὸ ἔμβρυον τοῖς τετράποσιν. It is not necessary to suppose that Anaximander referred to the further phenomenon described by Aristotle, who more than once says that all the γαλεοί except the ἀκανθίας “send out their young and take them back again” (ἐξαφιᾶσι καὶ δέχονται εἰς ἑαυτοὺς τοὺς νεοττούς, ib. 565 b 23), for which compare also Ael. i. 17; Plut. de soll. anim. 982 a. The placenta and umbilical cord described by Johannes Müller will account sufficiently for all he says. At the same time, I understand that deep-sea fishermen at the present day confirm this remarkable statement also, and two credible witnesses have informed me that they believe they have seen the thing happen with their own eyes.

[142]. Zeller, p. 230.

[143]. For Empedokles, see Chap. V. [§ 119]; and for Diogenes, Chap. X. [§ 188], fr. [5]. The cosmologists followed the theogonists and cosmogonists in this. No one worshipped Okeanos and Tethys, or even Ouranos.

[144]. Arist. Phys. Γ, 4. 203 b 13 (R. P. 17).

[145]. Theophr. Phys. Op. fr. 2 (R. P. 26).

[146]. This follows from a comparison of Diog. ii. 3. with Hipp. Ref. i. 7 (R. P. 23). In the latter passage we must, however, read τρίτον for πρῶτον with Diels. The suggestion in R. P. 23 e that Apollodoros mentioned the Olympiad without giving the number of the year is inadequate; for Apollodoros did not reckon by Olympiads, but Athenian archons. Jacoby (p. 194) brings the date of his death into connexion with the floruit of Pythagoras, which seems to me less probable. Lortzing (Jahresber., 1898, p. 202) objects to my view on the ground that the period of a hundred years plays no part in Apollodoros’s calculations. It will be seen, however, from Jacoby, pp. 39 sqq., that there is some reason for believing he made use of the generation of 33⅓ years.

[147]. Diog. ii. 3 (R. P. 23).

[148]. Cf. the statement of Theophrastos above, [§ 13].

[149]. On these monographs see Dox. p. 103.

[150]. See the conspectus of extracts from Theophrastos given in Dox. p. 135.

[151]. “Felting” (πίλησις) is the regular term for this process with all the early cosmologists, from whom Plato has taken it (Tim. 58 b 4; 76 c 3).

[152]. A more condensed form of the same doxographical tradition is given by Ps.-Plut. Strom. fr. 3 (R. P. 25).

[153]. Simplicius, Phys. p. 149, 32 (R. P. 26 b), says, according to the MSS., that Theophrastos spoke of rarefaction and condensation in the case of Anaximenes alone. We must either suppose with Zeller (p. 193, n. 2) that this means “alone among the oldest Ionians” or read πρῶτου for μόνου with Usener. The regular terms are πύκνωσις and ἀραίωσις or μάνωσις. Plutarch, de prim. frig. 947 f (R. P. 27), says that Anaximenes used the term τὸ χαλαρόν for the rarefied air.

[154]. For the meaning of ἀήρ in Homer, see Schmidt, Synonomik, § 35; and for its survival in Ionic prose, Hippokrates, Περὶ ἀέρων, ὑδάτων, τόπων, 15, ἀήρ τε πολὺς κατέχει τὴν χώρην ἀπὸ τῶν ὑδάτων. Plato is still conscious of the old meaning of the word; for he makes Timaios say ἀέρος (γένη) τὸ μὲν εὐαγέστατον ἐπίκλην αἰθὴρ καλούμενος, ὁ δὲ θολερώτατος ὁμίχλη καὶ σκότος (Tim. 58 d). The view given in the text has been criticised by Tannery, “Une nouvelle hypothèse sur Anaximandre” (Arch. viii. pp. 443 sqq.), and I have slightly altered my expression of it to meet these criticisms. The point is of fundamental importance, as we shall see, for the interpretation of Pythagoreanism.

[155]. Plut. de prim. frig. 947 f (R. P. 27).

[156]. Aet. i. 3, 4 (R. P. 24).

[157]. See Chap. II. [§ 53].

[158]. The text is very corrupt here. I retain ἐκπεπυκνωμένος, because we are told above that winds are condensed air, and I adopt Zeller’s ἀραιῷ εἰσφέρηται (p. 246, [n. 554]).

[159]. The source of this is Poseidonios, who used Theophrastos. Dox. p. 231.

[160]. Theodoret (iv. 16) speaks of those who believe in a revolution like that of a millstone, as contrasted with one like that of a wheel. Diels (Dox. p. 46) refers these similes to Anaximenes and Anaximander respectively. They come, of course, from Aetios (Appendix, [§ 10]), though they are given neither by Stobaios nor in the Placita.

[161]. Β, 1. 354 a 28 (R. P. 28 c).

[162]. We do not know how Anaximenes imagined the “crystalline” sky. It is probable that he used the word πάγος as Empedokles did. Cf. Chap. V. [§ 112].

[163]. See Tannery, Science hellène, p. 153. For the precisely similar bodies assumed by Anaxagoras, see below, Chap. VI. [§ 135]. See further Chap. VII. [§ 151].

[164]. Cic. de nat. D. i. 26 (R. P. 28 b). On what follows see Krische, Forschungen, pp. 52 sqq.

[165]. Hipp. Ref. i. 7, 1 (R. P. 28).

[166]. Aug. de civ. D. viii. 2: “Anaximenes omnes rerum causas infinito aëri dedit: nec deos negavit aut tacuit; non tamen ab ipsis aërem factum, sed ipsos ex aëre ortos credidit” (R. P. 28 b).

[167]. Simpl. Phys. p. 1121, 12 (R. P. 28 a). The passage from the Placita is of higher authority than this from Simplicius. Note, further, that it is only to Anaximenes, Herakleitos, and Diogenes that successive worlds are ascribed even here. With regard to Anaximander, Simplicius is quite clear. For the Stoic view of Herakleitos, see Chap. III. [§ 78]; and for Diogenes, Chap. X. [§ 188]. That Simplicius is following a Stoic authority is suggested by the words καὶ ὕστερον οἱ ἀπὸ τῆς Στοᾶς. Cf. also Simpl. de Caelo, p. 202, 13.

[168]. In particular, the authority of Anaximenes was so great that both Leukippos and Demokritos adhered to his theory of a disc-like earth. Cf. Aet. iii. 10, 3-5 (Περὶ σχήματος γῆς), Ἀναξιμένης τραπεζοειδῆ (τὴν γῆν). Λεύκιππος τυμπανοειδῆ. Δημόκριτος δισκοειδῆ μὲν τῷ πλάτει, κοίλην δὲ τῷ μέσῳ. This, in spite of the fact that the spherical form of the earth was already a commonplace in circles affected by Pythagoreanism.


CHAPTER II
SCIENCE AND RELIGION

Migrations to the West.

32. So far we have not met with any trace of direct antagonism between science and popular beliefs, though the views of the Milesian cosmologists were really as inconsistent with the religions of the people as with the mythology of the anthropomorphic poets.[[169]] Two things hastened the conflict—the shifting of the scene to the West, and the religious revival which swept over Hellas in the sixth century B.C.

The chief figures in the philosophical history of the period were Pythagoras of Samos and Xenophanes of Kolophon. Both were Ionians by birth, and yet both spent the greater part of their lives in the West. We see from Herodotos how the Persian advance in Asia Minor occasioned a series of migrations to Sicily and Southern Italy;[[170]] and this, of course, made a great difference to philosophy as well as to religion. The new views had probably grown up so naturally and gradually in Ionia that the shock of conflict and reaction was avoided; but that could no longer be so, when they were transplanted to a region where men were wholly unprepared to receive them.

Another, though a somewhat later, effect of these migrations was to bring Science into contact with Rhetoric, one of the most characteristic products of Western Hellas. Already in Parmenides we may note the presence of that dialectical and controversial spirit which was destined to have so great an influence on Greek thought, and it was just this fusion of the art of arguing for victory with the search for truth that before long gave birth to Logic.

The religious revival.

33. Most important of all in its influence on philosophy was the religious revival which culminated about this time. The religion of continental Hellas had developed in a very different way from that of Ionia. In particular, the worship of Dionysos, which came from Thrace, and is barely mentioned in Homer, contained in germ a wholly new way of looking at man’s relation to the world. It would certainly be wrong to credit the Thracians themselves with any very exalted views; but there can be no doubt that, to the Greeks, the phenomenon of ecstasy suggested that the soul was something more than a feeble double of the self, and that it was only when “out of the body” it could show its true nature.[[171]] To a less extent, such ideas were also suggested by the worship of Demeter, whose mysteries were celebrated at Eleusis; though, in later days, these came to take the leading place in men’s minds. That was because they were incorporated in the public religion of Athens.

Before the time with which we are dealing, tradition shows us dimly an age of inspired prophets—Bakides and Sibyls—followed by one of strange medicine-men like Abaris and Aristeas of Prokonnesos. With Epimenides of Crete, we touch the fringe of history, while Pherekydes of Syros is the contemporary of the early cosmologists, and we still have some fragments of his discourse. It looked as if Greek religion were about to enter upon the same stage as that already reached by the religions of the East; and, but for the rise of science, it is hard to see what could have checked this tendency. It is usual to say that the Greeks were saved from a religion of the Oriental type by their having no priesthood; but this is to mistake the effect for the cause. Priesthoods do not make dogmas, though they preserve them once they are made; and in the earlier stages of their development, the Oriental peoples had no priesthoods either in the sense intended.[[172]] It was not so much the absence of a priesthood as the existence of the scientific schools that saved Greece.

The Orphic religion.

34. The new religion—for in one sense it was new, though in another as old as mankind—reached its highest point of development with the foundation of the Orphic communities. So far as we can see, the original home of these was Attika; but they spread with extraordinary rapidity, especially in Southern Italy and Sicily.[[173]] They were first of all associations for the worship of Dionysos; but they were distinguished by two features which were new among the Hellenes. They looked to a revelation as the source of religious authority, and they were organised as artificial communities. The poems which contained their theology were ascribed to the Thracian Orpheus, who had himself descended into Hades, and was therefore a safe guide through the perils which beset the disembodied soul in the next world. We have considerable remains of this literature, but they are mostly of late date, and cannot safely be used as evidence for the beliefs of the sixth century. We do know, however, that the leading ideas of Orphicism were quite early. A number of thin gold plates with Orphic verses inscribed on them have been discovered in Southern Italy;[[174]] and though these are somewhat later in date than the period with which we are dealing, they belong to the time when Orphicism was a living creed and not a fantastic revival. What can be made out from them as to the doctrine has a startling resemblance to the beliefs which were prevalent in India about the same time, though it seems impossible that there should have been any actual contact between India and Greece at this date. The main purpose of the Orgia[[175]] was to “purify” the believer’s soul, and so enable it to escape from the “wheel of birth,” and it was for the better attainment of this end that the Orphics were organised in communities. Religious associations must have been known to the Greeks from a fairly early date;[[176]] but the oldest of these were based, at least in theory, on the tie of kindred blood. What was new was the institution of communities to which any one might be admitted by initiation.[[177]] This was, in fact, the establishment of churches, though there is no evidence that these were connected with each other in such a way that we could rightly speak of them as a single church. The Pythagoreans came nearer to realising that.

Philosophy as a Way of Life.

35. We have to take account of the religious revival here, chiefly because it suggested the view that philosophy was above all a “way of life.” Science too was a “purification,” a means of escape from the “wheel.” This is the view expressed so strongly in Plato’s Phaedo, which was written under the influence of Pythagorean ideas.[[178]] Sokrates became to his followers the ideal “wise man,” and it was to this side of his personality the Cynics mainly attached themselves. From them proceeded the Stoic sage and the Christian saint, and also the whole brood of impostors whom Lucian has pilloried for our edification.[[179]] Saints and sages are apt to appear in questionable shapes, and Apollonios of Tyana showed in the end where this view may lead. It was not wholly absent from any Greek philosophy after the days of Pythagoras. Aristotle is as much possessed by it as any one, as we may see from the Tenth Book of the Ethics, and as we should see still more distinctly if we possessed such works as the Protreptikos in their entirety.[[180]] Plato, indeed, tried to make the ideal wise man of service to the state and mankind by his doctrine of the philosopher king. It was he alone, so far as we know, that insisted on philosophers descending by turns into the cave from which they had been released and coming to the help of their former fellow-prisoners.[[181]] That was not, however, the view that prevailed, and the “wise man” became more and more detached from the world. Apollonios of Tyana was quite entitled to regard himself as the spiritual heir of Pythagoras; for the theurgy and thaumaturgy of the late Greek schools was but the fruit of the seed sown in the generation before the Persian Wars.

No doctrine in the “Mysteries.”

36. On the other hand, it would be wrong to suppose that Orphicism or the Mysteries suggested any definite doctrines to philosophers, at least during the period which we are about to consider. We have admitted that they really implied a new view of the soul, and we might therefore have expected to find that they profoundly modified men’s theory of the world and their relation to it. The striking thing is that this did not happen. Even those philosophers who were most closely in touch with the religious movement, like Empedokles and the Pythagoreans, held views about the soul which really contradicted the theory implied by their religious practices.[[182]] There is no room for an immortal soul in any philosophy of this period. Up to Plato’s time immortality was never treated in a scientific way, but merely assumed in the Orphic rites, to which Plato half seriously turns for confirmation of his own teaching.[[183]]

All this is easily accounted for. With us a religious revival generally means the vivid realisation of a new or forgotten doctrine, while ancient religion has properly no doctrine at all. “The initiated,” Aristotle said, “were not expected to learn anything, but merely to be affected in a certain way and put into a certain frame of mind.”[[184]] Nothing was required but that the ritual should be correctly performed, and the worshipper was free to give any explanation of it he pleased. It might be as exalted as that of Pindar and Sophokles, or as material as that of the itinerant mystery-mongers described by Plato in the Republic. The essential thing was that he should duly sacrifice his pig.