IV

Our French biologist is of the opinion that the artificial production of that marvel of marvels, the living cell, will yet take place in the laboratory. But the enlightened mind, he says, does not need such proof to be convinced that there is no essential difference between living and non-living matter.

Professor Henderson, though an expounder of the mechanistic theory of the origin of life, admits that he does not know of a biological chemist to whom the "mechanistic origin of a cell is scientifically imaginable." Like Professor Loeb, he starts with the vital; how he came by it we get no inkling; he confesses frankly that the biological chemist cannot even face the problem of the origin of life. He quotes with approval a remark of Liebig's, as reported by Lord Kelvin, that he (Liebig) could no more believe that a leaf or a flower could be formed or could grow by chemical forces "than a book on chemistry, or on botany, could grow out of dead matter." Is not this conceding to the vitalists all that they claim? The cell is the unit of life; all living bodies are but vast confraternities of cells, some billions or trillions of them in the human body; the cell builds up the tissues, the tissues build up the organs, the organs build up the body. Now if it is not thinkable that chemism could beget a cell, is it any more thinkable that it could build a living tissue, and then an organ, and then the body as a whole? If there is an inscrutable something at work at the start, which organizes that wonderful piece of vital mechanism, the cell, is it any the less operative ever after, in all life processes, in all living bodies and their functions,—the vital as distinguished from the mechanical and chemical? Given the cell, and you have only to multiply it, and organize these products into industrial communities, and direct them to specific ends,—certainly a task which we would not assign to chemistry or physics any more than we would assign to them the production of a work on chemistry or botany,—and you have all the myriad forms of terrestrial life.

The cell is the parent of every living thing on the globe; and if it is unthinkable that the material and irrational forces of inert matter could produce it, then mechanics and chemistry must play second fiddle in all that whirl and dance of the atoms that make up life. And that is all the vitalists claim. The physico-chemical forces do play second fiddle; that inexplicable something that we call vitality dominates and leads them. True it is that a living organism yields to scientific analysis only mechanical and chemical forces—a fact which only limits the range of scientific analysis, and which by no means exhausts the possibilities of the living organism. The properties of matter and the laws of matter are intimately related to life, yea, are inseparable from it, but they are by no means the whole story. Professor Henderson repudiates the idea of any extra-physical influence as being involved in the processes of life, and yet concedes that the very foundation of all living matter, yea, the whole living universe in embryo—the cell—is beyond the possibilities of physics and chemistry alone. Mechanism and chemism are adequate to account for astronomy and geology, and therefore, he thinks, are sufficient to account for biology, without calling in the aid of any Bergsonian life impulse. Still these forces stand impotent before that microscopic world, the cell, the foundation of all life.

Our professor makes the provisional statement, not in obedience to his science, but in obedience to his philosophy, that something more than mechanics and chemistry may have had a hand in shaping the universe, some primordial tendency impressed upon or working in matter "just before mechanism begins to act"—"a necessary and preëstablished associate of mechanism." So that if we start with the universe, with life, and with this tendency, mechanism will do all the rest. But this is not science, of course, because it is not verifiable; it is practically the philosophy of Bergson.

The cast-iron conclusions of physical science do pinch the Harvard professor a bit, and he pads them with a little of the Bergsonian philosophy. Bergson himself is not pinched at all by the conclusions of positive science. He sees that we, as human beings, cannot live in this universe without supplementing our science with some sort of philosophy that will help us to escape from the fatalism of matter and force into the freedom of the spiritual life. If we are merely mechanical and chemical accidents, all the glory of life, all the meaning of our moral and spiritual natures, go by the board.

Professor Henderson shows us how well this planet, with its oceans and continents, and its mechanical and chemical forces and elements, is suited to sustain life, but he brings us no nearer the solution of the mystery than we were before. His title, to begin with, is rather bewildering. Has the "fitness of the environment" ever been questioned? The environment is fit, of course, else living bodies would not be here. We are used to taking hold of the other end of the problem. In living nature the foot is made to fit the shoe, and not the shoe the foot. The environment is the mould in which the living organism is cast. Hence, it seems to me, that seeking to prove the fitness of the environment is very much like seeking to prove the fitness of water for fish to swim in, or the fitness of the air for birds to fly in. The implication seems to be made that the environment anticipates the organism, or meets it half way. But the environment is rather uncompromising. Man alone modifies his environment by the weapon of science; but not radically; in the end he has to fit himself to it. Life has been able to adjust itself to the universal forces and so go along with them; otherwise we should not be here. We may say, humanly speaking, that the water is friendly to the swimmer, if he knows how to use it; if not, it is his deadly enemy. The same is true of all the elements and forces of nature. Whether they be for or against us, depends upon ourselves. The wind is never tempered to the shorn lamb, the shorn lamb must clothe itself against the wind. Life is adaptive, and this faculty of adaptation to the environment, of itself takes it out of the category of the physico-chemical. The rivers and seas favor navigation, if we have gumption enough to use and master their forces. The air is good to breathe, and food to eat, for those creatures that are adapted to them. Bergson thinks, not without reason, that life on other planets may be quite different from what it is on our own, owing to a difference in chemical and physical conditions. Change the chemical constituents of sea water, and you radically change the lower organisms. With an atmosphere entirely of oxygen, the processes of life would go on more rapidly and perhaps reach a higher form of development. Life on this planet is limited to a certain rather narrow range of temperature; the span may be the same in other worlds, but farther up or farther down the scale. Had the air been differently constituted, would not our lungs have been different? The lungs of the fish are in his gills: he has to filter his air from a much heavier medium. The nose of the pig is fitted for rooting; shall we say, then, that the soil was made friable that pigs might root in it? The webbed foot is fitted to the water; shall we say, then, that water is liquid in order that geese and ducks may swim in it? One more atom of oxygen united to the two atoms that go to make the molecule of air, and we should have had ozone instead of the air we now breathe. How unsuited this would have made the air for life as we know it! Oxidation would have consumed us rapidly. Life would have met this extra atom by some new device.

One wishes Professor Henderson had told us more about how life fits itself to the environment—how matter, moved and moulded only by mechanical and chemical forces, yet has some power of choice that a machine does not have, and can and does select the environment best suited to its well-being. In fact, that it should have, or be capable of, any condition of well-being, if it is only a complex of physical and chemical forces, is a problem to wrestle with. The ground we walk on is such a complex, but only the living bodies it supports have conditions of well-being.

Professor Henderson concedes very little to the vitalists or the teleologists. He is a thorough mechanist. "Matter and energy," he says, "have an original property, assuredly not by chance, which organizes the universe in space and time." Where or how matter got this organizing property, he offers no opinion. "Given the universe, life, and the tendency [the tendency to organize], mechanism is inductively proved sufficient to account for all phenomena." Biology, then, is only mechanics and chemistry engaged in a new rôle without any change of character; but what put them up to this new rôle? "The whole evolutionary process, both cosmic and organic, is one, and the biologist may now rightly regard the universe in its very essence as biocentric."