MASS AND DENSITY OF THE EARTH.
With regard to the determination of the Mass and Density of the Earth by direct experiment, we have, in addition to the deviations of the pendulum produced by mountain masses, the variation of the same instruments when placed in a mine 1200 feet in depth. The most recent experiments were conducted by Professor Airy, in the Harton coal-pit, near South Shields:[10] the oscillations of the pendulum at the bottom of the pit were compared with those of a clock above; the beats of the clock were transferred below for comparison by an electrio wire; and it was thus determined that a pendulum vibrating seconds at the mouth of the pit would gain 2¼ seconds per day at its bottom. The final result of the calculations depending on this experiment, which were published in the Philosophical Transactions of 1856, gives 6·565 for the mean density of the earth. The celebrated Cavendish experiment, by means of which the density of the earth was determined by observing the attraction of leaden balls on each other, has been repeated in a manner exhibiting an astonishing amount of skill and patience by the late Mr. F. Baily.[11] The result of these experiments, combined with those previously made, gives as a mean result 5·441 as the earth’s density, when compared with water; thus confirming one of Newton’s astonishing divinations, that the mean density of the earth would be found to be between five and six times that of water.
Humboldt is, however, of opinion that “we know only the mass of the whole earth and its mean density by comparing it with the open strata, which alone are accessible to us. In the interior of the earth, where all knowledge of its chemical and mineralogical character fails, we are limited to as pure conjecture as in the remotest bodies that revolve round the sun. We can determine nothing with certainty regarding the depth at which the geological strata must be supposed to be in a state of softening or of liquid fusion, of the condition of fluids when heated under an enormous pressure, or of the law of the increase of density from the upper surface to the centre of the earth.”—Cosmos, vol. i.
In M. Foucault’s beautiful experiment, by means of the vibration of a long pendulum, consisting of a heavy mass of metal suspended by a long wire from a strong fixed support, is demonstrated to the eye the rotation of the earth. The Gyroscope of the same philosopher is regarded not as a mere philosophical toy; but the principles of dynamics, by means of which it is made to demonstrate the earth’s rotation on its own axis, are explained with the greatest clearness. Thus the ingenuity of M. Foucault, combined with a profound knowledge of mechanics, has obtained proofs of one of the most interesting problems of astronomy from an unsuspected source.