The Food of Green Plants.
Common observation taught men in very early times that green plants draw nourishment from the soil, and that sunlight is necessary to their health. In the age of Galileo a Belgian physician and chemist, Van Helmont, endeavoured to pursue the subject by experiment. He planted the stem of a live willow in furnace-dried earth, which was enclosed in an earthen vessel. Rain-water or distilled water was supplied when necessary, and dust excluded by a perforated lid. The loss of weight due to the falling-off of leaves was neglected. In the course of five years the tree was found to have increased to more than thirty times its original weight; Van Helmont concluded that this increase was due to water only. Malpighi (1671), being guided mainly by his microscopic studies of the anatomy of the stem and leaf, taught that moisture absorbed by the roots ascends by the wood, becoming (apparently at the same time) aerated by the large, air-conducting vessels; that it enters the leaves, and is there elaborated by evaporation, the action of the sun's rays, and a process of fermentation; lastly, that the elaborated sap passes from the leaves in all directions towards the growing parts. It will be seen that this explanation, though incomplete, makes a fair approximation to the beliefs now held; for more than a hundred years after Malpighi's day less instructed opinions were commonly held. Hales (1727) recognised that green plants are largely nourished at the expense of the atmosphere; he dwelt also on the action of the leaves in drawing water from the soil, and in discharging superfluous moisture by evaporation.
Joseph Priestley, who had been proving that air is necessary both to combustion and respiration, made an experiment in 1771 to discover whether plants affected air in the same way that animals do. He put a sprig of mint into a vessel filled with air in which a candle had burned out, and after ten days found that a candle would now burn perfectly well in the same air. Air kept without a plant, in a glass vessel immersed in water, did not regain its power of supporting combustion. Balm, groundsel, and spinach were found to answer just as well as mint. Air vitiated by the respiration of mice was restored by green plants as readily as air which had been vitiated by combustion.
Priestley did not remark that the glass vessels employed in his experiments had been set in a window, and inattention to this point caused some of his attempts to repeat the experiment to fail. He was further perplexed by using vessels which had become coated with a film of "green matter," probably Euglæna. Such vessels restored vitiated air, though no leaves were present, and when placed in the sun, gave off considerable quantities of a gas, Priestley's "dephlogisticated air" (oxygen). Hardly any oxygen was given off when the green matter was screened by brown paper. Water impregnated with carbonic acid was found to favour the production of the green matter. To us, who have been taught at school something about the properties of green plant-tissues, it seems obvious that Priestley ought to have ascertained by microscopic examination whether his "green matter" was not a living plant. But he had always avoided the use of the microscope, his eyes being weak, and after some imperfect attempts in this way he made up his mind that the green matter was neither animal nor vegetable, but a thing sui generis. Neglecting his most instructive experiments, and not waiting till he could devise new ones, or even disentangle his thoughts, he sent to the press a confused explanation, which seemed to teach that vitiated air may be restored by sunlight alone.
A Dutch physician, named John Ingenhousz, who was then living in England, read Priestley's narrative and began to investigate on his own account. Without detailing his numerous experiments, we may give his own clear summary (condensed). "I observed," Ingenhousz says, "that plants have a faculty to correct bad air in a few hours; that this wonderful operation is due to the light of the sun; that it is more or less brisk according to the brightness of the light; that only the green parts of the plant can effect the change; that leaves pour out the greatest quantity of oxygen from their under surfaces; that the sun by itself has no power to change the composition of air." It will be seen that Priestley started the inquiry, devised and executed the most necessary experiments, and got excellent results. Then he lost his way, and bewildered by conflicting observations, which he was too impatient to reconcile, published a barren and misleading conclusion. Nothing was left for him but to acknowledge that Ingenhousz had cleared up all his perplexities.
Nicholas Theodore de Saussure, son of the Alpine explorer, showed in 1804 that when carbon is separated from the carbonic acid of the air by green plants, the elements of water are also assimilated, a result which owes its importance to the fact that starch is a combination of carbon with the elements of water. Saussure also proved that salts derived from the soil are essential ingredients of plant-food, and that green plants are unable to fix the free nitrogen of the air; all the nitrogen which they require is obtained from the ground.
We are unable to follow the history further. Though the main facts were established as early as the beginning of the nineteenth century, experimental results of scientific and practical interest have never ceased to accumulate down to the present time.