VIII.

WAR WITH THE WORLD.

The last summer of the century saw the forts at the mouth of the Peiho captured for the third time since the beginning of 1858. It was the opening scene in the last act of a long drama, and more imposing than any that had gone before, not in the number of assailants nor in the obstinacy of resistance, but in the fact that instead of one or two nations as hitherto, all the powers of the modern world were now combined to batter down the barriers of Chinese conservatism. Getting possession of Tientsin, not without hard fighting, they advanced on Peking under eight national flags, against the "eight banners" of the Manchu tribes.

What was the mainspring of this tragic movement? What unforeseen occurrence had effected a union of powers whose usual attitude is mutual jealousy or secret hostility? In a word, it was humanity. Spurning petty questions of policy, they combined their forces to extinguish a conflagration kindled by pride and superstition, which menaced the lives of all foreigners in North China.

In 1898, when the Emperor had entered on a career of progress, the Empress Dowager was appealed to by a number of her old servants to save the Empire from a young Phaeton, who was driving so fast as to be in danger of setting the world on fire. Coming out of her luxurious retreat, ten miles from the city, where she had never ceased to keep an eye on the course of affairs, she again took possession of the throne and compelled her adopted son to ask her to "teach him how to govern." This was the coup d'état. In her earlier years she had not been opposed to progress, but now that she had returned to power at the instance of a conservative party, she entered upon a course of reaction which made a collision with foreign powers all but inevitable. She had been justly provoked by their repeated aggressions. Germany had seized a port in Shantung in consequence of the murder of two missionaries. Russia at once clapped her bear's paw on Port Arthur. Great Britain set the lion's foot on Weihaiwei; and France demanded Kwang Chan Bay, all "to maintain the balance of power." Exasperated beyond endurance, the Empress gave notice that any further demands of the sort would be met by force of arms.

The governor of Shantung appointed by her was a Manchu by the name of Yuhien, who more than any other man is to be held responsible for the outbreak of hostilities. He it was who called the Boxers from their hiding-places and supplied them with arms, convinced apparently of the reality of their claim to be invulnerable. For a hundred years they had existed as a secret society under a ban of prohibition. Now, however, they had made amends by killing German missionaries, and he hoped by their aid to expel the Germans from Shantung. On complaint of the German Minister he was recalled; but, decorated by the hands of the Empress Dowager, he was transferred to Shansi, where later on he slaughtered all the missionaries in that province.

In Shantung he was succeeded by Yuen Shikai, a statesmanlike official, who soon compelled the Boxers to seek another arena for their operations. Instead of creeping back to their original hiding-place they crossed the boundary and directed their march toward Peking,--on the way not merely laying waste the villages of native Christians, but tearing up the railway and killing foreigners indiscriminately. They had made a convert of Prince Tuan, father of the heir apparent. He it was who encouraged their advance, believing that he might make use of them to help his son to the throne. Their numbers were swelled by multitudes who fancied that they would suffer irreparable personal loss through the introduction of railways and modern labor-saving machinery; and China can charge the losses of the last war to those misguided crowds.

Fortunately several companies of marines, amounting to four hundred and fifty men, arrived in Peking the day before the destruction of the track. The legations were threatened, churches were burnt down, native Christians put to death, and fires set to numerous shops simply because they contained foreign goods. Then it was that the foreign admirals captured the forts, in order to bring relief to our foreign community. That step the Chinese Foreign Office pronounced an act of war, and ordered the legations and all other foreigners to quit the capital. The ministers remonstrated, knowing that on the way we could not escape being butchered by Boxers. On the 20th of June, the German Minister was killed on his way to the Foreign Office. The legations and other foreigners at once took refuge in the British legation, previously agreed on as the best place to make a defence. Professor James was killed while crossing a bridge near the legation. That night we were fired on from all sides, and for eight weeks we were exposed to a daily fusillade from an enemy that counted more on reducing us by starvation than on carrying our defences by storm.

About midnight on August 13, we heard firing at the gates of the city, and knew that our deliverers were near. The next day, scaling the walls or battering down the gates, they forced their way into the city and effected our rescue. The day following, the Roman Catholic Cathedral was relieved,--the defence of which forms the brightest page in the history of the siege, and in the afternoon we held a solemn service of thanksgiving. The palaces were found vacant, the Empress Dowager having fled with her entire court. She was the same Empress who had fled from the British and French forty years before.

She was not pursued, because Prince Ching came forward to meet the foreign ministers, and he and Li Hung Chang were appointed to arrange terms of peace. Li was Viceroy at Canton. Had he been in his old viceroyalty at Tientsin, this Boxer war could not have occurred. That its fury was limited to the northern belt of provinces was owing to the wisdom of Chang[[5]] and Liu, the great satraps of Central China who engaged to keep their provinces in order, if not attacked by foreigners.

[5]

Chang is regarded as the ablest of China's viceroys. He published, prior to the

coup d'état

, a notable book, in which he argues that China's only hope is in the adoption of the sciences and arts of the West.

I called on the old statesman in the summer of 1901, after the last of the treaties was signed. He seemed to feel that his work was finished, but he still had energy enough to write a preface for my translation of Hall's "International Law," and before the end of another month his long life of restless activity had come to a close at the age of seventy-nine. By posthumous decree, he was made a Marquis.

In the autumn the court returned to Peking, the way having been opened by Li's negotiations. Thanks to the lessons of adversity, the Dowager has been led to favor the cause of progress. Not only has she re-enacted the educational reforms proposed by the Emperor, but she has gone a step farther, and ordered that instead of mere literary finish, a knowledge of arts and sciences shall be required in examinations for the Civil Service.

The following words I wrote in an obituary notice, a few days after Li's death:--

"For over twenty years Earl Li has been a conspicuous patron of educational reform. The University and other schools at Tientsin were founded by him; and he had a large share in founding the Imperial University in Peking. During the last twenty years I have had the honor of being on intimate terms with him. Five years ago he wrote a preface for a book of mine on Christian Psychology,--showing a freedom from prejudice very rare among Chinese officials.

"Another preface which he wrote for me is noteworthy from the fact that it is one of the last papers that came from his prolific pencil. Having finished a translation of 'Hall's International Law' (begun before the siege), I showed it to Li Hung Chang not two weeks ago. The old man took a deep interest in it, and returned it with a preface in which he says 'I am now near eighty; Dr. Martin is over seventy. We are old and soon to pass away; but we both hope that coming generations will be guided by the principles of this book.'

"With all his faults--those of his time and country--Li Hung Chang was a true patriot. For him it was a fitting task to place the keystone in the arch that commemorates China's peace with the world."


DAVID LIVINGSTONE.


1813-1873.

AFRICAN DEVELOPMENT.

BY CYRUS C. ADAMS.

Africa is the most ancient and the most recent conquest of the human race. As far as the light of history can be projected into the past, we see Egypt among the first and foremost on the threshold of civilization. The continent discovered last and opened last to the enterprises of the world is still Africa. Why is it that we see there both the dawn of civilization and the tardiest development of human progress?

The reasons are not far to seek. The physical conformation of no other continent is so unfavorable for exploration and development. Africa's straight coastlines, affording little shelter to the primitive ships of early mariners, repelled the enterprising Phoenicians and other seafarers in their eager search for new lands worth colonizing. Nor was it easy for explorers to penetrate into the interior. In its surface Africa has been compared to an inverted saucer,--the high plateaus occupying most of the interior descending to the sea by short, abrupt, and steep slopes, so that the wide and peaceful rivers of the plateaus are lashed into foam as they approach the ocean by many series of rapids and cataracts.

In all the other continents rivers have been the lines of least resistance to the advance of man. Civilization has developed first along the great rivers. The valleys were first settled, and up these valleys man carried his industries and commerce far inland. Thus the Euphrates and Tigris of Mesopotamia, the Ganges and Indus of India, and the Hoang and Yangtse of China, were the creators of history; but this is true in Africa only of the Nile. All the other rivers have been impediments instead of helpful factors in the formidable task of exploration and development.

The trying climate, also, gave Africa odious repute and delayed for centuries the study and utilization of the continent. When the British expedition under Captain Tuckey attempted to ascend the Congo, in 1816, to see if it were really the lower part of the Niger River, as had been conjectured, nearly all of its members perished miserably among the rapids less than two hundred miles from the sea. Such tragedies as this paralyzed enterprise in Africa until white men learned that the climate was not so deadly, after all, if they adhered to the manner of life, the hygienic rules, that should be observed in that tropical expanse.

In all the other continents, also, explorers have had the advantage of domestic animals to carry their food and camp equipment; but in large parts of tropical Africa the horse, ox, and mule cannot live. The bite of the little tsetse fly kills them. Its sting is hardly so annoying as that of the mosquito, but near the base of its proboscis is a little bag containing the fatal poison. Camels have been loaded near Zanzibar for the journey to Tanganyika, but they did not live to reach the great lake. The "ship of the desert" can never be utilized in the humid regions of tropical Africa.

The elephant is found from sea to sea, but he has not proved to be so amenable to domestication as his Asian brother. He may yet be reduced to useful servitude. The efforts in this direction in the German and French colonies are somewhat encouraging, though in 1901 only six elephants had thus far been broken to work and were daily used as beasts of burden. Explorers of tropical Africa have always been compelled to rely upon human porterage, the most expensive and unsatisfactory form of transportation, with the result that nearly all the great lines of exploration have been extended through the continent at enormous cost.

So most other parts of the world were occupied, colonized, civilized, before Africa was explored. A continent one-fourth larger than our own was for centuries neglected and despised. "Nothing good can come out of Africa" became proverbial. Seventy years ago Africa, away from the coasts and the Nile, was almost a blank upon our maps, save for fanciful details that are ludicrously grotesque in the light of our present knowledge (1902).

Then dawned the era of David Livingstone. Sixty-two years ago this humble Scotchman went to South Africa as a missionary. It was not long before he became imbued with the idea that missionary service could not be projected on broad, economic, and effective lines till the field was known. The explorer, he said, must precede the teacher and the merchant. We can work best for Christianity and civilization after we learn what the people are and know the nature of their environment. This was the thought that took him into the unknown; that inspired him with unflagging courage and zeal throughout twenty years of weary plodding in the African wilderness among hundreds of tribes who never before had seen a white man. And all the years he was studying the country and winning the love of its people, his faith in Africa, in its abounding resources worth the world's seeking, in the capacity of its people for development, steadily grew till it became the all-pervading impulse of his life. Livingstone's faith converted the world to the belief that, after all, there was good in Africa.

"I shall never forget," said Stanley, one day in New York, "the time when I stood with Livingstone on the shore of Lake Tanganyika, and he raised his trembling hand above his head, leaned towards me as he looked me in the eye, and said in a voice broken with emotion: 'The day is coming when the whole world will know that Africa is worth reclaiming, and that its people may be brought out of barbarism. The world needs Africa; and teachers, merchants, railroads, and every influence of civilization will be spread through this continent to fit it for the place in human interests that belongs to it.' I thought then that Livingstone was an enthusiast and a visionary; but long ago I learned to believe that every word he said was true."

Europe and America were thrilled by the simple narrative of those twenty-two thousand miles of wanderings that brought into the light of day millions of human beings who had been as much unknown to us as though they inhabited Mars. Livingstone did not live to know it, but it was he who kindled the great African Movement,--an outburst of zeal for geographic discovery and economic development such as was never seen before.

Thirteen years ago (1889) a Frenchman named De Bissy completed the largest map yet made of Africa. In the preparation of this great work, which occupied much of his time for eight years, he used as his sources of information nearly eighteen hundred route and other maps, nearly all of which were the result of the work of explorers in the preceding quarter of a century. All that we know of the geography of over three-fourths of Africa is the work of the past half-century since Livingstone made his first journey in 1849; and we know far more of inner Africa to-day than was known of inner North America three hundred years after Columbus discovered the western world. A little over a century ago, our great-grandfathers were reading in their school geographies that North America had no conspicuous mountains except the Alleghanies; and these mountains and the Andes of South America were believed to be one and the same chain, interrupted by the Gulf of Mexico. Many men not yet bent with years can remember when the interior of Africa was a white space on the maps; but it is not possible to-day to make such a geographical blunder as we have mentioned, about any part of Africa.

It is because of the work he did in those twenty years, sowing all the while the seeds from which sprang the great African Movement, that "the gentle master of African exploration" is acclaimed to-day as one of the world's great men, and that his body rests in Westminster Abbey among the illustrious dead of Britain.

The son of a worthy weaver in Blantyre, Scotland, Livingstone's early life was that of a poor boy, working in a spinning-mill, quiet, sober, affectionate, and faithful in every relation of life. Moved at last by the thirst for knowledge that has distinguished many a humble Scotch boy, he entered the University at Glasgow, studying during the winter months and spending the summers at his trade in the factory, fitting himself all the while for the conquests he little dreamed he was to achieve over difficulties almost insurmountable. A classmate spoke of him as a pale, thin, retiring young man, but frank and most kind-hearted, ready for any good and useful work, even for chopping the University fuel and grinding wheat for the bread. In 1838, when he was twenty-five years old, he went to London to be examined as a candidate for the African missionary service. Two years later he was sent to South Africa, where for eight or nine years he labored among the natives earnestly and unostentatiously north of the place now famous as the site of the Kimberley diamond mines. It was here that he became intimately acquainted with the celebrated missionary, Robert Moffatt, whose daughter he married. His devoted wife accompanied him in some of his later travels, but long before he finished his work her body was laid to rest under the shade of a tree that for years was pointed out to all visitors to the Lower Zambesi.

In 1849, began the series of explorations that continued till his death. "The end of geographical discovery is the beginning of missionary enterprise," he wrote. Burning with zeal to reveal Africa to the world, Livingstone never forgot the main aim of his life,--to open ways for the planting of mission stations among all the scores of tribes he visited. "I hope God will in mercy permit me to establish the Gospel somewhere in this region," he wrote from the land of the Barotse, on the Upper Zambesi. Does he now look down from his eternal home upon that very land whose churches and schools are the fruition of the labors of French Protestants; whose king, in London to attend the coronation of Edward VII., said he wanted more teachers and more men to train his people to build houses and work iron? He prayed that he might live to see "the double influence of the spirit of commerce and Christianity employed to stay the bitter fountain of African misery." The glowing zeal of the Christian philanthropist and the untiring ardor of the born explorer were perfectly blended in the spirit of the great pioneer of modern African discovery.

Livingstone's routes through Africa would extend about seven times between New York City and San Francisco; and in his almost endless marches over plain, through jungle, across mountains and wide rivers, the natives met him almost without exception in a generous and hospitable spirit. Love was the secret of his success. He won his way by kindness. Give the barbarous African time to see that you wish him well, that you would do him good in ways he knows are helpful, and his affection is evoked.

It was said that the British could never establish their rule over the great Wabemba tribe, southwest of Tanganyika, without a military campaign. In 1894, two humble Catholic fathers entered Lobemba, walked straight to the chief town, and were told that if they did not leave the country in one day they would be killed. As the stern message was delivered, they saw an old woman on the ground in great pain from a severe wound. The news soon spread that these unwelcome strangers had washed and dressed the wound, and made the old woman comfortable. "These people love men," was the word that passed from lip to lip, as the sick and suffering came out from the town to be treated, while thousands of natives looked on. At nightfall the white men were told they might remain another day; they ministered for eleven days to those who needed help, and were then invited to remain the rest of their lives. The mission stations of the White Fathers are to-day scattered all over Lobemba; the country is open in every corner to the whites, and in 1899 British rule was established. The victory was won, not with guns, but by gentle, helpful kindness.

Livingstone never believed that the sympathies of our common humanity are extinct even in the bosom of a savage. Enfolded in the panoply of Christian kindness, he passed unscathed among the most warlike tribes. No memory of wrong or pain rankled in the heart of any man, woman, or child he ever met. He is known to-day as "the good old man" wherever his path led him in those twenty years.

When explorers began to study the healthful highlands of the Akikuyu tribe in East Africa a few years ago, the natives rushed to arms. "Keep away from us," they said. "One of your white men came through the land, stealing food from our gardens, and killing all who said he ought to pay us for our vegetables. We want nothing to do with thieves and murderers like you."

But no vengeance fell on the head of any white traveller who ever followed in the footsteps of Livingstone. Those explorers have achieved most who adhered to his example of unfailing kindness, mercy, and justice. The brutal German, whose crimes made the Akikuyu hostile to all whites, marked his path with blood from the Indian Ocean to Victoria Nyanza. Serpa Pinto, renowned for the scientific value of his work, aroused condemnation and disgust because he fought his way through many tribes, among whom Livingstone and Arnot had wandered almost alone and in perfect safety. Fortunately, there have not been many explorers militant. The brilliant discoveries of Grenfell, Delcommune, Lemaire, and others, who are in the first rank of African pioneers, were made without harming a native.

Let us glance at a few of Livingstone's discoveries and form our own conclusions as to whether his sublime faith in the future of Africa has thus far been justified by events. In the depths of the wilderness he discovered the large lake, Mweru, through which the Upper Congo flows. Though white influences have reached that remote region only within the past two or three years, a little steamboat now plies those waters. A photograph of Mpweto, one of the white settlements on the lake, shows the commodious quarters of the Europeans, two long lines of cabins in which the native workmen live, and well-tilled gardens extending for a half-mile along the shore. Livingstone brought to light the coal fields of the Zambesi, the only coal yet known in tropical Africa. While these lines are being written, the British of Rhodesia are preparing to open mines along these deposits. He told the world of the Victoria Falls of the Zambesi, the largest known, a mile wide and twice as high as Niagara. The installation of an electrical plant at this great source of power is now in progress, and it is hoped within three years to transmit electrically all the power required to work the large copper mines in the north, the coal fields in the east, and to move trains on the Cape to Cairo Railroad for a distance of three hundred miles. The recent improvements in long-distance transmission of power encourages the belief that the Victoria Falls may some day possess large industrial utility for a wide region around them. Coffee plantations on the hills overlooking the long expanse of Nyassa, the splendid freshwater sea which Livingstone revealed in its setting of mountains, are selling their superior product in London at a high price. The town of Blantyre, among the Nyassa highlands which Livingstone first described, has a newspaper, telegraphic and cable communication with all the world, and industrial schools in which the manual arts are taught to hundreds of natives. Here is the large brick church, now famous, built by native craftsmen, who before Livingstone's time had never seen a white man, and lived in a state of barbarism; an edifice that would adorn the suburbs of any American city, and of which the explorer, Joseph Thomson, said: "It is the most wonderful sight I have seen in Africa." The natives made the brick, burned the lime, sawed and hewed the timbers, and erected the building to the driving of the last nail. They had the capacity, and it was evoked by the genius of one of the most remarkable men in Africa, Missionary Scott of Blantyre. Steamboats are afloat on five of the six important seas of the great lake region of Central Africa; on two of the three which Livingstone discovered. Only a beginning has been made, for the field stretches from ocean to ocean; but the man who, in 1873--the year of Livingstone's death,--should have predicted one-half of the achievement of the present generation would have been laughed at as a crack-brained visionary.

Even the surface of Africa is changing, and the truth of Livingstone is not always the truth of to-day. In his first journey, in which he braved the perils of the South African thirst lands, he reached the broad and placid expanse of Lake Ngami, covering an area of three hundred square miles. In the gradual desiccation of that region, the lake has now entirely disappeared. Its place is wholly occupied by a partly marshy plain covered with reeds, and no vestige of water surface is to be seen. He found the little Lake Dilolo so exactly balanced on a flat plain between two great river systems that one stream from the lake flowed north to the Congo and another south to the Zambesi; but for years past there has been no connection between the lake and the Congo. He sought in vain, like many explorers after him, for the outlet to Lake Tanganyika. The mystery was not solved till, more than twenty years after, Burton discovered the lake; the solution came when the explorer Thomson and Missionary Hore found the waters of Tanganyika pouring in a perfect torrent down the valley of the Lukuga to the Congo. The explanation of the strange phenomenon is that for a series of years the evaporation exceeds the water receipts, the level of the lake steadily falls, and the valley of the Lukuga becomes choked with grass; then a period follows when the water receipts exceed the evaporation, and the waters rise, burst through the barriers of vegetation in the Lukuga, and are carried to the Congo once more.

It was his second and third journeys that established Livingstone's fame as a great explorer. In those journeys (1853-56) his routes were from the Upper Zambesi to Loanda in Portuguese West Africa, and then from Loanda to the mouth of the Zambesi, nearly twelve thousand miles of travel. The third journey was the first crossing of the continent; and while traversing the wide savannas of the uplands and revealing the Zambesi, the fourth largest river of Africa, from source to delta, he was able to verify one of the most brilliant generalizations ever made by a geologist. Sir Roderick Murchison, President of the Royal Geographical Society, in 1852, deducing his conclusions from the very fragmentary and imperfect knowledge of Africa then extant, evolved his striking hypothesis as to the physical conformation of the continent, which has been briefly mentioned above and is the accepted fact of to-day. Livingstone was able to prove the accuracy of this hypothesis, and he dedicated his "Missionary Travels" to its distinguished author.

The Makalolo chief, Sekeletu, on the Zambesi River, supplied Livingstone with men, ivory, and trading commissions, that helped the humble and unknown white man, lacking all financial resources except his slender salary, to make the two great journeys which kindled the world's interest and led to the wonderful achievements of our generation. In this noteworthy incident we see the human agencies through which Africa will attain the full stature allotted to her. The Caucasian and the Negro each has his onerous part in the work of bringing the civilized world and Africa into touch and accord.

When Livingstone went home, after his third journey, his fellow-countrymen crowded to see and hear the explorer, who had added more facts to geographical knowledge than any other man of his time. They saw a person of middle age, plainly and rather carelessly dressed, whose deep-furrowed and well-tanned face indicated a man of quick and keen discernment, strong impulses, inflexible resolution, and habitual self-command. They heard a speaker whose command of his mother tongue was imperfect, and who apologized for his broken, hesitating speech by saying that he had not spoken the English language for nearly sixteen years. In no public place did he ever allude to his personal sufferings, though fever had brought him to death's door and the years had been crowded with the most harrowing cares. The work he had done and would carry on to the end, the new Africa he alone could describe, the faith that had grown and strengthened in every week of his long pilgrimage that the world needed Africa, its resources and peoples, were the burden of every utterance. The great London meeting where he first appeared took practical measures to support him in the work he had begun unaided; and one of the resolutions adopted, declaring that "the important discoveries of Dr. Livingstone will tend hereafter greatly to advance the interest of civilization, commerce, and freedom among the numerous tribes and nations of that vast continent," was prophetic of all the best fruits of the colossal work that has been done to the present time.

During his two years at home, Livingstone wrote his "Missionary Travels." He returned to England once more (1864-65), when he published "A Narrative of an Expedition to the Zambesi," and in 1866 went back to Africa to resume the explorations which ended only with his death. Between 1849 and 1873 he was four years in Europe and twenty years in the field, eating native food, sleeping in straw huts (in one of which he died), lost to view for many years at a time because he had no means of communication with the coasts. It was this fact that led to Stanley's successful search for Livingstone in 1871. Perhaps no other explorer ever gave so many years to continuous field-work. In this respect he far surpassed the record of any other of the African pioneers.

The discoveries in his last journeys, covering the periods from 1858 to 1864, and from 1866 to 1873, were as brilliant and fruitful as his earlier work, but not so astonishing, because his first years were given to revealing the broader aspects of Africa and its tribes, while his later labors were devoted to more detailed research in a smaller field. This region, about as large as Mexico and Central America, extends north and south, from Tanganyika to the Zambesi, and covers the wide region of the Congo sources between Nyassa and Lake Bangweolo. The greatest results were the discovery of Lake Nyassa and the Shire River, now the water route into East Central Africa; Lakes Bangweolo and Mwero; and the mapping of the eastern part of the sources of the Upper Congo, which Livingstone believed to the day of his death were the ultimate fountains of the Nile. Livingstone's "Last Journeys" was published from the manuscript which his faithful servants brought to the seacoast with the mortal remains of their gentle master.

Not far from the south coast of Bangweolo stands a wooden construction to which is affixed a bronze tablet bearing the simple inscription, "Livingstone died here. Ilala, May 1, 1873." It has taken the place of the tree under which he died, and where his heart, which had been so true to Africa, was buried. As the tree was nearly dead, the section bearing the rude inscription cut by one of his servants was carefully removed and is now in London.

Livingstone's geographical delineations were remarkably accurate, considering the inadequate surveying instruments with which he worked. Dr. Ravenstein, one of the greatest authorities on African cartography, has said: "I should be loath to reject Livingstone's work simply because the ground which he was the first to explore has since his death been gone over by another explorer." It would be marvellous, however, if in the course of twenty years of exploration he had not made some blunders. His map of Lake Bangweolo, for example, was very inaccurate. The Lokinga Mountains, which he mapped to the south of the lake, have not been found by later explorers. These imperfections resulted from the fact that his map of Bangweolo and its neighborhood was largely based upon native information. He knew that his map was inadequate, and as soon as he was able to travel he returned to Bangweolo to complete his survey. He was making straight for the true outlet of the lake, and was within thirty-five miles of it when one morning his servants found him in his lowly straw hut, dead on his knees. If Livingstone had lived a few weeks longer and been able to travel, he and not Giraud would have given us the true map of Bangweolo.

As a whole, Livingstone's work in geography, anthropology, and natural history, stands the test of time. No river in Africa has yet been laid down with greater accuracy than the Zambesi as delineated by this explorer.

The success of Livingstone was both brilliant and unsullied. The apostle and the pioneer of Africa, he went on his way without fear, without egotism, without desire of reward. He proved that the white man may travel safely through many years in Africa. He observed richness of soil and abundance of natural products, the guarantees of commerce. He foretold the truth that the African tribes would be brought into the community of nations. The logical result of the work he began and carried so far was the downfall of the African slave-trade, which he denounced as "the open sore of the world." What eulogy is too great for such a work and such a man?

In 1898, twenty-one journeys had been made by explorers from sea to sea. Livingstone completed the first journey, from Loanda to the mouth of the Zambesi, in one year, seven months, and twenty-two days. Nineteen years elapsed before Central Africa was crossed again, when Cameron gave two years and nearly eight months to the journey. It took Stanley two years and eight months to cross Africa, when he solved the great mystery, the course of the Congo; and when he went to the relief of Emin Pasha, in 1887, he was almost exactly the same time on the road. When Trivier crossed from the Atlantic to the Indian Ocean, in 1888-89, in nine days less than a year, the event was held as a remarkably rapid performance. A little later the journey was made by several travellers in from twelve to fifteen months. In 1898, the Englishman, Mr. Lloyd, crossed from Lake Victoria to the mouth of the Congo in three months, about thirteen hundred miles of the journey being by Congo steamboat and railroad. In 1902, the journey from the Indian Ocean to Lake Victoria is made by rail in two and one-half days,--a journey that occupied Speke for nine, and Stanley for eight months. With the present facilities, the continent may be crossed by way of the lake region and the Congo in about three months. The era of long and weary foot-marches has nearly ended; now succeeds travel by steam.

No influence has been so potent in improving the art of the explorer, or in raising the standard of the work required of him, as the enormous interest that for thirty years past has centred in African exploration. The larger part of the best achievements of the explorers of the present generation in scientific investigation, and in an approach to scientific map-making, are found in tropical Africa. Many of the hundreds of the route surveys are not unworthy to be compared with those of Pogge and Wissmann, when they laid down on their map every cultural and topographic feature for two miles on both sides of their route, from Angola to the Upper Congo. The extreme care with which some of the best explorers have performed their tasks is illustrated by the remarkable achievement of the late Dr. Junker along the Mobangi River. After years of service, his scientific equipment had become practically worthless. He started on his four-hundred-mile journey down the river through the jungle, with absolutely no instrument except a compass to aid him in determining his positions. Endeavoring, by the most scrupulous care, to make up as far as possible for his lack of scientific outfit, he trudged through the grass, compass in hand, counting every step. Every fifteen minutes he jotted in his notebook the distance and the mean direction travelled. At night he used these accumulated data to lay down on his route map the journey of the day. For many weeks he kept up this trying routine till he reached his furthest west, and again till he had returned to his starting-point, whose latitude and longitude he had previously determined. When he returned to Europe, Dr. Hassenstein and he made a map from the data Junker had collected, and fixed the position of his furthest west. This position was found later by the astronomical observations of Lieutenant Le Marinel to be less than two miles out of the way.

One of the latest to win a large prize in African discovery is Dr. A. Donaldson Smith, a young physician of Philadelphia, in the northeastern region known as Somaliland and Gallaland. His method may be mentioned here as an illustration of the kind of work that geographers now require. Before he began his explorations, he took a thorough course in the use of surveying instruments and the methods of accurately laying down his positions and making a route map. Many a cartographer, burning with desire to draw a good map of a newly explored region, has been driven to despair by the inadequacy of the route surveys in his hands. Not a few of these surveys have been unworthy of reproduction in the books of the explorers who made them, and the best that could be done was to generalize their information on maps of comparatively small scale. But Donaldson Smith's route-maps appear in his book on the comparatively large scale of 1:1,000,000 (about sixteen statute miles to the inch), and they are worthy of that treatment, for his surveys and observations for geographical positions were recorded in such a way that their value might be easily ascertained by any one familiar with such computations. His route-maps have been found to be admirable map-making material; thus, he has not only traversed a new region of great extent, but has given in his map ample materials which may be employed by any atlas-maker in the production of good maps of all the territory that came under his observation. When Sir Clements Markham presented to Dr. Smith the Patrons' Medal of the Royal Geographical Society, he said: "You have not, like an ordinary explorer, made a common route survey, but you have made a scientific survey, a triangulation frequently checked by astronomical observations with theodolite and chronometer."

Most African explorers have been painstaking, conscientious workers, eager in their quest for the truth, desirous to report nothing but the truth, and treating the lowly and ignorant they have met as men, with sensibilities like their own, capable of gratitude for a kindness and keenly sensitive to an outrage. The world has recognized and applauded such heroes of discovery,--the men who faced hardship and peril, enduring and sacrificing much that knowledge might grow; who had to conquer not only unkind Nature, but to overcome the ignorant violence of man. And not a few of the leaders in this work have carried it out with a degree of tactfulness, humanity, gentleness, and kindliness of spirit amounting to genius. Some of them spent months in disguise, collecting facts of the highest scientific value among fanatical Mohammedans who would have killed them if they had known their secret. Such men were Burton in Harrar, Dr. Lenz in Timbuctoo, and De Foucauld and Harris in Morocco, who, in stained skins and borrowed costumes, personated merchants and devotees and doctors and Jews; and most of whom have enriched the literature of discovery with valuable books. Men also such as Dr. Junker, who, rich as he was, left his home to spend eight years alone among the savages of the Welle Makua basin in Central Africa, living on their food and in their huts that he might minutely study the people in their country; or Grenfell, who has travelled far more widely in the Congo basin than Stanley or any of his followers except Delcommune, and revealed to the world more river systems and unknown peoples than they, and who, in his long career as an explorer, never fired a shot upon a native, though his life was often threatened. These men, and others like them, have exemplified the manysidedness of human resources against a great variety of peril and obstacle, as no other explorers in any other part of the world have had an opportunity to do in equal measure. Their work, with its environment of almost overwhelming difficulty, should be known to our youth as most forceful illustrations of what good men may dare and do in good causes and in a worthy manner.

There have been some exceptions to this rule. A few men have been less anxious to perform useful service than to figure in the newspapers and pose before their public. One day a man stood on the north shore of Victoria Nyanza, and looking south he saw land. When he returned to London he published a sensational book, in which he said it was ridiculous for Speke to assert that he had discovered a lake as large as Scotland, one of the greatest lakes in the world. "Why," said the writer, "I have stood on the north shore of the Victoria Nyanza and looked south and seen the southern shore. Lake Victoria is only an insignificant sheet of water, after all the talk of its being second only to Lake Superior."

What he really saw was the chain of the Sesse Islands extending far out into the lake. His book was scarcely off the press when the letters describing Stanley's boat journeys around the shores of Victoria Nyanza began to be published in London and New York; and the foolish fellow was compelled to recall all the copies of his book that had not passed beyond his reach, and eliminate the statements that made him so ridiculous. Fortunately, there are not many explorers of this stripe.

All who watched the progress of African discovery were constantly reminded that geographical progress is usually made only by slow and painful steps. They saw an explorer emerge from the unknown with his notebooks and route maps replete with most interesting facts for the student and the cartographer. Then another explorer would enter the same region, discover facts that had escaped the notice of the pioneer, correct blunders his predecessor had made and perpetrate blunders of his own; so explorer followed explorer, each adding something to geographical knowledge, each correcting earlier misconceptions, till the total product, well sifted by critical geographers, gave the world a fair idea of the region explored; but not the best attainable idea, for scientific knowledge of a region comes only with its detailed exploration by trained observers, equipped with the best appliances for use in their special fields of research. This is the advanced stage of geographical study, which is now being reached in many parts of Africa. It was Livingstone's task, in 1859, to inform us that there was a great Lake Nyassa. It was Rhoades's task, in 1897-1901, to make a careful and accurate survey of its coast-lines, and to sound its depths, so that we now have an excellent idea of the conformation of the lake bottom. Between Livingstone and Rhoades came many explorers, each adding important facts to our knowledge of this great sheet of water nearly twice as large as New Jersey.

As each explorer came from the wilds, our maps were corrected to conform with the new information he supplied; and if we should examine the maps of Africa in school geographies, atlases, and wall maps, from the time of Livingstone to the present day, we should see that, as relates to nearly every part of Africa, they have been in a continual state of transition.

For years our only map of Victoria Nyanza was that which Speke made on his second journey to the lake, in 1860-62; but Speke saw the great lake only at one point on its south shore, and along its northwest and north central coasts. His map, being based very largely upon native information, was in many respects most incomplete and erroneous.

Then came Stanley's survey of the lake, made in a boat journey around its coasts, and for years his map supplanted that of Speke. But he was not able to follow the shore-line in all its intricate details. His mapping was a great advance upon that of Speke, but it was necessarily rough and imperfect. He missed entirely the deep indentation of Baumann Gulf and the southwestern prolongation of the lake, surveyed by Father Schynse, in 1891. Stanley's map, modified by the partial surveys of various explorers, is still our mapping of the lake; but if the reader will watch the maps for the next year or so, he will doubtless observe important changes in the contours of Victoria Nyanza; for all the maps, from Speke to those of 1902, will be placed on the shelf to serve only as the historical record of the good, honest work which a number of explorers have done. Commander Whitehouse has recently spent thirteen months surveying with infinite pains these coasts and islands. "I seem to see," writes Stanley of this important service, "the sailor, with his small crew and his little steel boat, wandering from point to point, crossing and recrossing, going from some island to some headland, taking his bearings from that headland back again to the island, and to some point far away."

Commander Whitehouse has made a new delineation of the entire 2,200 miles of coasts, and the results of his survey will be used in making all the maps of the lake. His map in turn will undoubtedly be replaced some day by detailed topographic surveys of the best quality, such as the British already contemplate making of that entire region.

A wall map recently in use in one of the public schools of New York City was a curious example of ignorant compilation. It exhibited the Victoria Nyanza of Speke, the Bangweolo of Livingstone, and the Upper Congo of Stanley, all obsolete for practical purposes years before this map was printed. Most of our home map-makers were very slow in availing themselves of the rich materials constantly supplied for the maps by the army of explorers in Africa. But the most alert cartographers, particularly between 1880 and 1895, could not keep their maps abreast of the news of discovery as it came to Europe. More men and energy and money were utilized in those fifteen years of African discovery than in the first century and a half of American exploration. The route or mother-maps, some covering a wide extent of country, others devoted to a small area, or a short line of travel, were going to Europe for the improvement of atlas sheets by nearly every steamer. Father Schynse's chart of the southwest extension of Victoria Nyanza had hardly been utilized in European map-houses before it was replaced by Dr. Baumann's more accurate survey. Mr. Wauters of Belgium withdrew his large map of the Congo Basin from the printer four times, in order to include fresh information before it was finally issued to the public.

This process is still going on, though more slowly. The mapping we see of Lake Tanganyika, one of the longest lakes in the world, has been in use for seventeen years since missionary Hore made his boat journey of one thousand miles around its coasts, but the new map of the Moore expedition now being introduced gives the main axis of the lake a more northeast and southwest direction. The Hore map has met the fate that usually overtakes the early surveys of every region. It rendered good service as long as it was the best map; but the Moore expedition had first-rate appliances for computing longitudes, and as Captain Hore lacked these, it is not strange that his map has been found to be defective.

The world has been treated to many geographical surprises in the course of this incessant transformation of the map of the continent. Many of us may remember in our school geographies, the particular blackness and prominence of the Kong Mountains, extending for two hundred miles parallel with the Gulf of Guinea. They were accepted on the authority of Mungo Park, Caillié, and Bowditch, all reputable explorers who had not seen the mountains, but believed from native information that they existed. The French explorer, Binger, in 1887 sought in vain for them. Later explorers have been unable to find them. They are, in fact, a myth, and will be remembered chiefly as a conspicuous instance of geographic delusion. It had long been supposed that the navigation of the Niger River, the third largest river in Africa, was permanently impaired by the Bussa Rapids, about one hundred miles in length, where Mungo Park was wrecked and drowned. But Major Toutée, a few years ago, when assailed by hostile natives, made a safe journey with his boats through the rapids; and Captain Lenfant, in 1901, carried 500,000 pounds of supplies up the river and through the rapids to the French stations between Bussa and Timbuktu. He had a small, flat-bottomed steamboat and a number of little boats propelled by fifty black paddlers. He says that by the land route he would have required 12,000 porters, and they would have been one hundred and thirty days on the road.

It was believed that a land portage would always be necessary between the sea and the Zambesi, above the delta, till 1889, when Mr. Rankin discovered the Chinde branch of the delta, so broad and so deep that ocean vessels may ascend it and exchange freight with the river craft.

It has been found that more water pours into the ocean through the Congo's mouth, which is six miles wide, than from all the other rivers in Africa together. It is second among the world's rivers, and the dark detritus it carries to the Atlantic has been distinctly traced on the ocean bed for six hundred miles from the land. Some geographers still believed thirty years ago that all the waters of its upper basin might be tributary to the Nile. Map-makers have been kept very busy recording discoveries on the Congo. About one hundred explorers, some of them missionaries and many employees of the Congo Free State, have mapped the whole basin along its water-courses, and discovered the ultimate source of its main stream. Our ideas of the hydrography of this great basin have been revolutionized since Stanley, second only to Livingstone among the great African explorers, in 1877 revealed the course of the main river.

On his map, for example, he showed the southern tributaries as probably flowing nearly due north; but all except one of these rivers rise in the east and flow far to the west. When Wissmann was sent to the Upper Kassai to follow it to the Congo, he was greatly surprised to find himself floating westward week after week. When he reached the Congo a steamboat was waiting for him at Equatorville, two hundred miles further up the river, where he was expected to emerge. Schweinfurth believed the Welle Makua flowed north to Lake Chad on the edge of the Sahara; seventeen years later, after six or seven explorers had tried to solve the problem, the river was found to be the upper part of the Mobangi tributary of the Congo, larger than any rivers of Europe, excepting the Volga and Danube. While Stanley was for five years planting his stations on the Congo, he knew nothing of this great tributary, 1,500 miles long, whose mouth was hidden by a cluster of islands which his steamers repeatedly passed. Missionary Grenfell, on his little steamer, was ascending the Congo one day, when accidentally he got into the mouth of the Mobangi and went on for one hundred miles before he discovered that he had left the main river. Few explorers have unwittingly stumbled upon so rich a geographical prize.

While exploratory enterprises have been centred largely in tropical Africa, no part of the continent has been neglected. We now know that large areas of the Sahara are underlaid by waters which need only be brought to the surface to cover the desert around them with verdure; that most of the rain falling on the south slopes of the Atlas Mountains sinks into the earth to impermeable strata of rock, along which it makes its way far out into the desert; that where the surface is depressed so that these waters come near to it, there are wells for the refreshment of the camel caravans, and oases, blooming islands of green, in the sterile wastes; and that artesian wells bring inexhaustible supplies of water within reach, so that millions of date palms have been planted along the northern edge of the desert in southern Algiers and Tunis, making these regions the largest sources of the world's supply of dates.

It has also been discovered why there are very large areas of dry or desert lands in Africa. The Sahara and the southwest of Africa are deserts because the prevailing winds, the carriers of moisture, blow towards the sea instead of away from it, and consequently are always dry. The winds from the Indian Ocean crossing the highlands of Abyssinia are wrung nearly dry while passing the mountains, and so Somaliland and the lowlands to the south of Abyssinia are parched.

It has been found that the most of South Africa stands so high above the sea that the influences of a temperate climate are projected far towards the Equator; so that many white men, women, and children are living and thriving on farms in Mashonaland, seven degrees of latitude nearer the equator than the south end of Florida. This fact will profoundly influence the development of South Africa. It is to be the home of millions of the white race, the seat of a highly civilized empire, whose business relations with the rest of the world will be to the advantage of every trading nation. The presence of these millions of toilers will vitally affect the work of developing tropical Africa which is now absorbing such enormous treasure and energy; for South Africa is to be brought by railroads to the very doors of the tropical zone.

It is hoped that such facts as these, even though very briefly stated, may convey broadly a correct impression of the magnitude of African exploration, since its revival about the time that Livingstone died. It is impossible in brief space to signalize the good work that many of the most conspicuous pioneers have done. The world rendered tardy tribute to the notable achievements of some of them. When Rebmann discovered Kilimanjaro, not far from the equator, and told of the snows that crown the loftiest of African summits, it was decided by British geographers that Rebmann's snow was probably an imaginary aspect. The snow was there, and plenty of it, but Rebmann died before justice was done to his faithful labors. When Paul du Chaillu described the Obongo dwarfs of West Africa, his narrative was discredited; but four or five groups of dwarfs, probably numbering many thousands, are now known to be scattered from the lower border of Abyssinia to the Kalahara desert in the far south. The ancients had heard of the dwarfs, but the geographers of the eighteenth century expunged from the maps of Africa about all that the geographers of Greece and Rome, as well as those of later times, placed on them; and the nineteenth century was slow in crediting the early investigators even with statements that were wholly or approximately accurate.

A curious history is connected with the discovery of the northeastern group of pygmies, a little south of Abyssinia. No white man had ever seen them, but about fifteen years ago Dr. Henry Schlichter, of the British Museum, collected all the information which natives had given to missionaries, traders, and explorers of the existence of these little people some hundreds of miles from the sea. Sifting all this evidence, he concluded that these dwarfs really existed, and that they lived in a region which he marked on the map north of Lake Stefanie. Donaldson Smith had not heard of Schlichter's paper, and knew nothing of these dwarfs, but he found them in 1895 in the region which Schlichter had indicated as their probable habitat.

The broadest generalization with regard to the African tribes is that which separates most of the peoples south of the Sahara Desert into two great groups,--the Negro tribes, whose habitat may be roughly indicated as extending between the Atlantic and Gallaland in East Africa, with the Sahara as their northern, and the latitude of the Cameroons as their southern, boundaries; and the Bantu tribes, occupying nearly all of Africa south of the Negroes. The distinction between these two great groups is not based upon special differences as to physical structure, mental characteristics, habits, or development, but depends solely upon philological considerations, the languages of the Negroes and the Bantus forming two distinct groups. Most of the slaves who were brought to our country were Negroes, while most of those transported to Latin America were from the Bantu tribes.

One fact that stood out above all others in the study of the African natives, was the remarkable prevalence of cannibalism in the Congo basin. In all his wanderings, Livingstone met only one cannibal tribe,--the Manyema living between Tanganyika and the Upper Congo; but though they are not found near the sources of the river, nor near its mouth, they occupy about one-half of the Congo basin. They are regarded with fear and abhorrence by all tribes not addicted to the practice. They number several millions. Instead of being the most debased of human creatures, many of them, in physical strength and courage, in their iron work, carving, weaving, and other arts, are among the most advanced of African tribes. The larger part of the natives in the service of the Congo Free State are from the cannibal tribes. The laws now impose severe penalties for acts of cannibalism, and the evil is decreasing as the influence of the state is extended over wider areas. A few isolated tribes along the Gulf of Guinea are also cannibals.

There is no doubt that the helpful influences of the Caucasian in every part of Africa so far outweigh his harmful influences that the latter are but a drop in the bucket in comparison. It is most unfortunate that a certain admixture of blundering, severity, brutality, and wickedness seems inseparable from the development of all the newer parts of the world. The demoralizing drink traffic, the scandalous injustice and cruelty of some of the agents of civilized governments, are not to be belittled or condoned. But there is also a very bright side to the story of the white occupancy of Africa.

The family of a deceased chief in Central Africa recently preserved his body unburied for fourteen months, in the hope that they might prevail upon the British Government to permit the sacrifice of women and slaves on his grave, that he might have companions of his own household in the other world. He was buried at last, without shedding a drop of blood. Human sacrifices are now punishable with death throughout a large part of barbarous Africa, and the terrible evil is being abated as fast as the influence of the European governments is extended over new regions. The practice of the arts of fetichism, a kind of chicanery, most injurious in its effects upon the superstitious natives, is now punishable throughout the Congo Free State and British Rhodesia. Arab slave-dealers no longer raid the Congo plains and forests for slaves, killing seven persons for every one they lead into captivity. Slave-raiding has been utterly wiped out in all parts of Africa, except in portions of the Sudan and other districts over which white rule has not yet been asserted. The Arabs of the Congo, who went there from East Africa solely that they might grow rich in the slave trade, are now settled quietly on their rice and banana plantations. The sale of strong drink has been restricted by international agreement to the coast regions, where the traffic has long existed, and its evils are somewhat mitigated there by the regulations now enforced. Fifty thousand Congo natives who would not carry a pound of freight for Stanley in 1880, are now in the service of the white enterprises, many of them working, not for barter goods, but for coin. Many of the missionary fields are thriving, and wonderful results have been achieved in some of them. In Uganda, where Stanley in 1875 saw King Mtesa impaling his victims, there are now ninety thousand natives professing Christianity, three hundred and twenty churches, and many thousands of children in the schools. Fifty thousand of the people can read. Between 1880 and 1882 Stanley carried three little steamboats around 235 miles of rapids to the Upper Congo. Eighty steamers are now afloat there, plying on nearly 8,000 miles of rivers, and connected with the sea by a railroad that has paid dividends from the day it was opened. At the end of 1890 there were only 5,813 miles of railroad in Africa. About 15,000 miles are now in operation, and the end of this decade is certain to see 25,000 miles of railroads. Trains are running from Cairo to Khartum, the seat of the Mahdist tyranny, in the centre of a vast region which, until recently, had been closed for many years to all the world.

These wonderful results are the fruits of the partition of Africa among the European states. With the exception of some waste regions in the Libyan desert, which no one has claimed, Morocco, Abyssinia, and Liberia, every square mile of African territory has been divided among European powers, either as colonies or as spheres of influence. The scramble of twenty years for African lands is at an end, there now being no valuable areas that are not covered by the existing agreements. It is no mere love of humanity that has impelled the European countries to divide these regions among themselves. We can scarcely realize the intensity of the struggle for existence in many of the overcrowded parts of Europe. Their factories are enormously productive, but their people will suffer for food unless they can export manufactures. The crying need for new markets, for new sources of raw material, drove these states into Africa. And we should be glad, for Africa's sake, that they have gone there, even though the desire to make money is one of the most powerful incentives.

It is under the protective aegis of these governments that explorers are settling down in smaller areas to see what may be found between the explored water-courses, to study the continent in detail, to give to our knowledge of Africa the scientific quality now required. The greatest geographical work there in recent years is the extension of a line of stations across tropical Africa by Commander Lemaire, each position astronomically fixed by the most careful methods, constituting a base-line east and west through Africa to which the scientific mapping of a very large area will be referred.

The day of the minuter study of the whole continent has now dawned, and we are witnessing a most notable work. All the colonial powers, and the Germans most conspicuously, are studying the economic questions relating to their African possessions. The suitability of climates for colonists, the essential rules of hygiene, the development of agriculture, labor supplies, transportation and commercial facilities, and many other problems are receiving the most careful attention. Experiment stations are maintained in the colonies and colonial schools at home, to fit young men for service in the field. The Germans have already proved that cotton and tobacco are certain to become profitable export crops.

The mine-owners of the Witwatersrand, on which Johannesburg stands, have begun a movement which they hope will result in the immigration of 100,000 white laborers to the mining field. We may look for remarkable development in South Africa, whose promise is larger than that of any other part of the continent. Whatever may be said of some of the methods by which the British have enlarged their empire, their rule has blessed the barbarous peoples whose countries they have absorbed. The task of improving the few millions of blacks in South Africa, and of developing the large and in some respects wonderful resources of that region, will be greatly assisted by the incoming of hundreds of thousands of Europeans, bringing with them the arts and other blessings of civilization. The future of none of the newer parts of the world is brighter with the hope of great development than the region between the Zambesi and the Cape of Good Hope.

In order to observe intelligently the progress of South Africa in coming years, the limitations as well as the advantages of the country must be kept in view. More than half of it, including the entire western half, is deficient in rainfall and can never be the home of a dense white population. Some mining will develop on those broad, dry plains and sandy wastes; some agriculture where irrigation is possible; and great wool-growing wherever thrive the nutritious grasses on which 13,000,000 sheep, scattered over the Karroo of Cape Colony, and 4,000,000 in the little Orange Free State, were grazing before the recent war. Wool-growing will always be the greatest grazing industry, though cattle and horses are raised in large numbers, and the fine, soft hair of the Angora goat is second only to wool in export importance.

A narrow strip of fine farm lands across the south end of Africa, another along the southern border of the former Boer republics, and a large area among the highlands of Mashonaland, far towards the equator, produce nearly all the crops of the temperate zones. It is not yet certain, however, that South Africa will ever raise enough wheat for a great white population. On the northern slopes of the hills, east and northeast of Cape Town, are thousands of acres of grapes. Cape Colony is becoming one of the important wine countries; and in February and March, large quantities of grapes, peaches, nectarines, and plums are placed in cool rooms on steamships and sent fresh to British markets almost before English fruit trees are in bloom.

East of the grape region is an area peculiarly adapted for the cultivation of tobacco; and east of the tobacco district, north of the coastal belt of wheat in a region of sandy scrub, the bush country, are the ostrich farms, in the hands mainly of men of considerable capital, who supply nearly all the feathers derived from the domesticated ostrich. The plumes are sometimes worth as much as $200 a pound, the ordinary feathers bringing from $5 to $7 a pound. Natal is unique in two of its agricultural industries, being the only colony that is producing tea and important quantities of cane sugar.

But gold, widely scattered over the country on the interior plateau, exceeds in value all the other exports together. The world never saw such a development of gold mining in a small area as has occurred on the Witwatersrand, where Johannesburg stands. The Witwatersrand (White River Slope) is a slight elevation, the water parting between rivers, about one and a half miles wide and 125 miles long. On twenty-five miles of the rand, at and near Johannesburg, more gold was produced in the year before the Boer war than was yielded by any other country in the world, The other rich mining regions of the Transvaal and other parts of South Africa have been completely dwarfed by the wonderful product of the rand. The surveys in Matabeleland and Mashonaland show gold-bearing areas 5,000 square miles in extent, which as yet have practically no development. The mining companies on the rand and elsewhere are now preparing for far larger operations than ever before.

The Kimberley diamond mines, turning out more than $20,000,000 worth of rough stones a year, supply nearly all the diamonds of commerce. Two other diamond centres in the Orange River Colony have scarcely been touched, and diamonds are found on the Limpopo River and in other regions where no mining has been undertaken. The minerals of South Africa, including iron and coal, bid fair to be for many years the largest sources of wealth; and in wool, hides, mohair, fresh fruits, and some other products, South Africa may rival other parts of the world.

There are no good natural harbors except Delagoa Bay in Portuguese East Africa, but by great expenditure the harbors of Cape Town, Port Elizabeth, East London, and Durban have been adapted for great commerce. Many persons mistakenly regard Cape Town as the chief commercial centre of South Africa. It is so only in respect of the export of gold and diamonds. As it is not centrally situated for business with the interior, more of the things that South Africa sells to and buys from the rest of the world, excepting gold and diamonds, pass through Port Elizabeth than through any other port. Here is centred the largest wholesale trade.

What South Africa needs is more railroads and more white labor. Manufacturing industries on an important scale are yet to come, for as yet the white population is too sparse to develop anything but the natural products of the country.

The broad summing up of the future work in Africa is that the native will be taught to help himself. The destiny of the continent depends largely upon his development, for great parts of Africa may never be adapted to become the home of many white men. The most powerful motives, philanthropic and selfish, incite and will sustain the work of helping these millions to rise to a higher plane of humanity. This work, now well begun, is the great task which in the present century will call for all the knowledge, patience, humanity, and justice that may be brought to bear upon the problem of reclaiming Africa.

AUTHORITIES.

Livingstone's "Missionary Travels," "A Narrative of an Expedition to the Zambesi," and "Last Journeys;" Blaikie's "Livingstone's Personal Life;" Stanley's "How I found Livingstone."

Stanley's "Through the Dark Continent," "The Congo and the Founding of its Free State," "In Darkest Africa;" Schweinfurth's "The Heart of Africa;" Burton's "The Lake Regions of Central Africa;" Speke's "Journal of the Discovery of the Source of the Nile;" Thomson's "To the Central African Lakes and Back;" Barth's "Travels and Discoveries in Central Africa;" Theal's "Compendium of South African History;" Greswell's "Geography of Africa South of the Zambesi"; Noble's "The Redemption of Africa" (A History of African Missions).

No comprehensive compendium of the history of African exploration has yet been written. Our knowledge of the geography, peoples and resources of Africa is treated with considerable detail in a number of works such as Reclus's "Africa" (in "The Earth and Its Inhabitants") and Sievers's "Afrika" (German). A very large part of the exploratory enterprises in Africa have not been described in books, but only in the reports of the explorers, printed with their original maps in the publications of many geographical and missionary societies.


SIR AUSTEN HENRY LAYARD.


1817-1894.

MODERN ARCHAEOLOGY.

BY WILLIAM HAYES WARD, D.D., LL.D.

It was twenty-three long centuries ago that a Greek soldier of fortune, who had the honor to be also a disciple of Socrates, was leading ten thousand mercenaries back to their native land after their famous failure to set the Younger Cyrus on the throne of Persia. Clearchus and the other generals had been treacherously murdered. Dispirited, almost hopeless, on their way to the longed-for Black Sea, in anticipation of the perilous and tedious journey, past wild mountains and wilder Kurds, they toiled up the valley of the Tigris River. Of one incident of their journey their historian and leader makes no record. They reached the spot where now stands the city of Mosul. On the bank of the river their eyes fell on a bare and lofty hill. They did not know, they never suspected,--Xenophon wrote no word of it,--that under that hill lay buried the ruins of one of the mightiest conquering cities that had ever ruled the world. From the palaces of that hill, Ninus and Semiramis and Sardanapalus had led their conquering armies, all now covered with silence.

Two centuries earlier, in 606 B.C., there had occurred one of the most tremendous catastrophes recorded in all the grim annals of war. After a thousand years of primacy in the East, but twenty years after the death of Sardanapalus (the Greek name of Asshurbanapal), who had carried his armies to Egypt and had made his capital the centre of the world's culture and magnificence, as it was of its cruel and hated power, Nineveh was captured, buried, and utterly desolated by a horde of savage Scythians from the mountains of the north and east, such people as we now call the Kurds. Its palaces had no lofty Greek columns to stand for memorials, as at Palmyra or Persepolis; and when the outer casings of brick and alabaster were cracked away, and the ashes of the upper stories and the clay of the inner constructions, soaked by the rains, covered the ruins of temple and palace, nothing was left to mark the site but the grass-covered hill. No wonder that the learned scholar of Socrates saw nothing, knew nothing of the city, most glorious and most detested of all the cities of the earth. But in its day the overthrow of Nineveh and the destruction of the Assyrian Empire had been the most terrible event in the world's history. How the Hebrew prophets gloated over it! "Where now is the den of the lions, and the feeding-place of the young lions, where the lion and the lioness walked, the lion's whelp, and none made them afraid? Wo to the bloody city; it is all full of lies and rapine; the prey departeth not. The noise of the whip, and the noise of the rattling of wheels, and prancing horses, and bounding chariots, the horsemen mounting, and the flashing sword, and the glittering spear, and a multitude of slain, and a great heap of corpses, and there is no end of the bodies. There is no assuaging of the hurt; thy wound is grievous; all that hear the report of thee clap their hands over thee: for upon whom hath not thy wickedness passed continually?" And another prophet had uttered the curse: "The pelican and the porcupine shall lodge in the capitals thereof; their voice shall sound in the windows; desolation shall be in the thresholds; for he hath laid bare the cedar-work. This is the joyous city that dwelt carelessly, that said in her heart, 'I am, and there is none besides me!' How is she become a desolation, a place for beasts to lie down in! Every one that passeth by her shall hiss, and wag his hand."

Thus fell Nineveh, amid the universal rejoicing of the nations, and thus, seventy years later, fell Babylon also, which, in the short interval, Nebuchadnezzar had made more magnificent than even Nineveh had been, beautified for its capture by Cyrus. But before Babylon was the capital of Chaldea, or Nineveh the capital of Assyria, the city of Calah had been the seat of its kings, and a mighty mound--they call it Nimroud now--"as high as St. Paul's steeple," old travellers loved to say--marks the place on the east bank of the Tigris, twenty miles south of Nineveh; and, before Calah, Assyria had an earlier capital forty miles still nearer the Babylonian border, at Asshur, now Kalah-Shergat, on the west of the Tigris; and each capital had its palaces and records, and all are now equally buried in clay and utter oblivion. And before the Babylon of Nebuchadnezzar, and long centuries before Nineveh or Calah or Asshur, there had been mighty kingdoms in Babylonia, of which the world had quite forgot the names, only vague rumors remaining in song or legend of Nimrod and Chedorlaomer and Ur of the Chaldees,--only what was preserved in the dimmest records of the Hebrew Scriptures. Empires were lost, buried in chiliads of forgetfulness; would they ever be recovered?

And how much else was lost, what kingdoms, what empires buried before Hebrew or Greek history began to take notice of the world outside and put them in books, no one knew, no one knows even yet, although so much has been found. The fame of Egypt was never quite forgotten, nor all its history, for Egypt was the world's granary, and closely accessible to the ships of Corinth and Rome; and Egypt never lost her civilization in all her long succession of enslavement. But what memory had been kept of the Ionia and Greece of the days before Homer? What of the early civilization of Cyprus and Crete? Only the name of Minos, a judge in Hell. What of Persia and Elam? Were they uninhabited before the times of Xerxes and Cyrus? And who were these kings, Cyrus and Xerxes, whose names burst upon us with dim light out of a black antiquity? Even they were but shadows on a screen, just seen and disappearing. What kings and kingdoms came before them and passed away? Has history no record? Not a word. Only black vacuity has been left behind them. And there was that other empire of the East, that of the Hittites, which we now know ruled Asia Minor and Syria and contested the rule of the world with Assyria and Egypt centuries before Agamemnon and Achilles, but so utterly buried and forgotten that not a line of its history was left, not even enough to let the sharpest scholar ask a question or suspect that it ever built capitals and fought victories and produced a civilization the harvest of which we still enjoy. Nothing was left of them but their names in a Hebrew list of tribes,--"Amorites and Jebusites and Hivites and Hittites."

Yet all these lost tribes, nay, lost nations, had left their records behind them, only they were buried under ground and out of sight. What a travesty it is on history and civilization, what an impeachment of the glory of these later Christian centuries, that the lands which these old empires crowded with a busy population should now be among the most desolate and inaccessible on the face of the earth! There we see the curse of the Moslem religion, and still more of the Turkish government. Wherever the Turk has carried the sword and the Koran, there is blight and death. Only as soldiers and scholars of Europe have forced their way into these seats of ancient empires has it been possible to ask and learn what is buried beneath their gray desolation.

The man who did more than any other to awaken the interest of the world in the search for forgotten empires was Sir Henry Layard, the excavator of Nineveh. But before his day another man had startled the world with what we may call the discovery of Egypt. That man was Napoleon Bonaparte, the man whose sword was a ploughshare turning up the fallow fields of Europe, and sowing strange crops of tyranny and liberty, and whose ambition it was to set up a new throne in the land of the Pharaohs and Ptolemies. The mighty ruins of Karnak and the imperishable pyramids filled him with amazement, and he set the scholars of France at work to publish in massive folios the wonders of that most ancient land. Then was found the Rosetta Stone, with its inscription in two languages,--Greek, which any scholar could read, and the Egyptian hieroglyphics, which no living man could read. But here was the key. The words Ptolemy and Cleopatra were in the Greek text, and it was not hard to find what were the combinations of characters that stood for these words in the Egyptian. The letters p, t, and l were in both names. The hieroglyphic signs found in both names must be these three letters. That beginning gave all the other signs in both words, and the rest of the alphabet soon followed. Justly great is the fame of the Frenchman Champollion, who has the honor of having first deciphered and read this lost language, and opened to us the secret treasures of its history and religion.

But with the exploration of Egypt the scholarship of the world was satisfied for fifty years. No one seemed to think to ask what might be hid under the soil of nearer Palestine and Syria and Asia Minor; much less did they seek to uncover the buried capitals of Assyria and Babylonia. Scholarship was devoted to books, to old manuscripts in convent libraries, to recovering what the wise men of Greece and Rome had written, and trying to wrest new facts out of their blundering old compilations of ancient history. It did not occur to them that a hundred kings and ten thousand merchants and priests might have left the stories of their conquests or contracts or liturgies, unrotted in the wet soil, imperishably preserved to be the record of commerce and empires as old and as great as those of Egypt, but far deeper covered with oblivion. But there they were, kept safe for twenty, thirty, fifty centuries, until the man should come whose mission it was to find them.

More than one such man came in the middle of the last century, but one man is pre-eminent, and typical of all the rest, Sir Austen Henry Layard. Before him one Frenchman, M. Paul Emile Botta, had made a fine dash on a palace city a dozen miles north of Nineveh, and had opened wonders such as the world had never seen before. But the man whose energy was fullest of impulse, whose enthusiasm compelled British Ambassadors and Ministers and Parliaments to do his bidding, who aroused the world to the importance of the exploration and disinterment of the monuments of Babylonia and Assyria, was the Englishman Layard.

He had a youthful passion for adventure, and slender means to gratify it. I wish you could see him as he is pictured in the volume which gives the story of his early adventures, before he had settled on his lifework of exploration. There he stands clad in his Bakhtiyari costume, the dress of a mountain tribe in Persia which asserted its independence of Teheran. It is a well-knit frame, fit to endure hardships. He stands holding the tall matchlock, the curved scimetar by his side, and the long pistol and the dagger in his belt. Above the yellow shoes and parti-woven stockings a red silk robe falls to his ankles, and over that a green silk garment reaches to his knees, and yet over that a shorter and richly embroidered coat, with open sleeves, is held close about the body by a wide silken sash woven in the brightest of red and gold, and holding the weapons attached to his waist. On his head is a low flat cap, visorless in front, but with a broad bow in place of a feather, all striped with the richest embroidery, and with a wide tassel of the same material falling far down his back. But the face, with its short beard dyed dark with henna, and its blue eyes, is not that of a warrior, but of a serious scholar or diplomatist. And he needed all the force of courage and all the arts of diplomacy for the work he had to do.

Layard's early training was in the line of preparation for his life's work. Much of his boyhood was spent in Italy, where he acquired a taste for the fine arts, and as much knowledge of them as a child could obtain who was constantly in the society of artists and connoisseurs. At about the age of sixteen he was sent to England to study the law, for which he was destined by his parents. After six years in the office of a solicitor, and in the chambers of an eminent conveyancer,--for that is the way that lawyers were educated then,--he determined to leave England and seek a career elsewhere. He had a relative in Ceylon, who gave him hopes of securing a position there, and for Ceylon he started. A friend of his, ten years older, was bound for the same destination, both fond of adventure, and they agreed to go together, and to go as far as they could by land instead of taking the long sea journey around the Cape of Good Hope. Across Europe they passed to Constantinople, through Austria, Dalmatia, Montenegro, Albania, and Bulgaria; thence across Asia Minor to Syria and Palestine; thence to Aleppo and down the Tigris to Baghdad. It was an extraordinary and adventurous journey, often dangerous; but greater danger was to follow. Layard had learned some Turkish, and now he spent the long weeks in Baghdad in the study of Persian; his companion was quite familiar with Arabic. Before they left England they had received good advice from Sir John MacNeill, the British representative at the court of the Shah: "You must either travel as important personages, with a retinue of servants and an adequate escort, or alone, as poor men, with nothing to excite the cupidity of the people amongst whom you will have to mix. If you cannot afford to adopt the first course, you must take the latter." The latter they were forced to take.

Many a young man has the gift to acquire languages--almost any Oriental can talk three or four--and the ability to rough it and live on the fare of the people, though barbarous; and many a man has the spirit of adventure; but this young man had one peculiar and unusual qualification that directed him to his future career. As a child, he had read the "Arabian Nights" with intense delight, with their stories centred about Baghdad. Then every book of Eastern adventure, every bit of travel in Syria, Arabia, or Persia that he could find he had eagerly devoured. It was his day and night's longing that he might visit strange lands of history and make explorations and discoveries. So wherever he was, he visited every ruin and tried to copy every inscription. If his companion would not turn aside to visit some region of renown and danger, he would go alone and join him later. As they came down the river Tigris in their boat, they passed the immense mound of Nimroud, and so impressed was Layard by it that he then, scarce twenty-three years old, resolved that some day he would search and learn what was hidden under it; but little did he imagine what wonderful monuments he was to find there only a few years later.

Without a servant, as poor men, in a caravan of fanatical and hostile Persian pilgrims returning from the shrines, just travellers trying to go by land through Persia and Afghanistan to India and Ceylon, they left Baghdad. It was a time of unusual danger, for the British Minister had been recalled from the Persian Court, and war with England was threatened. They were taken for spies, and sent to the presence of the Shah, and forbidden to follow the route they had chosen and which had been marked out for them by the Council of the Royal Geographical Society, to report on rivers and mountains and ruins not yet explored. They were insulted and robbed, and their lives were often in danger; but at last they received from the Shah their firmans. Now they separated. His companion felt that he must go by the quickest route to his destination; but Layard had no definite date before him, and he was anxious to perform the commissions of the Geographical Society, and so he plunged alone into fresh dangers.

But there is no space to tell the rest of the story of his adventures among the Bakhtiyari, of his copying of inscriptions, of his return to Baghdad and his decision to give up the plans of life in Ceylon, and of his return from Baghdad again to Shuster and Persepolis and other ancient cities of Persia, and his exploration of the Karun River and his geographical paper on the subject, his opening of British trade, and his return to Constantinople. At Mosul he found that M. Botta was planning to explore the mounds across the Tigris that covered ancient Nineveh, and he warmly encouraged his plans. At Constantinople he visited Sir Stratford Canning and delivered to him despatches that had been confided to his care, in view of a threatened war between Persia and Turkey. Here he was kept in the service of the British Embassy, and intrusted with important and delicate negotiations and investigations which were so highly appreciated by Sir Stratford that he kept him as his attaché.

Meanwhile M. Botta had begun his excavations of a palace of King Sargon at Khorsabad and was sending his reports and drawings to Paris. They were all sent by way of Constantinople, and, by M. Botta's generosity, were all seen by Mr. Layard. So deeply was he interested in them, and so intense was his desire to carry on excavations himself, that he secured his release from the Embassy, and also a grant of three hundred dollars from Sir Stratford's own purse, which, with what he could spare from his own money, would, he hoped, suffice to begin the work, when, if anything of value appeared, it was trusted that funds would be secured from English friends of Oriental learning. Thus, six years after leaving England, Mr. Layard, well equipped in knowledge of the people and in diplomatic experience, was ready to launch on his great career, which brought him fame and earned him the post in later years of British Ambassador at the Porte, which Sir Stratford had held, and--what is far greater--gave to the world the larger part of its knowledge of the lost empires of Assyria and Babylonia.

With these few hundred dollars, and contributing every penny of his own income, in October of 1845, he left Constantinople without companion or servant, went by steamer to Samsoun, and then as fast as post-horses could climb or gallop over mountains and plains, he reached Mosul in twelve days.

Here at last he was fitted for his task, supplied for the accomplishment of his passion. The Arabs say: "I had a horse, but no desert; I had a desert, but no horse; now I have a desert and a horse, and shall I not ride?" His boyhood, with the artists of Italy, and learning the languages of the continent, had fitted him for his task; then his study of all the books of Eastern travel, then half a year wandering with a trained companion through Asia Minor and Syria, scarcely leaving untrod one spot hallowed by tradition, or unvisited one ruin consecrated by history, with no protection but his arms, living with the people and learning their prejudices and customs. Then an irresistible desire had brought him to the regions beyond the Euphrates, and the mystery of Assyria, Babylonia, and Chaldea had fascinated him, so that he had visited the land of Nimrod, seen the site of their old buried capitals, had been the guest in the tents of Shammar and Aneyzah Arabs, and even passed on to see the famous forty columns of Chilminar, old Persian Persepolis, and to penetrate the mountain fastnesses where the Bakhtiyari maintained a perilous freedom. Never was man better trained by enthusiasm and experience for his task, and the late discoveries of M. Botta had inflamed his desire to surpass what his French friend had done.

His plan was not to begin excavations at Nineveh, opposite Mosul, but twenty miles south, at the great mound of Nimroud, which bore the name of the mighty hunter Nimrod. Xenophon and his Ten Thousand had seen and wondered at its pyramid. There he would be free from the army of mischievous spectators that would swarm from Mosul, had he selected the site of Nineveh, and from the constant interference of the Turkish governor. The Pasha at Mosul was a cruel scoundrel, who was robbing and killing the people as his whim or greed prompted, and had reduced the tribes of the neighborhood to a state of terror. Accordingly, Mr. Layard, who was armed with protecting letters from the British Ambassador and the Porte, thought it wise to conceal his purpose, let it be reported that he was going on a hunting expedition; and with a few tools and a supply of guns and spears, on the 8th of November, 1845, accompanied only by his cawass, the soldier attendant detailed for the protection of travellers, a servant, and one laborer, he floated down the Tigris, and in four hours reached the bourne of his long hopes. He had the mound, he had the money, and now he would dig.

The Arabs have strange stories of this ruin. The palace, they say, was built by Athur, the vizier of Nimrod. There Abraham brake in pieces the idols worshipped by the unbelievers. Nimrod was angry and waged war on the holy patriarch. Abraham prayed to God: "Deliver me, O God, from this man who worships stones, and boasts himself to be lord of all kings;" and God said to him, "How shall I punish him?" and the prophet answered, "To thee armies are as nothing, and the strength and power of men likewise. Before the smallest of thy creatures will they perish." And God was pleased at the faith of his servant, and he sent a gnat that vexed Nimrod day and night, so that he built himself a room of glass in that palace that he might dwell therein and shut out the insect. But the gnat entered also, and passed by his ear into his brain, upon which it fed, and increased day by day, so that the servants of Nimrod beat his head continually with a mallet that he might have some ease from his pain; but he died after suffering these torments four hundred years. And after him the mound was named Nimroud.

It was dark when Layard and his little company reached the place. They found near by a few huts occupied by poor Arabs, who had been harried by the Turkish Pasha. There they slept, or tried to sleep. But the explorer could not sleep. Hear him:--

"Hopes, long cherished, were now to be realized, or were to end in disappointment. Visions of palaces under ground, of gigantic monsters, of sculptured figures, and endless inscriptions, floated before me. After forming plan after plan for removing the earth and extricating these treasures, I fancied myself wandering in a maze of chambers from which I could find no outlet. Then, again, all was reburied, and I was standing on the grass-covered mound. Exhausted, I was at length sinking into sleep, when, hearing the voice of Awad, I rose from my carpet and joined him outside the tent. The day already dawned. The lofty cone and broad mound of Nimroud broke like a distant mountain on the morning sky."

Awad, his host, was a little chief among the Arabs, and was engaged to take charge of the diggers. The first morning he had six Arabs at work, and found alabaster slabs with cuneiform inscriptions. He was now sure he would succeed.

It is not necessary to give the diary of his work. To be sure, the villanous Pasha forbade him to continue, and recalled him to Mosul, but a new governor was sent from Constantinople, under whom he had no difficulty. A great palace had been found, and chamber after chamber was excavated, the walls covered with bas-reliefs and inscriptions. Then came strange, gigantic lions with human heads, that had been placed by the old Assyrian king to guard the entrances to his court. What was the amazement of the Arabs and Turks cannot be told. First, the head was uncovered. It stood out from the earth, placid and vast. Hear Layard tell the story. He had been away to visit a neighboring chief:--

"I was returning to the mound, when I saw two Arabs urging their mares to the top of their speed. 'Hasten, O Bey,' exclaimed one of them, 'hasten to the diggers, for they have found Nimrod himself. By Allah! it is wonderful, but it is true! We have seen him with our eyes! There is no God but God!' And both joining in this pious exclamation, they galloped back to the tent."

Layard hastened to the trench, and there saw what he knew to be the head of a gigantic lion or bull, such as Botta had uncovered at Khorsabad. It was in admirable preservation. The expression was calm, yet majestic, and the outline of the features showed a freedom and knowledge of art that was scarcely to be looked for at so early a period. Says the explorer:--

"I was not surprised that the Arabs had been amazed and terrified at this apparition. It required no stretch of imagination to conjure up the most strange fancies. This gigantic head, blanched with age, thus rising from the bowels of the earth, might well have belonged to one of those fearful beings which are pictured in the traditions of the country as appearing to mortals, slowly ascending from the regions below. 'This is not the work of men's hands,' exclaimed Sheikh Abdurrahman, who had galloped to the mound on the first news, 'but of those infidel giants of whom the Prophet, peace be with him! has said that they were higher than the tallest date-tree; this is one of the idols which Noah, peace be with him! cursed before the flood!' In this opinion all the bystanders concurred."

The Arabs have a ready explanation for every fresh discovery. When some years later Mr. Layard's assistant and successor in the work of excavation, Mr. Rassam, uncovered, at Abu-habba, a remarkable bas-relief with the figure of the seated Sun-god and three approaching worshippers, the Arab diggers rushed to him, declaring that they had found Noah and his three sons, Shem, Ham, and Japhet, and demanded a sheep to make a feast.

The report of the wonderful discovery of a royal palace, evidently older than those of Nineveh, with magnificent decorations in alabaster and cuneiform inscriptions, reached beyond Mosul to Constantinople. Sir Stratford Canning was delighted with the result of his expedition. He had a passion for discovery as well as diplomacy, and it is to him that the British Museum is indebted for the priceless marbles of Halicarnassus. He now obtained for Mr. Layard a firman, permitting him to make what excavations he wished. Then the news reached London, and the British Museum made a grant to support the work. All difficulties were now removed. Conditions were even more favorable for him than they are now. There was then no Imperial Museum in Constantinople to which all objects found must be taken, but those that dug had the right to carry off their prizes to London or Paris.

To tell the story of the further excavations is unnecessary. It is all given in Layard's two splendid volumes, "Nineveh and its Remains," and "Babylon and Nineveh;" and the bas-reliefs, statues, bronzes, ivories, and inscriptions are magnificently reproduced in great folio volumes. From Nimroud he went back to Mosul, and there opened the two mounds opposite of Kuyunjik and Neby-Yunus, the site of old Nineveh. There more palaces and friezes were found of other kings. Then he went back to London, closing his successful campaign, more profitable if not more glorious than those of war, and published the story of his work. Its effect was marvellous. No such popular book of travels had ever appeared; for it was a story of adventure, and also of strange discovery. Mr. Layard had not suspected that he had the literary gift, but he had it in rare measure. He had gained an inner view of the heart of tribes, Moslem and Christian and semi-pagan, by his sympathy with them and his knowledge of their tongues. He had lived in their tents and huts. He had saved them from persecution by Turkish governors. Their gratitude to him was beyond words, and he told their story with affection and enthusiasm. Then his discoveries were in the lands made historic not only by the campaigns of Xenophon and Alexander, but made almost sacred by the Bible history. These were the lands whence came the armies that fought with Israel. These were the kings whose wars are told in the Jewish records; and the annals of these kings were found in their palaces, and they gave full accounts of wars of which the Bible had given the outline. Piety and learning joined to give extraordinary interest to these discoveries and to this report of them. Mr. Layard found himself famous, and the monuments he was bringing to the British Museum were, and still are, the most extraordinary and fascinating in all its corridors.

Of course, a new grant was made in behalf of the British Museum, and of course he went back to continue and extend his researches. Now he wished to go further south, beyond Nimroud to Kalah Shergat, the yet earlier capital of Assyria; and yet further to Babylon, that he might see and test the multitude of mounds of ancient Chaldea, the real land of Nimrod, the seat of Eden, and the Tower of Babel, far more ancient than any one of the three capitals of Assyria. While he did scarce more than to visit and report on the Babylonian mounds, his diggings in Nineveh itself were of vast importance, for there he found the library of Asshurbanabal, on clay tablets, which has given us our chief knowledge of the literature and learning of the ancient East. In 1852 he returned to England to publish his "Monuments of Nineveh," and left the further exploration to his able lieutenant, Mr. Rassam, and to a noble succession of explorers who should follow, and to a no less noble line of scholars who should interpret the inscriptions and recover the history of the nations; so that we now know more exactly the history of Babylonian and Assyrian kings, and from more authentic records, and more completely the social condition and business life of the countries, than we do the history of Greece, or the life of the Greeks even of the time of Pericles, and that, too, for a period of three thousand years.

To illustrate this fact, let us take the black obelisk of Shalmaneser II., found by Layard at Nimroud. It is a column of basalt seven feet high and about two feet wide at the base, from which it narrows slightly, until near the top it is reduced by three steps. On the four sides is engraved in five rows of bas-reliefs, twenty in all, the pictured history of the royal conquests, the submission of kings, and the presentation of tribute. Above and below, and between, in two hundred and ten lines, was cut an inscription which explained the figures, and gave a full historical and, of course, contemporary and official account of the glorious events of the royal reign. Not a line was defaced; at the British Museum it can be seen to-day as perfect as when engraved twenty-seven centuries ago. Other monuments of Shalmaneser have been found. One is a great monolith with a portrait of the king in all his fine array, and with one hundred and fifty-six lines of text. Another is a series of splendid bronze plates that covered great wooden gates, on which, in repoussé work, were pictures of the royal victories, and inscriptions explaining them. The Bible tells us of the rivalries and jealousies of Ahab and Jehu, kings of Israel, and Benhadad and Hazael, kings of Damascus. How surprising it is to find here not only the story of the successive campaigns of Shalmaneser against these same kings, the number of their chariots and soldiers, but to see pictured before us the tribute sent by Jehu. We learn that Shalmaneser reigned from 859 to 825 B.C., and we have the record of all his successive campaigns, the first twenty-six of which he led in person. There is not another country of which, before the invention of printing, we have so minute a history; and all had been lost, except the mention of a name or two, whether historical or legendary we hardly knew, until Layard and his fellow-explorers opened the mounds of Assyria.

But enough for Layard. He is only one, though the principal one, of all the explorers of the buried records of the empires of the Tigris and Euphrates. And Babylonia and Assyria are not the only countries that history required us to explore. Greece and its neighboring states and islands have not even yet been fairly investigated. Much of Asia Minor is still a virgin field. Syria and Palestine have hardly been scratched with the spade. More has been done in Egypt, but more yet is to be done. And when we go into the further east of Persia and Old Elam, not to speak of the yet farther east of Central Asia, now just beginning to yield strange treasures to daring travellers, and ancient India and China,--how ancient we know not at all,--there is field for centuries of further research. For we must go back past empires and kingdoms and tribal conditions to the very beginning of the human race on the earth, even if so it be, to the first Pithecanthropus which men of science tell us was the link which connected Homo sapiens with the race of primitive simians. And all this, it may well be, is preserved in undecaying records just a few feet under the ground, if one only knew where to dig for it; nay, we now know where to dig for the most and best of it, and we only await the Stratford Cannings, who will give the money, and the Austen Layards, who have the enthusiasm for the work.

After Layard and Rassam, after Rawlinson and Botta, George Smith took flying trips to the site of Nineveh twice that he might gather the remaining fragments of the great library of Asshurbanabal, and he died in the field far from home. It was he that found among Layard's tablets the Babylonian account of the Deluge, so much like that in the Bible. He was the first of a second generation who, following Rawlinson and Oppert, decipherers as well as explorers, were able to read as they found. I can only mention the names of the Englishmen Taylor and Loftus; of the Frenchmen, Place and De Sarzec; and, later, the Americans, Peters, Hilprecht, and Haynes, who have so faithfully explored the extremely archaic mound of Niffer, which I had the honor to recommend for excavation after I had visited the mounds of Southern Babylonia in the winter of 1884-85. And now the Germans, with scientific as well as commercial and political purpose, with their railroad to pass down the valley through Baghdad to the Persian Gulf, which gives them predominant influence, have sent expeditions well equipped with scholars and engineers to the choicest sites in Babylonia, to Warka, the ancient Erech, and to Babylon itself; and with Teuton thoroughness they are excavating the most famous of ancient ruins and gathering fresh treasures of archaeological research. Nor have they left the land of the Hittites unexplored, for Germany claims the first rights, politically, in all Anatolia, the right of succession and possession when the Turk is expelled, and German archaeological science is bound to be first on that field.

And now what have we found as the fruit of all this labor of exploration? Is it worth the labor and the expense?

Let us look first--it can be only a glance--at Egypt, for Egypt was the land first and most persistently explored. The French Government for scores of years has been at work there. Germans and Italians have explored the ruins; two English societies have for years kept expeditions in the field; and just now a Californian university sends an American Egyptologist to uncover the tombs and read the hieroglyphs of the kings. Not only are the figured monuments of Egypt published in princely folios, but its records have been translated and its lost history recovered to the world's knowledge. Instead of the bare "Pharaoh" of the Bible, a common designation for all the kings, and in place of a bare list of names and dynasties copied from Manetho, and so altered and corrupted in the copying as to be neither Greek nor Egyptian, we have, on scarab, or gravestone, or pyramid, or rock-sepulchre wall, in his own spelling, the name of almost every king from the latest time of the Ptolemies back to the first king of the first dynasty, five thousand--or was it six thousand?--years before Christ. And not their names only, but the very pictures of their wars. We see how they went up the Nile and fought the blacks of Abyssinia, and brought back the spoils of Punt We see them sending their squadrons into Syrian Asia, and waging a dubious battle with the Hittites before the walls of Hamath, where Rameses in his lion-guarded chariot performs prodigies of valor, and from which he returns not only to paint on sacred walls the picture of his victory, but also to inscribe a copy of the treaty of peace with the Hittite king, the earliest treaty in the preserved annals of diplomacy. Well wrought that Rameses the Great for eternal fame in the sixty years of his reign, fifteen centuries before the birth of our Lord. But what fame had been his, had not explorers and excavators and scholars dug and found and copied and translated what the sands had covered for centuries? And to-day the curious traveller stops in sight of the pyramids on the banks of the Nile, and enters the Bulaq Museum, and there he sees set up before him the very mummy of Rameses himself and of a dozen other royal personages, rifled from their tombs and displayed for your amazement and mine. There is the very Pharaoh--you can see his features, you can touch his coffin--who chased the Children of Israel out of Egypt. There are the household implements, the furniture of their homes, the jewelry their queens wore,--queens who were also sisters of the kings, as Sarah was the sister of Abraham.

Or would you know of some great revolution in Egypt? These decipherers of the inscriptions will tell you how the Shepherd Kings overthrew the native dynasty, coming with their armies from Asia long before Rameses, and changed religion and customs; under whom Jacob and his sons found hospitable welcome, until their hated race was expelled by a stronger native dynasty that knew not Joseph. Or they will tell you of the royal reformer Khuenaten, son of a famous Eastern mother, a queen from the banks of the Euphrates. Taught by her, perhaps, a purer religion, he attempted to replace the worship of Egypt's bestial gods by the worship of the one only great God, whose symbol was the sun. But the priestly clan was too strong for him, and the succeeding Pharaohs destroyed his records and chiselled out his name where it had been cut in stone that no memory of his sacrilege might be preserved. A royal Moses there could not be. The worshipper of one God, whether king or son of Pharaoh's daughter, could bring no reformation to Egypt.

Or would you learn how Egypt ruled its subject territory? You can read the correspondence of a dozen local Egyptian governors in Palestine and Syria in the century before Moses led the Hebrew slaves out of Egypt. There is the letter of the King of Jerusalem, where Melchizedek reigned in the times of Abraham; and they tell of rebellions against the fading power of Egypt, and of the fear of the advancing Hittites. The earliest kings, those that built the pyramids, appear before us real in their personality, emerging out of misty legend or myth, and, earlier still, even the prehistoric races that antedated the very beginning of civilization. Whence came that first dynasty? Who invented writing? Were they autochthons? Hardly. These are questions left for further explorers to answer. Probably those first messengers of civilization came from the East, perhaps from Arabia, perhaps from Babylonia, or perhaps the first Babylonians and Egyptians formed a common stock somewhere near the mouth of the Euphrates. Perhaps the Bible is right in saying that the first seat of civilized man was in Eden, and that the Euphrates was the chief river of Paradise. Or was it from Arabia, the immemorial home of the Semitic tribes, that land of sand and mountain and fertile valley, land of changeless culture and tradition, so near the centres of civilization, and yet still the most inaccessible, the least known portion of the inhabited earth,--was it from Arabia that the wiser, stronger multitude came that first overran the valleys of both the Nile and the Euphrates, bringing to Egypt and Chaldea arts and letters? We do not know. Some future explorer must teach us. But the German Glaser has within these few years brought back from hazardous journeys a multitude of inscriptions that tell of kingdoms that fringed its southern coast and extended we know not how far into the interior in those early days when one of the queens of Sheba brought presents to Solomon, and when, earlier still, we are told there were dukes of Edom before there was any king in Israel. They say that a railroad is to be built to Mecca; Arabia is not to be always a closed land, neighbor as it is to Egypt. We shall know one of these days whether, as scholars suspect, out of Arabia and across the Straits of Bab-el-Mandeb, where, at the southern end of the Red Sea, Africa almost touches Asia, there came that mighty flood of more forceful men, bred in the deserts and hills, who, passing down the Nile, first brought history to Egypt; and whether it was this same Semitic people, as scholars suspect again, that spread resistlessly eastward to the Euphrates valley, and did an equal service in conquering and assimilating the black aborigines of these swamps and lagoons. The spade will tell us.

Or was it still further east, in the highlands of Persia, that men first learned how to write and record history? We cannot go back so far in the history of Babylonia--Professor Hilprecht dares to carry us seven thousand years before Christ--that we do not find its kings fighting against Elam. And only in the last decade of the Nineteenth century the Frenchman De Morgan has made marvellous discoveries in the Elamite lands. What a noble passion those Frenchmen have for discovery! For Egypt did not Napoleon provide the most elephantine books of monuments and records that printing-presses have yet issued? And from that time to this have not Frenchmen held the primacy in excavations until, even while England holds and rules Egypt, she leaves, by special convention, the care of its monuments and their exploration to French savants? And before Layard removed a basketful of the earth that covered the palace of Shalmaneser at Nimroud, had not the Frenchman Botta disclosed the friezes and sphinxes of Sargon at Khorsabad; and in these late years is it not the Frenchman De Sarzec who has brought from Telloh to the Louvre the statues of Chaldean kings that lived almost five thousand years ago? And so to France was given the right, for the honor and enrichment of the Louvre, to explore Persia; and De Morgan went to Susa, to Shushan, the palace of Xerxes and Darius, of Ahasuerus and Esther, in search of what was far earlier than they, for another Frenchman and his wife, M. and Mme. Dieulafoy, had already excavated the noble palace of these Persian kings. Far below the palace of Xerxes he has found vastly earlier remains. There is the column set up, if we can believe the Assyriologists who trust the chronology of Nabonidus, the last king of Babylon,--and it is not incredible,--three thousand eight hundred years before Christ, by Naram-Sin, a Babylonian king, to commemorate one of his raids into the land of what were perhaps his stronger enemies. It is a noble composition, with archaic writing, and a stately figure of the king climbing the mountains and slaying his enemies; it shows an art that might well have developed into the best that Greece has produced. But De Morgan has only begun to scratch the surface of the mounds of Elam, and a multitude of scholars believe that out of Elam came the first civilization of Chaldea. We shall find out yet; for the record is in the earth, and only waits the man who will dig it out, and then the man who will read it.

We are tempted to go further east and recall that in India, the land where Alexander made his most distant conquests, a multitude of English scholars have been searching the ruins of old temples for the earliest memorials of the worship of Buddha. Just now they have found his birthplace and precious relics. But that takes us too far afield, and would tempt us to further excursions in Burmah and China. We must come back to Western Asia and the shores of Europe.

As has been indicated, the greatest puzzle of ancient history is that of the Hittite empire, which seems to have ruled all Asia Minor at some uncertain time, and to have extended over Syria and Palestine. No sooner had the greatest Egyptian kings, Thothmes and Rameses, ventured their armies into Asia, perhaps in vengeance on the incursions of Ionian pirates, perhaps in requital of the tyrannies of the hated Shepherd Kings, than they learned of the Hittites on the shores of the Euphrates. Then, a century or two later, a mass of official correspondence sent by the Kings of Palestine and Syria, dug up in Egypt, reports that the Hittites had appeared as invaders from the north and beseeches military aid. But the power of Egypt had waned, and the Hittites were supreme until the Assyrians began and carried on for five centuries the uncertain war which ended in the utter overthrow of the Hittites and all their allies in a great battle at Carchemish. That great mound of Carchemish needs to be thoroughly explored. Already an English expedition has very carelessly just opened the hill and exposed, but not fairly published, some few as fine friezes as are to be found in the Assyrian capitals, with unread Hittite inscriptions, and a fine statue of the Hittite Venus; but much remains to reward the student of Oriental history and art. At Senjirli a German expedition under Von Luschan has done more and better work, handsomely published, but this was a smaller Syrian town, and less was to be expected; and yet here, and near by, were found what was not expected, steles (upright slabs or pillars) with the portraits of kings in high relief, covered over with long inscriptions in Aramaic, the oldest and longest as yet discovered anywhere in that language. It was a magnificent result of very moderate labor,--Hittite friezes, Assyrian and Aramean inscriptions all in one little mound. But for the most part we know the art and writing of the Hittites from what we have found above ground, in their towns and fortresses in the hills, for little digging has been done. At Pterium was a principal sacred capital, and there, on a natural corridor of rock, they carved a procession of gods and kings and soldiers that excites the wonder of scholars. As I write, the announcement comes that Professor Sayce has at last discovered the secret of the Hittite hieroglyphs, and we may hope that very soon it will be possible to read them. But there is vastly more of their records yet to be disinterred.

And there remain the two lands most sacred and beloved in poetry and history,--the land of Israel and the land of Homer. It is amazing that so little search has been made to find out what is hidden under the soil of Palestine. Scholars in plenty have walked over the top of it, and have told all that is on the surface, but almost nothing has been done underground, no such excavations as in Egypt or Assyria. I do not forget that the English Palestine Exploration Fund has followed out, with trenches and tunnels, the walls of Jerusalem, nor that one or two old mounds have been partly explored. But what is this to the great work that needs to be done? There has been found on the surface the Moabite Stone, at the old capital of Dibon, a wonderful record of early kings mentioned in the Bible. And there is the short account in the rock-cut conduit of Siloam, of the success of the workmen in the time of Hezekiah, who, beginning at the two ends, did the fine engineering feat of having their tunnels meet correctly in the solid rock. But when Jerusalem is fully explored, and the northern capitals of Bethel and Tirzah and Samaria, and a hundred other mounds that mark the site of Jewish, Israelite, Philistine, and Amorite cities, we may expect marvellous discoveries that will illumine our Holy Scriptures.

And one region yet remains to be considered, the scattered coasts and islands that owned the Greek speech, and that created the Greek civilization. It is not the Greece of the Parthenon and Pericles that we wish to discover, for that we fairly know; but the arts and the history of those earlier Greeks and Trojans that Homer tells of, the age of Agamemnon and Ulysses, of Helen and Hector and Priam, and of the yet earlier tribes that sailed the Aegean, and settled the Mediterranean islands, and sent their ships to the Egyptian coasts, and sought golden fleeces on the Euxine Sea. All about the coast of Asia Minor they lived, while that Hittite power was ruling the interior; and, intermixed with Phoenician trading-posts, they held the great islands of Crete and Cyprus and the shores of Sicily and Italy. What shall we call them? Were they Dorians, or Heraclidae, Achaeans or Pelasgi? Were they of the same race as the mysterious Etruscans, or shall we name them simply Mycenaeans, as we call the art Mycenaean that ruled the islands and coasts down to the Homeric age, and we know not how many centuries earlier, but certainly as far back as the conquering period of the Eighteenth Egyptian Dynasty of Thothmes? Their soldiers and merchants and their fine vases are pictured on the walls of Egypt, and their pottery has long been studied; but we knew little of them until Dr. Schliemann, the Greek merchant who achieved wealth in the United States, bravely opened the great ruins of Troy, in the full patriotism of his assurance that Homer's story of the Trojan war was history as well as poetry. As he found one burnt and buried city under another,--for many times was Troy destroyed,--and extended his investigations to Tiryns and other ancient cities, one volume of splendid research followed another, until the trader had compelled the unwilling scholar to confess that he must dig for both history and art. To be sure, his interpretations were quite too literal at first, but the whole world of classical scholarship has learned from him the new method of research. Splendid have been the results. If we are not sure which stratum represents the city of Priam, we do learn how the people lived, and how fine was their work in silver and gold, and how slight their knowledge of letters. Dr. Schliemann has now a multitude of imitators. France and Germany and England and the United States each maintain a school of archaeology in Athens, and each conducts careful explorations. Our American School lost to the French, for lack of money at the right time, the chance to explore Delphi, but it has carried on careful explorations at Corinth and other places. How wonderful was the discovery, not long ago, of a shipload of bronze and marble statues wrecked while being transported as spoil of war from Corinth to Rome!

But the most surprising discoveries in the realm of old Greek history and art are those that have been made in these last two or three years in Crete. Crete was a famous centre of ancient Greek legend. Jupiter was born and reared on Mount Ida. From another mountain summit in Crete the gods watched the battle on the plains of Troy. There ruled Minos, who first gave laws to men, and who at his death was sent by the gods to judge the shades as they entered the lower world. There was the famous Labyrinth, and there the Minotaur devoured his annual tale of maidens until he was slain by Theseus. Was there such a real palace of Minos as the Greek poets sung? The magnificent palace of the Cretan kings at Cnossus has been found, by Mr. Evans, with its friezes, its spiral ornaments, its flounce-petticoated women, its treasuries, and its tablets written in a script so old that it cannot yet be read, but which will be read as surely as scholarship leaves none of its riddles unsolved. The childhood of Greece, its mighty infancy, out of which it grew to be the creator and the example of all the world's culture, is even now being exposed to our view, safely kept to be recovered by the scholars of our generation.

Of interest rather to the student of the curiosities of history are the mounds and pyramids and temples built by the aborigines of America; for these tribes have had absolutely no part in creating our dominant civilization or developing its art. China and Japan are, at this late day, giving something to the world's store of beauty and utility; but the mound-builders and cliff-dwellers, the Mayas and Toltecs and Incas, have given absolutely nothing which the world cared to accept. But this does not argue that it is not worth while to learn what we can of the rude civilization of the races whom we have displaced. Their arrowheads and hatchets are in every little museum. Their mounds, sometimes shaped like serpents or tortoises or lizards, are scattered over all the central States, and many of them have been carefully explored with scanty results. The cliff-dwellers have left somewhat richer remains, more baskets and parched corn, yet nothing of artistic value. We have to go to Mexico and Yucatan and further south to Peru, to find the majestic capitals of the Mayas and Incas, who had really reached a fair degree of such civilization as stone and copper, without iron, and the beginnings of picture symbols, without letters, could provide. Humboldt and Stephens, and Lord Kingsborough, and Squier, and Tchudi, and Charnay have made explorations and found vast and wonderful cities, some of them deserted and overgrown before Cortez and Pizarro took possession of the lands for Spain and enslaved the people. Where the city of Mexico now stands was a famous capital, from whose ruins were taken the great Calendar stone and the double statue of the god of war and the god of death. In Palenque and Uxmal, capitals of Yucatan, were immense palaces and temples, with the weird ornamentation of Mayan imagination; and equal wonders exist in the high uplands where the Incas ruled Peru. Even their barbaric art and their unrecorded history must be recovered, to satisfy the curiosity of the more fortunate races whose boasted Christianity visited on them nothing better than cruel slaughter. At least we can give them museums and publish magnificent pictures of their ruins.

So we may bless the ashes and sand that seemed to destroy and bury the monuments of the mighty empires of the ancient world, but which have kindly covered and preserved them, just as we put our treasures away in some safety-vault while absent on a long journey. The fire burned the upper wooden walls of the city, and it fell in ruins, but under those ruins, covered by that ashes, were preserved for two thousand, three thousand, five thousand years uninjured, the choicest sculpture and the most precious records of ancient nations,--retained beyond the reach of vandal hands, until scholarship had grown wise enough to ask questions of forgotten history, and had sent Layard and Schliemann and De Sarzec and Evans and a hundred other men to dig with their competitive spades. But in all the long list of enthusiasts not one deserves a higher honor or has reaped a richer harvest than Sir Henry Layard.

AUTHORITIES.

Layard: "Early Adventures;" "Nineveh and its Remains;" "Nineveh and Babylon;" "Monuments of Nineveh." Botta: "Monument de Ninive." Loftus: "Chaldea and Susiana." Y. Place: "Ninive et Assyrie." Hilprecht: "Babylonian Expedition of the University of Pennsylvania;" "Recent Research in Bible Lands." Perrot and Chipiez: "History of Art in Antiquity." J.P. Peters: "Nippur." R.W. Rogers: "History of Babylonia and Assyria." F. Lenormant: "Students' Manual of the Ancient History of the East;" "The Beginnings of History." Maspero: "Dawn of Civilization;" "Struggle of the Nations;" "Passing of the Empires;" "Egyptian Archaeology;" "Life in Ancient Egypt and Assyria." C.J. Ball: "Light from the East." Egypt Exploration Fund's Publications. F.J. Bliss: "Exploration in Jerusalem;" "A Mound of Many Cities." Schliemann: "Troy and its Remains;" "Ilios;" "Mycenae;" "Tiryns;" "Troja." A.J. Evans: "Cnossus;" "Cretan Pictographs." Tsountas and Manatt: "The Mycenaean Age."


MICHAEL FARADAY.


1791-1867.

ELECTRICITY AND MAGNETISM.

BY EDWIN J. HOUSTON, PH.D.

"No man is born into the world whose work

Is not born with him. There is always work,

And tools to work withal, for those who will."

LOWELL

A man was born into the world, on the 22d of September, 1791, whose work was born with him, and who did this work so well that he became one of its greatest benefactors. Indeed, much of the marvellous advance made in the electric arts and sciences, during the last half-century, can be directly traced to this work.

It was in Newington Butts, in London, England, that the man-child first opened his eyes on the wonders of the physical world around him. To those eyes, in after years, were given a far deeper insight into the mysteries of nature than often falls to the lot of man. This man-child was Michael Faraday, who has been justly styled, by those best capable of judging him, "The Prince of Experimental Philosophers."

The precocity so common in the childhood of men of genius was apparently absent in the case of young Faraday. The growing boy played marbles, and worried through a scant education in reading, writing, and arithmetic, unnoticed, and most probably, for the greater part, severely left alone, as commonly falls to the lot of nearly all boys, whether ordinary or extraordinary. At the early age of thirteen, he was taken from school and placed on trial as errand-boy in the book-shop of George Ribeau, in London. After a year at this work, he was taken as an apprentice to the bookbinding trade, by the same employer, who, on account of his faithful services, remitted the customary premium. At this work he spent some eight years of his life.

But far be it from us even to hint at the absence of genius in the young child. Genius is not an acquired gift. It is born in the individual. Apart from the marvellous achievements of the man, a mere glance at the magnificent head, with its high intellectual forehead, the firm lips, the intelligent inquiring eyes, and the bright face, as seen in existing pictures, assures us that they portray an unusual individuality, incompatible with even a suspicion of belonging to an ordinary man. Doubtless the growing child did give early promise of his future greatness. Doubtless he was a formidable member of that terrible class of inquiring youngsters who demand the why and the wherefore of all around them, and refuse to accept the unsatisfactory belief of their fathers that things "are because they are." In its self-complacency, the busy world is too apt to fail to notice unusual abilities in children,--abilities that perhaps too often remain undeveloped from lack of opportunities. But whether young Faraday did or did not, at an early age, display any unusual promise of his life-work, all his biographers appear to agree that he could not be regarded as a precocious child.

Faraday disclaimed the idea that his childhood was distinguished by any precocity. "Do not suppose that I was a very deep thinker, or was marked as a precocious person," says Faraday, when alluding to his early life. "I was a very lively, imaginative person, and could believe in the 'Arabian Nights' as easily as the 'Encyclopaedia,' but facts were important to me, and saved me. I could trust a fact and always cross-examined an assertion. So when I questioned Mrs. Marcet's book [he is alluding to her 'Conversations on Chemistry'], by such little experiments as I could find means to perform, and found it true to the facts as I could understand them, I felt that I had got hold of an anchor in chemical knowledge, and clung fast to it."

But while there may be a question as to the existence of precocity in the young lad, there does not appear to be any reason for believing that his unusual abilities were the result of direct heredity. His father, an ordinary journeyman blacksmith, never exhibited any special intellectual ability, though possibly poverty and poor health may have been responsible for this failure. His mother, too, it appears, was of but ordinary mentality.

The environment of those early years--that is, from 1804 to 1813, while in the book-binding business--was far from calculated to develop any marked abilities inherent in our young philosopher. What would seem less calculated to inspire a wish to obtain a deeper insight into the mysteries of the physical world than the trade of book-binding, especially in the case of a boy whose scholastic education ceased at fourteen years and was limited to the mere rudiments of learning? But, fortunately for the world, the inquiring spirit of the lad led him to examine the inside of the books he bound, and thus, by familiarizing himself with their contents, he received the inspiration that good writing is always ready to bestow on those who properly read it. Two books, he afterwards informs us, proved of especial benefit; namely, "Marcet's Conversations on Chemistry," already referred to, and the "Encyclopaedia Britannica." To the former he attributes his grounding in chemistry, and to the latter his first ideas in electricity, in both of which studies he excelled in after years. As we have seen, even at this early age he followed the true plan for the physical investigator, cross-questioned all statements, only admitting those to the dignity of facts whose truth he had established by careful experimentation.

But our future experimental philosopher has not as yet fairly started on the beginnings of his life-work. The possibilities of the book-binding trade were too limited to permit much real progress. A circumstance occurred in the spring of 1812 that shaped his entire after-life. This was the opportunity then afforded him to attend four of the last lectures delivered at the Royal Institution, by the great Sir Humphry Davy. Faraday took copious notes of these lectures, carefully wrote them out, and bound them in a small quarto volume. It was this volume, which he afterwards sent to Davy, that resulted in his receiving, on March 1, 1813, the appointment of laboratory assistant in the Royal Institution. His pay for this work was twenty-five shillings a week, with a lodging on the top floor of the Institute, a very fair compensation for the times.

Very congenial were the duties of the young assistant. They were to keep clean the beloved apparatus of the lecturers, and to assist them in their demonstrations. The new world thus opened was full of bright promise. He keenly felt the deficiencies of his early education, and did his best to extend his learning, so that he might be able to make the most of his opportunities. But what he perhaps appreciated the most was the inspiration he received from the great teacher Davy, who was then Professor of Chemistry and Director of the Laboratory of the Royal Institution; for Faraday assisted at Davy's lectures, and in an humble way even aided his investigations, sharing the dangers arising from the explosion of the unstable substance, chloride of nitrogen, that Davy was then investigating. Faraday has repeatedly acknowledged the debt owed to the inspiration of this teacher. Davy also, in later life generously recognized, in his former assistant, a philosopher greater than himself. As the renowned astronomer, Tycho Brahe, discovered in one of his pupils, John Kepler, an astronomer greater than the master, and as Bergman, the Swedish chemist, in a similar manner, discovered the greater chemist Scheele, so when Davy, in after years, was asked what he regarded as his greatest discovery, he briefly replied, "Michael Faraday."

The task of the scientific historian, who endeavors honestly to record the progress of research, and to trace the influence of the work of some individual on the times in which he lived, is by no means an easy one; for, in scientific work one discovery frequently passes so insensibly into another that it is often difficult to know just where one stops and the other begins, and much difficulty constantly arises as to whom the credit should be given, when, as is too often the case, these discoveries are made by different individuals. It is only when some great discovery stands alone, like a giant mountain peak against the clear sky, that it is comparatively easy to determine the extent and character of its influence on other discoveries, and justly to give the credit to whom the credit is due. Such discoveries form ready points of reference in the intellectual horizon, and mark distinct eras in the world's progress. This is true of all work in the domain of physical science, but it is especially true in that of electricity and magnetism, in which Faraday was preeminent. The scope of each of these sciences is so extended, the number of workers so great, and the applications to the practical arts so nearly innumerable, that it is often by no means an easy task correctly to trace their proper growth and development.

Faraday's investigations covered vast fields in the domain of chemistry, electricity, and magnetism. It is to the last two only that reference will here be made. Faraday's life-work in electricity and magnetism began practically in 1831, when he made his immortal discovery of the direct production of electricity from magnetism. His best work in electricity and magnetism was accomplished between 1831 and 1856, extending, therefore, over a period of some twenty-five years, although it is not denied that good work was done since 1856. Consequently, it was at so comparatively recent a date that most of Faraday's work was done that some of the world's distinguished electricians yet live who began their studies during the latter years of Faraday's life. The difficulties of tracing, at least to some extent, the influence that Faraday's masterly investigations have had on the present condition of the electrical arts and sciences will, therefore, be considerably lessened.

The extent of Faraday's researches and discoveries in magnetism and electricity was so great that it will be impossible, in the necessarily limited space of a brief biographical sketch, to notice any but the more prominent. Nor will any attempt be made, except where the nature of the research or discovery appears to render it advisable, to follow any strict chronological order; for, our inquiry here is not so much directed to a mere matter of history as to the influence which the investigation or discovery exerted on the life and civilization of the age in which we live.

There is a single discovery of Faraday that stands out sharply amidst all his other discoveries, great as they were, and is so important in its far-reaching results that it alone would have stamped him as a philosophical investigator of the highest merits, had he never done anything else. This was his discovery of the means for developing electricity directly from magnetism. It was made on the 29th of August, 1831, and should be regarded as inspired by the great discovery made by Oersted in 1820, of the relations existing between the voltaic pile and electro-magnetism. It was in the same year that Ampere had conducted that memorable investigation as to the mutual attractions and repulsions between circuits through which electric currents are flowing, which resulted in a theory of electro-magnetism, and finally led to the production of the electro-magnet itself. Ampere had shown that a coil of wire, or helix, through which an electric current is passing, acted practically as a magnet, and Arago had magnetized an iron bar by placing it within such a helix.

In common with the other scientific men of his time, Faraday believed that since the flow of an electric current invariably produced magnetism, so magnetism should, in its turn, be capable of producing electricity. Many investigators before Faraday's time had endeavored to solve this problem, but it was reserved to Faraday alone to be successful. Since success in this investigation resulted from some experiments he made while endeavoring to obtain inductive action on a quiescent circuit from a neighboring circuit through which an electric current was flowing, we will first briefly examine this experiment. All his experiments in this direction were at first unsuccessful. He passed an electric current through a circuit, which was located close to another circuit containing a galvanometer,--a device for showing the presence of an electric current and measuring its strength,--but failed to obtain any result. He looked for such results only when the current had been fully established in the active circuit. Undismayed by failure, he reasoned that probably effects were present, but that they were too small to be observed owing to the feeble inducing current employed. He therefore increased the strength of the current in the active wire; but still with no results.

Again and again he interrogates nature, but unsuccessfully. At last he notices that there is a slight movement of the galvanometer needle at the moment of making and breaking the circuit. Carefully repeating his experiments in the light of this observation, he discovers the important fact that it is only at the moment a current is increasing or decreasing in strength--at the moment of making or breaking a circuit--that the active circuit is capable of producing a current in a neighboring inactive circuit by induction. This was an important discovery, and in the light of his after-knowledge was correctly regarded as a solution of the production of electricity from magnetism.

Observing that the galvanometer needle momentarily swings in one direction on making the circuit, and in the opposite direction on breaking it, he establishes the fact that the current induced on making flows in the opposite direction to the inducing current, and that induced on breaking flows in the same direction as the inducing current.

Having thus established the fact of current induction, he makes the step of substituting magnets for active circuits; a simple step in the light of our present knowledge, but a giant stride at that time. Remembering that current induction, or, as he called it, voltaic current induction, takes place only while some effect produced by the current is either increasing or decreasing, he moves coils of insulated wire towards or from magnet poles, or magnet poles towards or from coils of wire, and shows that electric currents are generated in the coils while either the coils or the magnets are in motion, but cease to be produced as soon as the motion ceases. Moreover, these magnetically induced currents differ in no respects from other currents,--for example, those produced by the voltaic pile,--since, like the latter, they produce sparks, magnetize bars of steel, or deflect the needle of a galvanometer. In this manner Faraday solved the great problem. He had produced electricity directly from magnetism!

With, perhaps, the single exception of the discovery by Oersted, in 1820, of the invariable relation existing between an electric current and magnetism, this discovery of Faraday may be justly regarded as the greatest in this domain of physical science. These two master minds in scientific research wonderfully complemented each other. Oersted showed that an electric current is invariably attended by magnetic effects; Faraday showed that magnetic changes are invariably attended by electric currents. Before these discoveries, electricity and magnetism were necessarily regarded as separate branches of physical science, and were studied apart as separate phenomena. Now, however, they must be regarded as co-existing phenomena. The ignorance of the scientific world had unwittingly divorced what nature had joined together.

In view of the great importance of Faraday's discovery, we shall be justified in inquiring, though somewhat briefly, into some of the apparatus employed in this historic research. Note its extreme simplicity. In one of his first successful experiments he wraps a coil of insulated wire around the soft iron bar that forms the armature or keeper of a permanent magnet of the horse-shoe type, and connects the ends of this coil to a galvanometer. He discovers that whenever the armature is placed against the magnet poles, and is therefore being rendered magnetic by contact therewith, the deflection of the needle of the galvanometer shows that the coiled wire on the armature is traversed by a current of electricity; that whenever the armature is removed from the magnet poles, and is therefore losing its magnetism, the needle of the galvanometer is again deflected, but now in the opposite direction, showing that an electric current is again flowing through the coiled wire on the armature, but reversed in direction. He notices, too, that these effects take place only while changes are going on in the strength of the magnetism in the armature, or when magnetic flux is passing through the coils; for, the galvanometer needle comes to rest, and remains at rest as long as the contact between the armature and the poles remains unbroken.

In another experiment he employs a simple hollow coil, or helix, of insulated wire whose ends are connected with a galvanometer. On suddenly thrusting one end of a straight cylindrical magnet into the axis of the helix, the deflection of the galvanometer needle showed the presence of an electric current in the helix. The magnet being left in the helix, the galvanometer needle came to rest, thus showing the absence of current. When the bar magnet was suddenly withdrawn from the helix, the galvanometer needle was again deflected, but now in the opposite direction, showing that the direction of the current in the helix had been reversed.

The preceding are but some of the results that Faraday obtained by means of his experimental researches in the direct production of electricity from magnetism. Let us now briefly examine just what he was doing, and the means whereby he obtained electric currents from magnetism. We will consider this question from the views of the present time, rather than from those of Faraday, although the difference between the two are in most respects immaterial.

Faraday knew that the space or region around a magnet is permeated or traversed by what he called magnetic curves, or lines of magnetic force. These lines are still called "lines of magnetic force," or by some "magnetic streamings" "magnetic flux," or simply "magnetism." They are invisible, though their presence is readily manifested by means of iron filings. They are present in every magnet, and although we do not know in what direction they move, yet in order to speak definitely about them, it is agreed to assume that they pass out of every magnet at its north-seeking pole (or the pole which would point to the magnetic north, were the magnet free to move as a needle), and, after having traversed the space surrounding the magnet, reenter at its south-seeking pole, thus completing what is called the magnetic circuit. Any space traversed by lines of magnetic force is called a magnetic field.

But it is not only a magnet that is thus surrounded by lines of magnetic force, or by ether streamings. The same is true of any conductor through which an electric current is flowing, and their presence may be shown by means of iron filings. If an active conductor--a conductor conveying an electric current, as, for example, a copper wire--be passed vertically through a piece of card-board, or a glass plate, iron filings dusted on the card or plate will arrange themselves in concentric circles around the axis of the wire. It requires an expenditure of energy both to set up and to maintain these lines of force. It is the interaction of their lines of force that causes the attractions and repulsions in active movable conductors. These lines of magnetic force act on magnetic needles like other lines of magnetic force and tend to set movable magnetic needles at right angles to the conducting wire.

The setting up of an electric current in a conducting wire is, therefore, equivalent to the setting up of concentric magnetic whirls around the axis of the wire, and anything that can do this will produce an electric current. For example, if an inactive conducting wire is moved through a magnetic field; it will have concentric circular whirls set up around it; or, in other words, it will have a current generated in it as a result of such motion. But to set up these whirls it is not enough that the conducting wire be moved along the lines of force in the field. In such a case no whirls are produced around the conductor. The conductor must be moved so as to cut or pass through the lines of magnetic force. Just what the mechanism is by means of which the cutting of the lines of force by the conductor produces the circular magnetic whirls around it, no man knows any more than he knows just what electricity is; but this much we do know,--that to produce the circular whirls or currents in a previously inactive conductor, the lines of force of some already existing magnetic field must be caused to pass through the conductor, and that the strength of the current so produced is proportional to the number of lines of magnetic force cut in a given time, say, per second; or, in other words, is directly proportional to the strength of the magnetic field, and to the velocity and length of the moving conductor.

Or, briefly recapitulating: Oersted showed that an electric current, passed through a conducting circuit, sets up concentric circular whirls around its axis; that is, an electric current invariably produces magnetism; Faraday showed, that if the lines of magnetic force, or magnetism, be caused to cut or pass through an inactive conductor, concentric circular whirls will be set up around the conductor; that is, lines of magnetic force passed across a conductor invariably set up an electric current in that conductor.

The wonderful completeness of Faraday's researches into the production of electricity from magnetism may be inferred from the fact that all the forms of magneto-electric induction known to-day--namely, self-induction, or the induction of an active circuit on itself; mutual induction, or the induction of an active circuit on a neighboring circuit; and electro-magnetic induction, and magneto-electric induction, or the induction produced in conductors through which the magnetic flux from electro and permanent magnets respectively is caused to pass--were discovered and investigated by him. Nor were these investigations carried on in the haphazard, blundering, groping manner that unfortunately too often characterizes the explorer in a strange country; on the contrary, they were singularly clear and direct, showing how complete the mastery the great investigator had over the subject he was studying. It is true that repeated failures frequently met him, but despite discouragements and disappointments he continued until he had entirely traversed the length and breadth of the unknown region he was the first to explore.

Let us now briefly examine Faraday's many remaining discoveries and inventions. Though none of these were equal to his great discovery, yet many were exceedingly valuable. Some were almost immediately utilized; some waited many years for utilization; and some have never yet been utilized. We must avoid, however, falling into the common mistake of holding in little esteem those parts of Faraday's work that did not immediately result either in the production of practical apparatus, or in valuable applications in the arts and sciences, or those which have not even yet proved fruitful. Some discoveries and devices are so far ahead of the times in which they are produced that several lifetimes often pass before the world is ready to utilize them. Like immature or unripe fruit, they are apt to die an untimely death, and it sometimes curiously happens that, several generations after their birth, a subsequent inventor or discoverer, in honest ignorance of their prior existence, offers them to the world as absolutely new. The times being ripe, they pass into immediate and extended public use, so that the later inventor is given all the credit of an original discovery, and the true first and original inventor remains unrecognized.

We will first examine Faraday's discovery of the relations existing between light and magnetism. Though the discovery has not as yet borne fruit in any direct practical application, yet it has proved of immense value from a theoretical standpoint. In this investigation Faraday proved that light-vibrations are rotated by the action of a magnetic field. He employed the light of an ordinary Argand lamp, and polarized it by reflection from a glass surface. He caused this polarized light to pass through a plate of heavy glass made from a boro-silicate of lead. Under ordinary circumstances this substance exerted no unusual action on light, but when it was placed between the poles of a powerful electro-magnet, and the light was passed through it in the same direction as the magnetic flux, the plane of polarization of the light was rotated in a certain direction.

Faraday discovered that other solid substances besides glass exert a similar action on a beam of polarized light. Even opaque solids like iron possess this property. Kerr has proved that a beam of light passed through an extremely thin plate of highly magnetic iron has its plane of polarization slightly rotated. Faraday showed that the power of rotating a beam of polarized light is also possessed by some liquids. But what is most interesting, in both solids and liquids, is that the direction of the rotation of the light depends on the direction in which the magnetism is passing, and can, therefore, be changed by changing the polarity of the electro-magnet.

Faraday did not seem to thoroughly understand this phenomenon. He spoke as if he thought the lines of magnetic force had been rendered luminous by the light rays; for, he announced his discovery in a paper entitled, "Magnetization of Light and the Illumination of the Lines of Magnetic Force." Indeed, this discovery was so far ahead of the times that it was not until a later date that the results were more fully developed, first by Kelvin, and subsequently by Clerk Maxwell. In 1865, two years before Faraday's death, Maxwell proposed the electro-magnetic theory of light, showing that light is an electro-magnetic disturbance. He pointed out that optical as well as electro-magnetic phenomena required a medium for their propagation, and that the properties of this medium appeared to be the same for both. Moreover, the rate at which light travels is known by actual measurement; the rate at which electro-magnetic waves are propagated can be calculated from electrical measurements, and these two velocities exactly agree. Faraday's original experiment as to the relation between light and magnetism is thus again experimentally demonstrated; and, Maxwell's electro-magnetic theory of light now resting on experimental fact, optics becomes a branch of electricity. A curious consequence was pointed out by Maxwell as a result of his theory; namely, that a necessary relation exists between opacity and conductivity, since, as he showed, electro-magnetic disturbances could not be propagated in substances which are conductors of electricity. In other words, if light is an electro-magnetic disturbance, all conducting substances must be opaque, and all good insulators transparent. This we know to be the fact: metallic substances, the best of conductors, are opaque, while glass and crystals are transparent. Even such apparent exceptions as vulcanite, an excellent insulator, fall into the law, since, as Graham Bell has recently shown, this substance is remarkably transparent to certain kinds of radiant energy.

In 1778, Brugmans of Leyden noticed that if a piece of bismuth was held near either pole of a strong magnet, repulsion occurred. Other observers noticed the same effect in the case of antimony. These facts appear to have been unknown to Faraday, who, in 1845, by employing powerful electro-magnets rediscovered them, and in addition showed that practically all substances possess the power of being attracted or repelled, when placed between the poles of sufficiently powerful magnets. By placing slender needles of the substances experimented on between the poles of powerful horseshoe magnets, he found that they were all either attracted like iron, coming to rest with their greatest length extending between the poles; or, like bismuth, were apparently repelled by the poles, coming to rest at right angles to the position assumed by iron. He regarded the first class of substances as attracted, and the second class as repelled, and called them respectively paramagnetic and diamagnetic substances. In other words, paramagnetic substances, like iron, came to rest axially (extending from pole to pole), and diamagnetic substances, like bismuth, equatorially (extending transversely between the poles). He reserved the term magnetic substances to cover the phenomena of both para and dia-magnetism. He communicated the results of this investigation to the Royal Society in a paper on the "Magnetic Condition of All Matter," on Dec. 18, 1845.

The properties of paramagnetism and diamagnetism are not possessed by solids only, but exist also in liquids and gases. When experimenting with liquids, they were placed in suitable glass vessels, such as watch crystals, supported on pole pieces properly shaped to receive them. Under these circumstances paramagnetic liquids, such as salts of iron or cobalt dissolved in water, underwent curious contortions in shape, the tendency being to arrange the greater part of their mass in the direction in which the flux passed; namely, directly between the poles. Diamagnetic liquids, such as solutions of salts of bismuth and antimony, in a similar manner, arranged the greater part of their mass in positions at right angles to this direction, or equatorially.

At first Faraday attributed the repulsion of diamagnetic substances to a polarity, separate and distinct from ordinary magnetic polarity, for which he proposed the name, diamagnetic polarity. He believed that when a diamagnetic substance is brought near to the north pole of a magnet, a north pole was developed in its approached end, and that therefore repulsion occurred. He afterwards rejected this view, though it has been subsequently adopted by Weber and Tyndall, the latter of whom conducted an extended series of experiments on the subject. The majority of physicists, however, at the present time, do not believe in the existence of a diamagnetic polarity. They point out that the apparent repulsion of diamagnetic substances is due to the fact that they are less paramagnetic than the oxygen of the air in which they are suspended.

During this investigation Faraday observed some phenomena that led him to a belief in the existence of another form of force, distinct from either paramagnetic or diamagnetic force, which he called the magne-crystallic force. He had been experimenting with some slender needles of bismuth, suspending them horizontally between the poles of an electro-magnet. Taking a few of these cylinders at random from a greater number, he was much perplexed to find that they did not all come to rest equatorially, as well-behaved bars of diamagnetic bismuth should do, though, if subjected to the action of a single magnetic pole, they did show this diamagnetic character by their marked repulsion. After much experimentation, he ascribed this phenomenon to the crystalline condition of the cylinder. By experimenting with carefully selected groups of crystals of bismuth, he believed he could trace the cause of the phenomenon to the action of a force which he called the magne-crystallic force.

Extended experiments carried on by Plücker on the influence of magnetism on crystalline substances led him to believe that a close relation exists between the ultimate forms of the particles of matter and their magnetic behavior. This subject is as yet far from being fully understood.

There was another series of investigations made by Faraday between the years 1831 and 1840, that has been wonderfully utilized, and may properly be ranked among his great discoveries. We allude to his researches on the laws which govern the chemical decomposition of compound substances by electricity. The fact that the electric current possesses the power of decomposing compound substances was known as early as 1800, when Carlisle and Nicholson separated water into its constituent elements, by the passage of a voltaic current. Davy, too, in 1806, had delivered his celebrated discourse "On Some Chemical Agencies of Electricity," and in 1807, had announced his great discovery of the decomposition of the fixed alkalies.

Faraday showed that the amount of chemical action produced by electricity is fixed and definite. In order to be able to measure the amount of this action, he invented an instrument which he called a voltameter, or a volta-electrometer. It consisted of a simple device for measuring the amount of hydrogen and oxygen gases liberated by the passage of an electric current through water acidulated with sulphuric acid. He showed, by numerous experiments, that the decomposition effected is invariably proportional to the amount of electricity passing; that variations in the size of the electrodes, in the pressure, or in the degree of dilution of the electrolyte, had nothing to do with the result, and that therefore a voltameter could be employed to determine the amount of electricity passing in a given circuit. He also demonstrated that when a current is passed through different electrolytes (compound substances decomposed by the passage of electricity), the amount of the decompositions are chemically equivalent to each other.

The extent of Faraday's work in the electro-chemical field may be judged by considering some of the terms he proposed for its phenomena, most of which, with some trifling exceptions, are still in use. It was he who gave the name electrolysis to decomposition by the electric current; he also proposed to call the wires, or conductors connected with the battery, or other electric source, the electrodes, naming that one which was connected with the positive terminal, the anode, and that one connected with the negative terminal, the cathode. He called the separate atoms or groups of atoms into which bodies undergoing electrolysis are separated, the radicals, or ions, and named the electro-positive ions, which appear at the cathode, the kathions, and the electro-negative radicals which appear at the anode, the anions.

There were many other researches made by Faraday, such as his experiments on disruptive electric discharges, his investigations on the electric eel, his many researches on the phenomena both of frictional electricity and of the voltaic pile, his investigations on the contact and chemical theories of the voltaic pile, and those on chemical decomposition by frictional electricity; these are but some of the mere important of them. Those we have already discussed will, however, amply suffice to show the value of his work. Rather than take up any others, let us inquire what influence, if any, the various groups of discoveries we have already discussed have exerted on the electric arts and sciences in our present time. What practical results have attended these discoveries? What actual, useful, commercial machines have been based on them? What useful processes or industries have grown out of them?

And, first, as to actual commercial machines. These researches not only led to the production of dynamo-electric machines, but, in point of fact, Faraday actually produced the first dynamo. A dynamo-electric machine, as is well known, is a machine by means of which mechanical energy is converted into electrical energy, by causing conductors to cut through, or be cut through by, lines of magnetic force; or, briefly, it is a machine by means of which electricity is readily obtained from magnetism.

Faraday's invention of the first dynamo is interesting because at the same time he made the invention he solved a problem which up to his time had been the despair of the ablest physicists and mathematicians. This was the phenomenon of Arago's rotating disc. It was briefly as follows: If a copper disc be rotated above a magnet, the needle tends to follow the plate in its rotation; or, if a copper plate be placed at rest above or below an oscillating magnet, it tends to check its oscillations and bring the needle quickly to rest. Faraday investigated these phenomena and soon discovered that a copper disc rotated below two magnet poles had electric currents generated in it, which flowed radially through the disc between its circumference and centre. By placing one end of a conducting circuit on the axis of the disc, and the other end on its circumference, he succeeded in drawing off a continuous electric current generated from magnetism, and thus produced the first dynamo. This was in 1831. Faraday produced many other dynamos besides this simple disc machine.

Although the disc dynamo in its original form was impracticable as a commercial machine, yet it was not only the forerunner of the dynamo, but was, in point of fact, the first machine ever produced that is entitled to be called a dynamo. He generously left to those who might come after him the opportunity to avail themselves of his wonderful discovery. "I have rather, however," he says, "been desirous of discovering new facts and new relations dependent on magneto-electric induction than of exalting the force of those already obtained, being assured that the latter would find their development hereafter." How profoundly prophetic! Could the illustrious investigator see the hundreds of thousands of dynamos that are to-day in all parts of the world engaged in converting millions of horse-power of mechanical energy into electric energy, he would appreciate how marvellously his successors have "exalted the force" of some of the effects he had so ably shown the world how to obtain.

Faraday lived to see his infant dynamo, the first of its kind, developed into a machine not only sufficiently powerful to maintain electric arc lights, but also into a form sufficiently practicable to be continuously engaged in producing such light, in one of the lighthouses on the English coast. Holmes produced such a machine in 1862, or some years before Faraday's death. It was installed under the care of the Trinity House, at the Dungeness Lighthouse, in June, 1862, and continued in use for about ten years. When this machine was shown to Faraday by its inventor, the veteran philosopher remarked, "I gave you a baby, and you bring me a giant."

The alternating-current transformer is another gift of Faraday to the commercial world. As is well known, this instrument is a device for raising or lowering electric pressure. The name is derived from the fact that the instrument is capable of taking in at one pressure the electric energy supplied to it, and giving it out at another pressure, thus transforming it. Faraday produced the first transformer during his investigations on voltaic-current induction. The modern alternating-current transformer, though differing markedly in minor details from Faraday's primitive instrument, yet in general details is essentially identical with it. The enormous use of both step-up and step-down transformers--transformers which respectively induce currents of higher and of lower electromotive forces in their secondary coils than are passed through their primaries--shows the great practical value of this invention. The wonderful growth of the commercial applications of alternating currents during the past few decades would have been impossible without the use of the alternating-current transformer.

It is an interesting fact that it was not in the form of the step-down alternating-current transformer that Faraday's discovery of voltaic-current induction was first utilized, but in the form of a step-up transformer, or what was then ordinarily called an induction coil. As early as 1842, Masson and Bréguet constructed an induction coil by means of which minute sparks could be obtained from the secondary, in vacuo. In 1851, Ruhmkorff constructed an induction coil so greatly improved, by the careful insulation of its secondary circuit, that he could obtain from it torrents of long sparks in ordinary air. The Ruhmkorff induction coil has in late years been greatly improved both by Tesla and Elihu Thomson, who, separately and independently of each other, have produced excellent forms of high-frequency induction coils.

Induction coils have long been in use for purposes of research, and in later years have been employed in the production both of the Röntgen rays used in the photography of the invisible, and the electro-magnetic waves used in wireless telegraphy.

Röntgen's discovery was published in 1895. It was rendered possible by the prior work of Geissler and Crookes on the luminous phenomena produced by the passage of electric discharges through high vacua in glass tubes. Röntgen discovered that the invisible rays, or radiation, emitted from certain parts of a high-vacuum tube, when high-tension discharges from induction coils were passing, possessed the curious property of traversing certain opaque substances as readily as light does glass or water. He also discovered that these rays were capable of exciting fluorescence in some substances,--that is, of causing them to emit light and become luminous,--and that these rays, like the rays of light, were capable of affecting a photographic plate. From these properties two curious possibilities arose; namely, to see through opaque bodies, and to photograph the invisible. Röntgen called these rays X, or unknown rays. They are now almost invariably called by the name of their distinguished discoverer.

Let us briefly investigate how it is possible both to see and to photograph the invisible. Shortly after Röntgen's discovery, Edison, with that wonderful power of finding practical applications for nearly all discoveries, had invented the fluoroscope,--a screen covered with a peculiar chemical substance that becomes luminous when exposed to the Röntgen rays. Suppose, now, between the rays and such a screen be interposed a substance opaque to ordinary light, as, for example, the human hand. The tissues of the hand, such as the flesh and the blood, permit the rays to readily pass through them, but the bones are opaque to the rays, and, therefore, oppose their passage; consequently, the screen; instead of being uniformly illumined, will show shadows of the bones, so that, to an eye examining the screen, it will seem as though it were looking through the flesh and blood directly at the bones. In a similar manner, if a photographic plate be employed instead of the screen, a distinct photographic picture will be obtained.

Both the fluoroscope and the photographic camera have proved an invaluable aid to the surgeon, who can now look directly through the human body and examine its internal organs, and so be able to locate such foreign bodies as bullets and needles in its various parts, or make correct diagnoses of fractures or dislocations of the bones, or even examine the action of such organs as the liver and heart.

About 1886, Hertz discovered that if a small Leyden jar is discharged through a short and simple circuit, provided with a spark-gap of suitable length, a series of electro-magnetic waves are set up, which, moving through space in all directions, are capable of exciting in a similar circuit effects that can be readily recognized, although the two circuits are at fairly considerable distances apart. Here we have a simple basic experiment in wireless telegraphy, which, briefly considered, consists of means whereby oscillations or waves, set up in free space by means of disruptive discharges, are caused to traverse space and produce various effects in suitably constructed receptive devices that are operated by the waves as they impinge on them.

At first a doubt was expressed by eminent scientific men as to the practicability of successfully transmitting wireless messages through long distances, since these waves, travelling in all directions, would soon become too attenuated to produce intelligible signals; but when it was shown, from theoretical considerations, that these waves when traversing great distances are practically confined to the space between the earth's surface and the upper rarified strata of the atmosphere, the possibility of long-distance wireless telegraphic transmission was recognized. To increase the distance, it was only necessary either to increase the energy of the waves at the transmitting station, or to increase the delicacy of the receiving instruments, or both.

It has been but a short time since both the scientific and the financial worlds were astounded by the actual transmission of intelligible wireless signals across the Atlantic, and the name of Marconi will go down to posterity as the one who first accomplished this great feat.

The principal limit to the distance of transmission lies in the delicacy of the receiving instruments. The most sensitive are those in which a telephone receiver forms a part of the receiving apparatus. The almost incredibly small amount of electric energy required to produce intelligible speech in an ordinary Bell telephone receiver nearly passes belief. The work done in lifting such an instrument from its hook to the ear of the listener, would, if converted into electric energy, be sufficient to maintain an audible sound in a telephone for 240,000 years! Even extremely attenuated waves may therefore produce audible signals in such a receiver.

The electric motor was another gift of Faraday to commercial science, although in this case there are others who can, perhaps, justly claim to share the honor with him. Faraday's early electric motor consisted essentially in a device whereby a movable conductor, suspended so as to be capable of rotation around a magnet pole, was caused to rotate by the mutual interaction of the magnetic fields of the active conductor and the magnet. The magnet, which consisted of a bar of hardened steel, was fixed in a cork stopper, which completely closed the end of an upright glass tube. A small quantity of mercury was placed in the lower end of the tube, so as to form a liquid contact for the lower end of a movable wire, suspended so as to be capable of rotating at its lower extremity about the axis of the tube. On the passage of an electric current through the wire, a continuous rotary motion was produced in it, the direction of which depends both on the direction of the current, and on the polarity of the end of the magnet around which the rotation occurs.

The great value of the electric motor to the world is too evident to need any proof. The number of purposes for which electric motors are now employed is so great that the actual number of motors in daily use is almost incredible, and every year sees this number rapidly increasing.

The above are the more important machines or devices that have been directly derived from Faraday's great investigation as to the production of electricity from magnetism. Let us now inquire briefly as to what useful processes or industries have been rendered possible by the existence of these machines.

Apparently one of the most marked requirements of our twentieth-century civilization is that man shall be readily able to extend the day far into the night. He can no longer go to sleep when the sun sets, and keep abreast with his competitors. Of all artificial illuminants yet employed, the arc and the incandescent electric lights are unquestionably the best, whether from a sanitary, aesthetic, or truest economical standpoint. Now, while it is a well-known matter of record that both arc and incandescent lights were invented long before Faraday's time, yet it was not until a source of electricity was invented, superior both in economy and convenience to the voltaic battery, that either of these lights became commercial possibilities. Such an electric source was given to the world by Faraday through his invention of the dynamo-electric machine, and it was not until this machine was sufficiently developed and improved that commercial electric lighting became possible. The energy of burning coal, through the steam-engine, working the dynamo, is far cheaper and more efficient for producing electricity than the consumption of metals through the voltaic pile.

It is characteristic of the modesty of Faraday that when, in after-life, he heard inventors speaking of their electric lights, he refrained from claiming the electric light as his own, although, without the machine he taught the world how to construct, commercial lighting would have been an impossibility.

The marvellous activity in the electric arts and sciences, which followed as a natural result of Faraday giving to the world in the dynamo-electric machine a cheap electric source, naturally leads to the inquiry as to whether at a somewhat later day a yet greater revolution may not follow the production of a still cheaper electric source. In point of fact such a discovery is by no means an impossibility. When a dynamo-electric machine is caused to produce an electric current by the intervention of a steam-engine, the transformation of energy which takes place from the energy of the coal to electric energy is an extremely wasteful one. Could some practical method be discovered by means of which the burning of coal liberates electric energy, instead of heat energy, an electric source would be discovered that would far exceed in economy the best dynamo in existence. With such a discovery what the results would be no one can say; this much is certain, that it would, among other things, relegate the steam-engine to the scrap-heap, and solve the problem of aerial navigation.

What is justly regarded as one of the greatest achievements of modern times is the electrical transmission of power over comparatively great distances. At some cheap source of energy, say, at a waterfall, a waterwheel is employed to drive a dynamo or generator, thus converting mechanical energy into electrical energy. This electricity is passed over a conducting line to a distant station, where it is either directly utilized for the purpose of lighting, heating, chemical decomposition, etc., or indirectly utilized for the purpose of obtaining mechanical power for driving machinery, by passing it through an electric motor. The electric transmission of power has been successfully made in California over a distance of some 220 miles, at a pressure on transmission lines of 50,000 volts.

The high pressures required for the economical use of transmission lines necessitates the employment of transformers at each end of the line; namely, step-up transformers at the transmitting end, to raise the voltage delivered by the generators, and step-down transformers, at the receiving end, to lower it for use in the various translating devices. These transformers are employed in connection with alternating-current dynamos. Faraday not only gave to the world the first electric generator, but also the first transformer, and one of the first electric motors, and without these gifts the electric transmission of power over long distances, which has justly been regarded as one of the most marvellous achievements of our age, would have been an impossibility.

In high-tension circuits over which such pressures as 50,000 volts is transmitted, no little difficulty is experienced from leakage and consequent loss of energy. This leakage occurs both between the line conductors and at the insulators placed on the pole lines forming the line circuit. The insulators are made either of glass or porcelain, and are of a peculiar form known as triple petticoat pattern. The loss on such lines, due to leakage between wires, is greater than that which takes place at the pole insulators, and is diminished by keeping the circuit wires as far apart as possible.

In the early history of the art, electric transmission of power was effected by means of direct-current generators and motors,--generators and motors through which the current always passed in the same direction. Such generators and motors, however, possessed inconveniences that prevented extensive commercial transmission of power, since, as we have seen, high pressure was necessary for efficiency in such transmission, and the collecting-brushes and commutators employed in all direct-current generators and motors to carry the current from the machine or to the motor, were a constant source of trouble and danger.

When the alternating-current motor first same into general use, it was employed, in connection with the alternating-current generator, in electric transmission systems; but such motors also possess the inconvenience of not readily starting from a state of rest, with their full turning power, or torque, and of therefore being unsuitable where the motor requires to be frequently stopped or started. Had these difficulties remained unsolved, long-distance electric transmission of power, so successful in operation to-day, and which bids fair to be still more successful in the near future, would have been impossible. Fortunately, these difficulties were overcome by the genius of Nikola Tesla, in the invention of the multiphase alternating-current motor, or the induction motor, as it is now generally called. Although Baily, Deprez, and Ferraris had accomplished much before Tesla's time, yet it was practically to the investigations and discoveries made by Tesla, between 1887 and 1891, that the induction motor of to-day is due.

Another requirement of our twentieth-century civilization is rapid transit, either urban or inter-urban, and this is afforded by various systems of electric street railways or electric traction generally, including electric locomotives and electric automobiles. The wonderful growth in this direction which has been witnessed in the last few decades would have been impossible without the electric generator and motor, both gifts of Faraday to the world. Their application in this direction must, therefore, go to swell the debt our civilization owes to the labors of this great investigator.

In the system of electric street-car propulsion very generally employed to-day, a single trolley wheel is employed for taking the driving current from an overhead conductor, suspended above the street. The trolley wheel is supported by a trolley pole, and is maintained in good electric contact with the trolley wire, or overhead conductor. By this means the current passes from the wire down the conductor connected with the trolley pole, thence through the motors placed below the body of the car, and from them, through the track or ground-return, back to the power station. A small portion of the current is employed for lighting the electric lamps in the car. In some systems an underground trolley is employed.

An important device, called the series-parallel controller, is employed in all systems of electric street-car propulsion. It consists of means by which the starting and stopping of the car, and changes, both in its speed and direction, are placed under the control of the motorman. A separate controller is placed on both platforms of the car. The series-parallel controller consists essentially of a switch by means of which the several motors, that are employed in all street cars, can be variously connected with each other, or with different electric resistances, or can be successively cut out or introduced into the circuit, so that the speed of the car can be regulated at will, as the handle of the controller is moved by the motorman to the various notches on the top of the controller box. As generally arranged, the speed increases from the first notch or starting position to the last notch, movements in the opposite direction changing connections in the opposite order of succession, and, therefore, slowing the car. There is, however, no definite speed corresponding to each notch, for this will vary with the load on each car, and with the gradient upon which it may be running.

But there is another valuable gift received by the world as a result of this great discovery of Faraday; namely, that most marvellous instrument of modern times, the speaking telephone. This instrument was invented in 1861, by Philip Ries, and subsequently independently reinvented in 1876, by Elisha Gray and Alexander Graham Bell.

As is well known, it is electric currents and not sound-waves that are transmitted over a telephone circuit. The magneto-electric telephone in its simplest form consists of a pair of instruments called respectively the transmitter and the receiver. We talk into the transmitter and listen at the receiver. Both transmitter and receiver consist of a permanent magnet of hardened steel around one end of which is placed a coil of insulated wire. In front of this coil a diaphragm, or thin plate, of soft iron, is so supported as to be capable of freely vibrating towards and from the magnet pole.

The operation of the transmitting instrument is readily understood in the light of Faraday's discovery. It is simply a dynamo-electric machine driven by the voice of the speaker. As the sound-waves from the speaker's voice strike against the diaphragm, which has become magnetic from its nearness to the magnet pole, electric currents are generated in the coil of wire surrounding such pole, since the to-and-fro motions cause the lines of electro-magnetic force to pass through the wire on the moving coil. The operation of the receiving instrument is also readily understood. It acts as an electric motor driven by the to-and-fro currents generated by the transmitter. As these currents are transmitted over the wire, they pass through the coil of wire on the receiving instrument, and reproduce therein the exact movements of the transmitting diaphragm, since, as they strengthen or weaken the magnetism of the pole, they cause similar motions in the diaphragm placed before it. Consequently, one listening at the receiving diaphragm will hear all that is uttered into the transmitting diaphragm. It was thus, by the combination of the dynamo and motor, both of which were given by Faraday to the world, that we have received this priceless instrument, which has been so potent in its effects on the civilization of the Twentieth century.

The electric telegraph had its beginnings long before Faraday's time. As early as 1847, Watson had erected a line some two miles in length, extending over the housetops in London, and operated it by means of discharges from an ordinary frictional electric machine. In 1774, Lesage had erected in Geneva an electric telegraph consisting of a number of metallic wires, one for each letter of the alphabet. These wires were carefully insulated from each other. When a message was to be sent over this early telegraphic line an electric discharge was passed through the particular wire representing the letter of the alphabet to be sent; this discharge, reaching the other end, caused a pithball to be repelled and thus laboriously, letter by letter, the message was transmitted. How ludicrously cumbersome was such an instrument when contrasted with the Morse electro-magnetic telegraph of to-day, which requires but a single wire; or with the harmonic telegraph of Gray, which permits the simultaneous transmission of eight or more separate messages over a single wire; or with the wonderful quadruplex telegraphic system of Edison which permits the simultaneous transmission of four separate and distinct messages over a single wire, two in one direction, and two in the opposite direction at the same time; or with the still more wonderful multiplex telegraph of Delaney, which is able to simultaneously transmit as many as seventy-two separate messages over a single wire, thirty-six in one direction and thirty-six in the opposite direction. These achievements have been possible only through the researches and discoveries of Oersted, Faraday, and hosts of other eminent workers; for, it was the electro-magnet, rendered possible by Oersted, together with the magnificent discoveries of Faraday, and others since his time, that these marvellous advances in electro-telegraphic transmission of intelligence have become possibilities.

Before completing this brief sketch of some of the effects that Faraday's work has had on the practical arts and sciences, let us briefly examine the generating plants that are either in operation or construction at Niagara Falls.

Some idea of the size of the Niagara Falls generating plant on the American side may be gained from the fact that there have already been installed eleven of the separate 5,000 horse-power generators. The remaining capacity of the tunnel will permit of the installation of 50,000 additional horse-power, or 105,000 horse-power in all.

On the Canadian side of the Falls another great plant is about to be erected with an ultimate capacity of several hundred thousand horse-power. Here, however, the size of the generating unit will be double that on the American side, or 10,000 horse-power. These generators will be wound to produce an electric pressure of 12,000 volts, raised by means of step-up transformers to 22,000, 40,000, and 60,000 volts, according to the distance of transmission. Each of the revolving parts of these machines will weigh 141,000 pounds. To what gigantic proportions has the little infant dynamo of Faraday grown in this short time since its birth!

The low rates at which electric power can be sold in the immediate neighborhood of the Niagara generating plant have naturally resulted in an enormous growth of the electro-chemical industries, for these industries could never otherwise develop into extended commercial applications. Of the total output of, say, 55,000 horsepower at the Niagara Falls generating plant, no less than 23,200 horse-power is used in various electrolytic and electro-thermal processes in the immediate neighborhood. Some of the more important consumers of the electric power, named in the order of consumption, are for the manufacture of the following products: calcium carbide, aluminium, caustic soda and bleaching salt, carborundum, and graphite.

Calcium carbide, employed in the production of acetylene gas, either for the purposes of artificial illumination, or for the manufacture of ethyl alcohol, is produced by subjecting a mixture of carbon and lime to the prolonged action of heat in an electric furnace.

Aluminium, the now well-known valuable metal, present in clay, bauxite, and a variety of other mineral substances, is electrolytically deposited from a bath of alumina obtained by dissolving bauxite either in potassium fluoride or in cryolite. Aluminium is now coming into extended use in the construction of long-distance electric power transmission lines.

Caustic soda and bleaching salt are produced by the electrolytic decomposition of brine (chloride of sodium). The chlorine liberated at the anode is employed in the manufacture of bleaching-salt, and the sodium is liberated at a mercury cathode, with which it at once enters into combination as an alloy. On throwing this alloy into water the sodium is liberated as caustic soda.

Carborundum, a silicide of carbon, is a valuable substance produced by the action of the heat of an electric furnace on an intimate mixture of carbon and sand. It has an extensive use as an abrasive for grinding and polishing.

Artificial graphite is another product produced by the long-continued action of the heat of the electric furnace on carbon under certain conditions.

According to reports from the United States Geological Survey, the graphite works at Niagara Falls produced in 1901, 2,500,000 lbs. of artificial graphite, valued at $119,000. This was an increase from 860,270 lbs., valued at $69,860 for 1900, and from 162,382 lbs., valued at $10,140, in 1897, the first year of its commercial production. In 1901, more than half of the output was in the form of graphitized electrodes employed in the production of caustic soda and bleaching salt, and in other electrolytic processes.

The Niagara Falls power transmission system stands to-day as a magnificent testimonial to the genius of Faraday, and as a living monument of the varied and valuable gifts his researches have bestowed upon mankind. For here we have not only the dynamo, motors, and transformers that he gave freely to the world, not only the alternating-current transformer, and the system of transmission of power, but we even find that the principal consumers of the enormous electric power produced are employing it in carrying on some of the many processes in electro-chemistry, a science that he had done so much to advance.

Among some of the surprises electro-chemistry may have in store for the world in the comparatively near future, may be a nearer approach to a mastery of the laws which govern the combination of elementary substances when under the influence of plant-life. If these laws ever become so well known that man is able to form hi his laboratory the various food products that are now formed naturally in plant organisms, such a revolution would be wrought that the work of the agriculturist would be largely transferred to the electro-chemist. Some little has already been done in the direct formation of some vegetable substances, such as camphor, the peculiar flavoring substance present in the vanilla bean, and in many other substances. Should such discoveries ever reach to the direct formation of some food staple, the wide-reaching importance and significance of the discovery would be almost beyond comprehension.

But, while the direct electro-synthetic formation of food products is yet to be accomplished on a practical scale, the problem appears to be nearing actual solution in an indirect manner. It has been known since the time of Cavendish, in 1785, that small quantities of nitric acid could be formed directly from the nitrogen and oxygen of the atmosphere by the passage of electric sparks; but heretofore, the quantity so found has been too small to be of any commercial value. Quite recently, however, one of the electro-chemical companies at Niagara Falls has succeeded in commercially solving the important problem of the fixation of the nitrogen of the atmosphere; it being claimed that the cost of thus producing one ton of commercial nitric acid, of a market value of over eighty dollars, does not greatly exceed twenty dollars. Since sodium nitrate can readily be produced by the process, and its value as a fertilizer of wheat-fields is too well known to need comment, there would thus, to a limited extent, be indirectly solved the electro-chemical production of food staples.

Faraday's high rank as an investigator in the domain of natural science was fully recognized by the learned societies of his time, by admission into their fellowships. As early as 1824, he was honored by the Royal Society of London by election as one of its Fellows, and in 1825 he had become a member of the Royal Institution. It is recorded of the great philosopher that the membership in the Royal Institution was the only one which he personally sought; all others came unsought, but they came so rapidly from all portions of the globe that in 1844 he was a member of no less than seventy of the leading learned societies of the world. Ries, the German electrician, so well known in connection with his invention of the speaking telephone, addressed Faraday as "Professor Michael Faraday, Member of all the Academies." Besides his membership in the learned societies, Faraday received numerous degrees from the colleges and universities of his time. Among some of these are the following: The University of Prague, the degree of Ph.D.; Oxford, the degree of D.C.L.; and Cambridge, the degree of LL.D. He also received numerous medals of honor, and was offered the Presidency of the Royal Society, which, however, he declined, as he did also a knighthood proffered by the government of England. Faraday died on the 25th of August, 1867, after a long, well-spent, useful life.

We have thus briefly traced some of the more important discoveries of Michael Faraday. Many have necessarily been passed by, but what we have given are more than sufficient to stamp him as a great philosopher and investigator. Speaking of Faraday in this connection, Professor Tyndall says: "Take him for all in all, I think it will be conceded that Michael Faraday is the greatest experimental philosopher the world has ever seen; and I will add the opinion that the progress of future research will tend not to diminish or decrease, but to enhance and glorify, the labors of this mighty investigator."