THE EARL OF ROSSE’S GREAT REFLECTING TELESCOPE.

Sir David Brewster has remarked, that “the long interval of half a century seems to be the period of hybernation during which the telescopic mind rests from its labours in order to acquire strength for some great achievement. Fifty years elapsed between the dwarf telescope of Newton and the large instruments of Hadley; other fifty years rolled on before Sir William Herschel constructed his magnificent telescope; and fifty years more passed away before the Earl of Rosse produced that colossal instrument which has already achieved such brilliant discoveries.”[25]

In the improvement of the Reflecting Telescope, the first object has always been to increase the magnifying power and light by the construction of as large a mirror as possible; and to this point Lord Rosse’s attention was directed as early as 1828, the field of operation being at his lordship’s seat, Birr Castle at Parsonstown, about fifty miles west of Dublin. For this high branch of scientific inquiry Lord Rosse was well fitted by a rare combination of “talent to devise, patience to bear disappointment, perseverance, profound mathematical knowledge, mechanical skill, and uninterrupted leisure from other pursuits;”[26] all these, however, would not have been sufficient, had not a great command of money been added; the gigantic telescope we are about to describe having cost certainly not less than twelve thousand pounds.

Lord Rosse ground and polished specula fifteen inches, two feet, and three feet in diameter before he commenced the colossal instrument. It is impossible here to detail the admirable contrivances and processes by which he prepared himself for this great work. He first ascertained the most useful combination of metals for specula, both in whiteness, porosity, and hardness, to be copper and tin. Of this compound the reflector was cast in pieces, which were fixed on a bed of zinc and copper,—a species of brass which expanded in the same degree by heat as the pieces of the speculum themselves. They were ground as one body to a true surface, and then polished by machinery moved by a steam-engine. The peculiarities of this mechanism were entirely Lord Rosse’s invention, and the result of close calculation and observation: they were chiefly, placing the speculum with the face upward, regulating the temperature by having it immersed in water, usually at 55° Fahr., and regulating the pressure and velocity. This was found to work a perfect spherical figure in large surfaces with a degree of precision unattainable by the hand; the polisher, by working above and upon the face of the speculum, being enabled to examine the operation as it proceeded without removing the speculum, which, when a ton weight, is no easy matter.

The contrivance for doing this is very beautiful. The machine is placed in a room at the bottom of a high tower, in the successive floors of which trap-doors can be opened. A mast is elevated on the top of the tower, so that its summit is about ninety feet above the speculum. A dial-plate is attached to the top of the mast, and a small plane speculum and eye-piece, with proper adjustments, are so placed that the combination becomes a Newtonian telescope, and the dial-plate the object. The last and most important part of the process of working the speculum, is to give it a true parabolic figure, that is, such a figure that each portion of it should reflect the incident ray to the same focus. Lord Rosse’s operations for this purpose consist—1st, of a stroke of the first eccentric, which carries the polisher along one-third of the diameter of the speculum; 2d, a transverse stroke twenty-one times slower, and equal to 0·27 of the same diameter, measured on the edge of the tank, or 1·7 beyond the centre of the polisher; 3d, a rotation of the speculum performed in the same time as thirty-seven of the first strokes; and 4th, a rotation of the polisher in the same direction about sixteen times slower. If these rules are attended to, the machine will give the true parabolic figure to the speculum, whether it be six inches or three feet in diameter. In the three-feet speculum, the figure is so true with the whole aperture, that it is thrown out of focus by a motion of less than the thirtieth of an inch, “and even with a single lens of one-eighth of an inch focus, giving a power of 2592, the dots on a watch-dial are still in some degree defined.”

Thus was executed the three-feet speculum for the twenty-six-feet telescope placed upon the lawn at Parsonstown, which, in 1840, showed with powers up to 1000 and even 1600; and which resolved nebulæ into stars, and destroyed that symmetry of form in globular nebulæ upon which was founded the hypothesis of the gradual condensation of nebulous matter into suns and planets.[27]

Scarcely was this instrument out of Lord Rosse’s hands, when he resolved to attempt by the same processes to construct another reflector, with a speculum six feet in diameter and fifty feet long! and this magnificent instrument was completed early in 1845. The focal length of the speculum is fifty-four feet. It weighs four tons, and, with its supports, is seven times as heavy as the four-feet speculum of Sir William Herschel. The speculum is placed in one of the sides of a cubical wooden box, about eight feet wide, and to the opposite end of this box is fastened the tube, which is made of deal staves an inch thick, hooped with iron clamp-rings, like a huge cask. It carries at its upper end, and in the axis of the tube, a small oval speculum, six inches in its lesser diameter.

The tube is about 50 feet long and 8 feet in diameter in the middle, and furnished with diaphragms 6½ feet in aperture. The late Dean of Ely walked through the tube with an umbrella up.

The telescope is established between two lofty castellated piers 60 feet high, and is raised to different altitudes by a strong chain-cable attached to the top of the tube. This cable passes over a pulley on a frame down to a windlass on the ground, which is wrought by two assistants. To the frame are attached chain-guys fastened to the counterweights; and the telescope is balanced by these counterweights suspended by chains, which are fixed to the sides of the tube and pass over large iron pulleys. The immense mass of matter weighs about twelve tons.

On the eastern pier is a strong semicircle of cast-iron, with which the telescope is connected by a racked bar, with friction-rollers attached to the tube by wheelwork, so that by means of a handle near the eye-piece, the observer can move the telescope along the bar on either side of the meridian, to the distance of an hour for an equatorial star.

On the western pier are stairs and galleries. The observing gallery is moved along a railway by means of wheels and a winch; and the mechanism for raising the galleries to various altitudes is very ingenious. Sometimes the galleries, filled with observers, are suspended midway between the two piers, over a chasm sixty feet deep.

An excellent description of this immense Telescope at Birr Castle will be found in Mr. Weld’s volume of Vacation Rambles.

Sir David Brewster thus eloquently sketches the powers of the telescope at the close of his able description of the instrument, which we have in part quoted from his Life of Sir Isaac Newton.

We have, in the mornings, walked again and again, and ever with new delight, along its mystic tube, and at midnight, with its distinguished architect, pondered over the marvellous sights which it dis-closes,—the satellites and belts and rings of Saturn,—the old and new ring, which is advancing with its crest of waters to the body of the planet,—the rocks, and mountains, and valleys, and extinct volcanoes of the moon,—the crescent of Venus, with its mountainous outline,—the systems of double and triple stars,—the nebulæ and starry clusters of every variety of shape,—and those spiral nebular formations which baffle human comprehension, and constitute the greatest achievement in modern discovery.

The Astronomer Royal, Mr. Airy, alludes to the impression made by the enormous light of the telescope,—partly by the modifications produced in the appearance of nebulæ already figured, partly by the great number of stars seen at a distance from the Milky Way, and partly from the prodigious brilliancy of Saturn. The account given by another astronomer of the appearance of Jupiter was that it resembled a coach-lamp in the telescope; and this well expresses the blaze of light which is seen in the instrument.

The Rev. Dr. Scoresby thus records the results of his visits:

The range opened to us by the great telescope at Birr Castle is best, perhaps, apprehended by the now usual measurement—not of distances in miles, or millions of miles, or diameters of the earth’s orbit, but—of the progress of light in free space. The determination within, no doubt, a small proportion of error of the parallax of a considerable number of the fixed stars yields, according to Mr. Peters, a space betwixt us and the fixed stars of the smallest magnitude, the sixth, ordinarily visible to the naked eye, of 130 years in the flight of light. This information enables us, on the principles of sounding the heavens, suggested by Sir W. Herschel, with the photometrical researches on the stars of Dr. Wollaston and others, to carry the estimation of distances, and that by no means on vague assumption, to the limits of space opened out by the most effective telescopes. And from the guidance thus afforded us as to the comparative power of the six feet speculum in the penetration of space as already elucidated, we might fairly assume the fact, that if any other telescope now in use could follow the sun if removed to the remotest visible position, or till its light would require 10,000 years to reach us, the grand instrument at Parsonstown would follow it so far that from 20,000 to 25,000 years would be spent in the transmission of its light to the earth. But in the cases of clusters of stars, and of nebulæ exhibiting a mere speck of misty luminosity, from the combined light of perhaps hundreds of thousands of suns, the penetration into space, compared with the results of ordinary vision, must be enormous; so that it would not be difficult to show the probability that a million of years, in flight of light, would be requisite, in regard to the most distant, to trace the enormous interval.