SECTION I.

Observations on Alkaline Air.

After I had made the discovery of the marine acid air, which the vapour of spirit of salt may properly enough be called, and had made those experiments upon it, of which I have given an account in the former part of this work, and others which I propose to recite in this part; it occurred to me, that, by a process similar to that by which this acid air is expelled from the spirit of salt, an alkaline air might be expelled from substances containing volatile alkali.

Accordingly I procured some volatile spirit of sal ammoniac, and having put it into a thin phial, and heated it with the flame of a candle, I presently found that a great quantity of vapour was discharged from it; and being received in a vessel of quicksilver, standing in a bason of quicksilver, it continued in the form of a transparent and permanent air, not at all condensed by cold; so that I had the same opportunity of making experiments upon it, as I had before on the acid air, being in the same favourable circumstances.

With the same ease I also procured this air from spirit of hartshorn, and sal volatile either in a fluid or solid form, i. e. from those volatile alkaline salts which are produced by the distillation of sal ammoniac with fixed alkalis. But in this case I soon found that the alkaline air I procured was not pure; for the fixed air, which entered into the composition of my materials, was expelled along with it. Also, uniting again with the alkaline air, in the glass tube through which they were conveyed, they stopped it up, and were often the means of bursting my vessels.

While these experiments were new to me, I imagined that I was able to procure this air with peculiar advantage and in the greatest abundance, either from the salts in a dry state, when they were just covered with water, or in a perfectly fluid state; for, upon applying a candle to the phials in which they were contained, there was a most astonishing production of air; but having examined it, I found it to be chiefly fixed air, especially after the first or second produce from the same materials; and removing my apparatus to a trough of water and using the water instead of quicksilver, I found that it was not presently absorbed by it.

This, however, appears to be an easy and elegant method of procuring fixed air, from a small quantity of materials, though there must be a mixture of alkaline air along with it; as it is by means of its combination with this principle only, that it is possible, that so much fixed air should be retained in any liquid. Water, at least, we know, cannot be made to contain much more than its own bulk of fixed air.

After this disappointment, I confined myself to the use of that volatile spirit of sal ammoniac which is procured by a distillation with slaked lime, which contains no fixed air; and which seems, in a general state, to contain about as much alkaline air, as an equal quantity of spirit of salt contains of the acid air.

Wanting, however, to procure this air in greater quantities, and this method being rather expensive, it occurred to me, that alkaline air might, probably, be procured, with the most ease and convenience, from the original materials, mixed in the same proportions that chemists had found by experience to answer the best for the production of the volatile spirit of sal ammoniac. Accordingly I mixed one fourth of pounded sal ammoniac, with three fourths of slaked lime; and filling a phial with the mixture, I presently found it completely answered my purpose. The heat of a candle expelled from this mixture a prodigious quantity of alkaline air; and the same materials (as much as filled an ounce phial) would serve me a considerable time, without changing; especially when, instead of a glass phial, I made use of a small iron tube, which I find much more convenient for the purpose.

As water soon begins to rise in this process, it is necessary, if the air is intended to be conveyed perfectly dry into the vessel of quicksilver, to have a small vessel in which this water (which is the common volatile spirit of sal ammoniac) may be received. This small vessel must be interposed between the vessel which contains the materials for the generation of the air, and that in which it is to be received, as d fig. 8.

This alkaline air being perfectly analogous to the acid air, I was naturally led to investigate the properties of it in the same manner, and nearly in the same order. From this analogy I concluded, as I presently found to be the fact, that this alkaline air would be readily imbibed by water, and, by its union with it, would form a volatile spirit of sal ammoniac. And as the water, when admitted to the air in this manner, confined by quicksilver, has an opportunity of fully saturating itself with the alkaline vapour, it is made prodigiously stronger than any volatile spirit of sal ammoniac that I have ever seen; and I believe stronger than it can be made in the common way.

In order to ascertain what addition, with respect to quantity and weight, water would acquire by being saturated with alkaline air, I put 1-1/4 grains of rain-water into a small glass tube, closed at one end with cement, and open at the other, the column of water measuring 7/10 of an inch; and having introduced it through the quicksilver into a vessel containing alkaline air, observed that it absorbed 7/8 of an ounce measure of the air, and had then gained about half a grain in weight, and was increased to 8-1/2 tenths of an inch in length. I did not make a second experiment of this kind, and therefore will not answer for the exactness of these proportions in future trials. What I did sufficiently answered my purpose, in a general view of the subject.

When I had, at one time, saturated a quantity of distilled water with alkaline air, so that a good deal of the air remained unabsorbed on the surface of the water, I observed that, as I continued to throw up more air, a considerable proportion of it was imbibed, but not the whole; and when I had let the apparatus stand a day, much more of the air that lay on the surface was imbibed. And after the water would imbibe no more of the old air, it imbibed new. This shews that water requires a considerable time to saturate itself with this kind of air, and that part of it more readily unites with water than the rest.

The same is also, probably, the case with all the kinds of air with which water can be impregnated. Mr. Cavendish made this observation with respect to fixed air, and I repeated the whole process above-mentioned with acid air, and had precisely the same result. The alkaline water which I procured in this experiment was, beyond comparison, stronger to the smell, than any spirit of sal ammoniac that I had seen.

This experiment led me to attempt the making of spirit of sal ammoniac in a larger quantity, by impregnating distilled water with this alkaline air. For this purpose I filled a piece of a gun-barrel with the materials above-mentioned, and luted to the open end of it a small glass tube, one end of which was bent, and put within the mouth of a glass vessel, containing a quantity of distilled water upon quicksilver, standing in a bason of quicksilver, as in fig. 7. In these circumstances the heat of the fire, applied gradually, expelled the alkaline air, which, passing through the tube, and the quicksilver, came at last to the water, which, in time, became fully saturated with it.

By this means I got a very strong alkaline liquor, from which I could again expel the alkaline air which I had put into it, whenever it happened to be more convenient to me to get it in that manner. This process may easily be performed in a still larger way; and by this means a liquor of the same nature with the volatile spirit of sal ammoniac, might be made much stronger, and much cheaper, than it is now made.

Having satisfied myself with respect to the relation that alkaline air bears to water, I was impatient to find what would be the consequence of mixing this new air with the other kinds with which I was acquainted before, and especially with acid air; having a notion that these two airs, being of opposite natures, might compose a neutral air, and perhaps the very same thing with common air. But the moment that these two kinds of air came into contact, a beautiful white cloud was formed, and presently filled the whole vessel in which they were contained. At the same time the quantity of air began to diminish, and, at length, when the cloud was subsided, there appeared to be formed a solid while salt, which was found to be the common sal ammoniac, or the marine acid united to the volatile alkali.

The first quantity that I produced immediately deliquesced, upon being exposed to the common air; but if it was exposed in a very dry and warm place, it almost all evaporated, in a white cloud. I have, however, since, from the same materials, produced the salt above-mentioned in a state not subject to deliquesce or evaporate. This difference, I find, is owing to the proportion of the two kinds of air in the compound. It is only volatile when there is more than a due proportion of either of the constituent parts. In these cases the smell of the salts is extremely pungent, but very different from one another; being manifestly acid, or alkaline, according to the prevalence of each of these airs respectively.

Nitrous air admitted to alkaline air likewise occasioned a whitish cloud, and part of the air was absorbed; but it presently grew clear again; leaving only a little dimness on the sides of the vessel. This, however, might be a kind of salt, formed by the union of the two kinds of air. There was no other salt formed that I could perceive. Water being admitted to this mixture of nitrous and alkaline air presently absorbed the latter, and left the former possessed of its peculiar properties.

Fixed air admitted to alkaline air formed oblong and slender crystals, which crossed one another, and covered the sides of the vessel in the form of net-work. These crystals must be the same thing with the volatile alkalis which chemists get in a solid form, by the distillation of sal ammoniac with fixed alkaline salts.

Inflammable air admitted to alkaline air exhibited no particular appearance. Water, as in the former experiment, absorbed the alkaline air, and left the inflammable air as it was before. It was remarkable, however, that the water which was admitted to them became whitish, and that this white cloud settled, in the form of a white powder, to the bottom of the vessel.

Alkaline air mixed with common air, and standing together several days, first in quicksilver, and then in water (which absorbed the alkaline air) it did not appear that there was any change produced in the common air: at least it was as much diminished by nitrous air as before. The same was the case with a mixture of acid air and common air.

Having mixed air that had been diminished by the fermentation of a mixture of iron filings and brimstone with alkaline air, the water absorbed the latter, but left the former, with respect to the test of nitrous air (and therefore, as I conclude, with respect to all its properties) the same that it was before.

Spirit of wine imbibes alkaline air as readily as water, and seems to be as inflammable afterwards as before.

Alkaline air contracts no union with olive oil. They were in contact almost two days, without any diminution of the air. Oil of turpentine, and essential oil of mint, absorbed a very small quantity of alkaline air, but were not sensibly changed by it.

Ether, however, imbibed alkaline air pretty freely; but it was afterwards as inflammable as before, and the colour was not changed. It also evaporated as before, but I did not attend to this last circumstance very accurately.

Sulphur, nitre, common salt, and flints, were put to alkaline air without imbibing any part of it; but charcoal, spunge, bits of linen cloth, and other substances of that nature, seemed to condense this air upon their surfaces; for it began to diminish immediately upon their being put to it; and when they were taken out the alkaline smell they had contracted was so pungent as to be almost intolerable, especially that of the spunge. Perhaps it might be of use to recover persons from swooning. A bit of spunge, about as big as a hazel nut, presently imbibed an ounce measure of alkaline air.

A piece of the inspissated juice of turnsole was made very dry and warm, and yet it imbibed a great quantity of the air; by which it contracted a most pungent smell, but the colour of it was not changed.

Alum undergoes a very remarkable change by the action of alkaline air. The outward shape and size remain the same, but the internal structure is quite changed, becoming opaque, beautifully white, and, to appearance, in all respects, like alum which had been roasted; and so as not to be at all affected by a degree of heat that would have reduced it to that state by roasting. This effect is produced slowly; and if a piece of alum be taken out of alkaline air before the operation is over, the inside will be transparent, and the outside, to an equal thickness, will be a white crust.

I imagine that the alkaline vapour seizes upon the water that enters into the constitution of crude alum, and which would have been expelled by heat. Roasted alum also imbibes alkaline air, and, like the raw alum that has been exposed to it, acquires a taste that is peculiarly disagreeable.

Phosphorus gave no light in alkaline air, and made no lasting change in its dimensions. It varied, indeed, a little, being sometimes increased and sometimes diminished, but after a day and a night, it was in the same state as at the first. Water absorbed this air just as if nothing had been put to it.

Having put some spirit of salt to alkaline air, the air was presently absorbed, and a little of the white salt above-mentioned was formed. A little remained unabsorbed, and transparent, but upon the admission of common air to it, it instantly became white.

Oil of vitriol, also formed a white salt with alkaline air, and this did not rise in white fumes.

Acid air, as I have observed in my former papers, extinguishes a candle. Alkaline air, on the contrary, I was surprized to find, is slightly inflammable; which, however, seems to confirm the opinion of chemists, that the volatile alkali contains phlogiston.

I dipped a lighted candle into a tall cylindrical vessel, filled with alkaline air, when it went out three or four times successively; but at each time the flame was considerably enlarged, by the addition of another flame, of a pale yellow colour; and at the last time this light flame descended from the top of the vessel to the bottom. At another time, upon presenting a lighted candle to the mouth of the same vessel, filled with the same kind of air, the yellowish flame ascended two inches higher than the flame of the candle. The electric spark taken in alkaline air is red, as it is in common inflammable air.

Though alkaline air be inflammable, it appeared, by the following experiment, to be heavier than the common inflammable air, as well as to contract no union with it. Into a vessel containing a quantity of inflammable air, I put half as much alkaline air, and then about the same quantity of acid air. These immediately formed a white cloud, but it did not rise within the space that was occupied by the inflammable air; so that this latter had kept its place above the alkaline air, and had not mixed with it.

That alkaline air is lighter than acid air is evident from the appearances that attend the mixture, which are indeed very beautiful. When acid air is introduced into a vessel containing alkaline air, the white cloud which they form appears at the bottom only, and ascends gradually. But when the alkaline air is put to the acid, the whole becomes immediately cloudy, quite to the top of the vessel.

In the last place, I shall observe that alkaline air, as well as acid, dissolves ice as fast as a hot fire can do it. This was tried when both the kinds of air, and every instrument made use of in the experiment, had been exposed to a pretty intense frost several hours. In both cases, also, the water into which the ice was melted dissolved more ice, to a considerable quantity.