Class I.—Rhizopoda.

The Amœba, which is the simplest of the group, is merely a mass of semi-fluid jelly, ‘changing itself into a greater variety of forms than the fabled Proteus, laying hold of its food without members, swallowing it without a mouth, digesting it without a stomach, appropriating its nutritious material without absorbent vessels or a circulating system, moving from place to place without muscles, feeling (if it has any power to do so) without nerves, multiplying itself without eggs, and not only this, but in many instances forming shelly coverings of a symmetry and complexity not surpassed by those of any testaceous animal.’

Fig. 86. Amœba princeps.

Such is the description given by Dr. Carpenter of the Amœba and its allies. The Amœba princeps, which is the type of the naked group, [fig. 86], is merely a shapeless mass of semi-fluid sarcode, coated by a soft, pellucid and highly contractile film, called diaphane by Mr. W. J. Carter, and in many forms of Amœba the whole is inclosed in a transparent covering. It is in the interior semi-fluid sarcode alone, that the coloured and granular particles are diffused, on which the hue and opacity of the body depend, for the ectosarc or external coat is transparent as glass. These creatures, which vary in size from the 12800 to the 170 of an inch in diameter, are found in the sea, but chiefly in ponds inhabited by fresh-water plants. They move irregularly over the surface of the water, slowly and continually changing their form by stretching out portions of their gelatinous mass in blunt finger-like extensions, and then drawing the rest of it into them; thus causing the whole mass to change its place. Before it protrudes these pseudopodia or false feet, there is a rush of the internal semi-fluid matter to the spot, due to the highly contractile power of the diaphane, which is often so thin and transparent as to be scarcely perceptible.

When the creature in its progress meets with a particle of food, it spreads itself over it, draws it into its mass, within which a temporary hollow or vacuole is made for its reception; there it is digested, the refuse is squeezed out through the external surface; the nutritious liquid that is left in the vacuole seems to be dispersed in the sarcode, for the vacuole disappears. An Amœba often spreads itself over a Diatom, draws it into a vacuole newly made to receive and digest it; the siliceous shells of the diatom are pushed towards the exterior, and are ultimately thrust out; then the vacuole disappears, either immediately or soon after. These improvised stomachs are the earliest form of a digestive system.

Besides the vacuoles of which there may be several at a time, the slow and nearly rhythmical pulsations of a vesicle containing a subtle fluid may be seen, which changes its position in the interior of the sarcode with every motion of the Amœba. It gradually increases in size, then diminishes to a point, and as some of the digestive vacuoles nearest the surface of the animal are observed to undergo distension when the vesicle contracts, and to empty themselves gradually as it fills, Dr. Carpenter thinks it can hardly be doubted that the function of the vesicle is to maintain a continual movement of nutritious matter, among a system of channels and vacuoles excavated in the substance of the body. It is the first obscure rudiment of a circulating system.

In all the Amœbæ the semi-fluid sarcode, with the numerous bodies suspended in it, rotates at a varied rate within the pellucid coat; a motion presumed to be for respiration, that is to exchange carbonic acid gas for oxygen, so indispensable for animal life.[[4]]

Although like other animals, the Amœba cannot change inorganic into organic matter, as the vegetable Amœba can do, these two Protozoa are similar in one mode of reproduction; for portions of the animal Amœba or even one of the pseudopodia separate from the gelatinous mass, move to a little distance on the surface of the water, and become independent Amœbæ.

With a high microscopic power, many bodies besides the digesting vacuoles and pulsating vesicles may be seen imbedded in the sarcode of the Amœba princeps; namely, coloured molecules, granules, fat-globules, and nuclei. All these bodies were seen by Mr. Carter, in certain Amœbina he found at Bombay, together with what he believed to be female reproductive cells, and motile particles similar to spermatozoids, or male fertilizing particles.

Fig. 87. Actinophrys sol.—A, ordinary form; B, act of division or conjugation; C, process of feeding; D, discharge of fæcal matter, a and b; o o, contractile vesicles.

The Actinophrys, a genus of the order Radiolaria, differs from the Amœba princeps in having a definite nearly spherical form with slender root-like filamental pseudopodia radiating from its surface in all directions as from a centre. They taper from the base to the apex, and sometimes end in knobs like a pin’s head, but vary much in length and number, and can be extended and retracted till they are out of sight. They are externally of a firmer substance than the sarcode of the body, which is merely a viscid fluid inclosed in a pellucid film. The Actinophrys sol, which is the type of the genus, is a sphere of from 11300 to 1650 of an inch in diameter, with slender contractile filaments the length of its diameter extending from its surface as rays from the sun. It can draw them in and flatten its body so as to be easily mistaken for an Amœba. This creature, which is common in fresh-water pools where aquatic plants are growing and even in the sea, has little power of moving about like the Amœba; it depends almost entirely on its pseudopodia for food. They have an adhesive property, for when any animalcule or diatom comes in contact with one of them, they adhere to it; the filament then begins to retract, and as it shortens the adjacent filaments apply their points to the captive, enclose it, coalesce round it, the whole is drawn within the surface of the Actinophrys, the captive is imbedded in the sarcode mass, and passes into a vacuole where it is digested, and then the pseudopodia thrust out the undigested matter by a process exactly the reverse of that by which the food was taken in (D [fig. 87]). The pseudopodia are believed by Professor Rupert Jones to have the power of stunning their prey, for if an animalcule be touched by one of them, it instantly becomes motionless, and does not resume its activity for some time. The pulsations of the contractile vesicle are very regular, and its duty is the same as in the Amœba princeps.

The Actinophryna are propagated like the lowest vegetables by gemmation and conjugation, shown in B [fig. 87]; moreover Mr. Carter saw the production of germ-cells and motile particles in the Actinophrys exactly after the mode already described in the Amœba.

Mr. Carter mentions an instance in which the Actinophrys sol showed what may possibly be a certain degree of instinct. An individual was in the same vessel with vegetable cells charged with particles of starch; one of the cells had been ruptured and a little of the internal matter was protruded through the crevice. The Actinophrys came, extracted one of the starch-grains, and crept to a distance; it returned, and although there were no more starch-grains in sight, the creature managed to take them out from the interior of the cell one by one, always retiring to a distance and returning again, showing that it knew its way back, and where the starch-grains were to be found. On another occasion Mr. Carter saw an Actinophrys station itself close to the ripe spore cell of a plant, and as the young zoospores came out one after another, the Actinophrys caught every one of them even to the last and then retired to a distance as if instinctively conscious that no more remained. Like Amœbæ these animals select their food, but notwithstanding the superior facility and unfailing energy with which they capture prey larger and more active than themselves, they are invariably overcome even by a very small Amœba which they avoid if possible. When they come into contact the Amœba shows unwonted activity, tries to envelope the Actinophrys with its pseudopodia, but failing to capture the whole animal it tears out portions and conveys them to improvised vacuoles to be digested. Dr. Wallich mentions that he had seen nearly the half of a large Actinophrys transferred piecemeal to the interior of its enemy, where it was quickly digested.

Fig. 88, p. 19.

ACANTHOMETRA BULBOSA.

As every part of the body of the Actinophrys is equally capable of performing the part of nutrition, respiration, and circulation; and as in the absence of muscles and nerves they may be presumed to have no consciousness, the marks of apparent intelligence can only be attributed to a kind of instinct, and their motions to the vast inherent contractility of the sarcode and its enclosing film, which is also the case with the Amœbæ.

The Acanthometræ (see [fig. 88], Acanthometra bulbosa) are all marine animals; their skeleton consists of a number of long spicules which radiate from a common centre, tapering to their extremities. These spicules are traversed by a canal with a furrow at the base through which groups of pseudopodia enter, emerging at the apex. Besides, there are a vast number of pseudopodia not thus enclosed, resembling those of the Actinophrys in appearance and action. The body is spherical, and occupies the spaces left between the bases of the spicules. The exterior film covering the body seems to be more decidedly membranaceous than that of the Actinophrys, but it is pierced by the pseudopodia which radiate through it. This exterior film itself is enclosed in a layer of a less tenacious substance, resembling that of which the pseudopodia are formed. There is a species of Acanthometra (echinoides) extremely common in some parts of the coast of Norway, which, to the naked eye, resembles merely a crimson point.

Fig. 90, p. 20.

DICTYOPODIUM TRILOBUM.

Fig. 91. Podocyrtis Schomburgi.

The Polycystina are an exceedingly numerous and widely dispersed group of siliceous rhizopods. They are inhabitants of the deep waters, having been brought up from vast depths in the Atlantic and Pacific oceans. Their bodies are inclosed in siliceous shells, which have either the form of a thin hollow sphere perforated by large openings like windows, or of a perforated sphere produced here and there into tubes, spines, and a variety of singular projections: so they have many varied but beautiful microscopic forms. The animal which inhabits these shells is a mouthless mass of sarcode, divided into four lobes with a nucleus in each and covered with a thick gelatinous coat. It is crimson in the Eucyrtidium and Dictyopodium trilobum of Haeckel (figs. 89 and [90]): in others, as the Podocyrtis Schomburgi, it is olive brown with yellow globules ([fig. 91]). These creatures extend themselves in radiating filaments through the perforations of their shells in search of food, like their type the Actinophrys sol, to whose pseudopodia the filaments are perfectly similar in form, isolation, and in the slow movements of granules along their borders. The Polycystine does not always fill its shell, occasionally retreating into the vault or upper part of it, as in the Eucyrtidium (fig. 89, frontispiece to vol. i.). Sometimes the shell is furnished with radiating elongations, as in the Dictyopodium trilobum ([fig. 90]). In both of these shells the animal consists of four crimson lobes. These beautiful microscopic organisms are found at present in the Mediterranean, in the Arctic and Antarctic seas, and on the bed of the North Atlantic. They had been exceedingly abundant during the later geological periods; multitudes are discovered in the chalk and marls in Sicily, Greece, at Bermuda, at Richmond in Virginia and elsewhere; in all 282 different fossil forms have been described, grouped in 44 genera.

Fig. 92, p. 21.

AULOCANTHA SCOLYMANTHA.

Fig. 93, p. 21.

ACTINOMMA DRYMODES.

Fig. 94, p. 21.

HALIOMMA ECHINASTER.

In certain Polycystina, the perforations of the shell are so large and so close together, that the sarcode body of the animal appears to be covered by a siliceous net. This connects them with the Thalassicollæ, minute creatures found passively floating on the surface of the sea. Th. morum, which is one of the most simple of the few forms known, has a spherical body of sarcode covered with a siliceous net, through which the pseudopodia radiate in all directions, as in the Actinophrys, but it is studded at regular distances with groups of apparently radiating siliceous spicules.

The Aulocantha scolymantha ([fig. 92]), found by M. Haeckel in the Mediterranean, may be taken as an example of the most general form of the Thalassicolla. The siliceous skeleton of some of the Radiolaria resembles the Chinese ivory toy of ball within ball. That of the Actinomma drymodes ([fig. 93]) consists of three perforated concentric spheres, with six strong spicules attached to the outer surface, perpendicular to one another and prolonged in the interior to the central sphere. Hundreds of finer bristle-like spicules radiate from the surface. The animal is chiefly contained in the central sphere, and from it a perfect forest of fine, long pseudopodia radiate in thick tufts through the apertures of the exterior sphere.

The skeleton of the Haliomma ([fig. 94]) consists of only two concentric spheres. In many species of Haliomma and Actinomma the animals are of the most vivid vermilion or purple colour. Little or nothing is known of the reproduction of these microscopic organisms.

The Actinomma drymodes and the Haliomma are two of the most beautiful microscopic rhizopods discovered by M. Haeckel.

There is a family of fresh-water testaceous rhizopods of which one group secretes its shell and the other builds it. The horny shell secreted by the group of the Arcella presents various degrees of plano-convexity, the convexity in some cases amounting to a hemisphere. They rarely, if ever, have mineral matter on their surface, which is studded with regular but very minute hexagonal reticulations. The aperture or mouth of the shell is small, and invariably occupies the centre of the plane surface, its margins being more or less inverted. The form of the shell is exceedingly varied, sometimes it even has horns indefinite in number, sometimes symmetrical, sometimes not; when its test or covering becomes too small for its increasing size, it quits it, and secretes a new one. The filamental pseudopodia proceed from the mouth of the shell only, and by means of these it creeps about on its mouth in search of food.

Fig. 95. Simple Rhizopods.—A, B, Difflugiæ; C, D, Arcellæ.

The Difflugia build their own shells, which are usually truncated spheres, ovate, or sometimes elongated into the form of a pitcher or flask. The most minute recognisable of these shells is about the 11000 of an inch in diameter, but they are constructed with the most perfect regularity. The Difflugia pyriformis or symmetrica has the form of an egg with an aperture at the small end. It is entirely made up of rectangular hyaline plates, arranged with the greatest regularity in consecutive transverse and longitudinal rows, the smaller ones being at the extremities, while the larger ones occupy the central and widest portion of the structure. The inhabitant of this abode is an Amœba with a sarcode body covered with a thin film, from whence it sends off pseudopodia through the mouth of its shell. The Difflugia is propagated by conjugation, but before that takes place it becomes densely charged with chlorophyll-cells and starch-grains. The former disappear during the subsequent changes, and are replaced by a mass of colourless cells full of granules which are supposed to be the elements of a new generation. The embryo or earliest form is a minute truncated sphere, but the animal builds up its habitation very much according to local circumstances.

The greater number of the Difflugiæ secrete a substance which forms a smooth layer in the interior, which the animal covers with sarcode from its mouth, and then it drags itself with its pseudopodia to the particles which it selects, and they adhere to it. The particles selected are invariably mineral matter. ‘The selective power is carried to such an extent that colourless particles—sometimes quartzose, sometimes felspathic, sometimes micaceous—are always chosen.’ ‘The particles seem to be impacted into the soft matter, laid on the exterior in the same way that a brick is pressed into the yielding mortar, and that too, in so skilful a manner as to leave the smallest possible amount of vacant area; whilst in the specimens of Difflugia in which tabular or micaceous particles are used, they are sometimes disposed with such nicety that there is no overlapping, but the small fragments are placed so as to occupy the space left between the larger ones. These excellent architects seem to know that in the valves of the Diatoms are combined the properties best suited to their wants, that is, transparency and form, capable of being easily arranged.’

Both the Difflugia and Arcella are Amœbæ in the strictest sense of the word; their bodies consist of sarcode, which sends out finger-like lobes from the mouth of the shell at one end, while the other end has an adhesive property, which fixes it to the bottom. The nucleus and contractile vesicles are identical in character with those of the Amœbæ, and exhibit the same tendency to subdivision at certain periods of the creature’s history that is witnessed on a large scale in the Amœba proper; and the reproductive process is the same.[[5]]

The Difflugiæ are found in rivulets and pools containing aquatic plants; the condition of the water and the nature of the soil have a great influence on the form of their shell.

The Euglyphæ is the third group of fresh-water rhizopods. They are extremely minute, and there are no mineral particles whatever on their shells, the axes of which do not coincide with the aperture. The interior of the animal is like that of the Arcella and Difflugia, but it differs from them in as much as the pseudopodia and ectosarc, or external coat, are finely granular, and the whole mass of the body possesses a decided degree of adhesive viscidity. The pseudopodia are filiform, tapering, radiating, and readily coalesce; and ‘as if to compensate for the restricted power of locomotion, compared with that of the Amœba proper, the pseudopodia of the Euglyphæ are much more active. The rapidity with which they admit of being projected outwards, and withdrawn into the shell, is unequalled in any other form, presenting the most wonderful example of inherent contractility in an amorphous animal substance, that is to be met with in either of the great organic kingdoms.’[[6]]

The order Reticularia, with a very few exceptions, are animals dwelling in calcareous microscopic shells, and differing essentially in constitution from all the preceding Rhizopods. The ectosarc or surface-layer of the sarcode in the Amœba and Actinophrys has so much consistence, that their pseudopodia, which are derived from it, have a decidedly firm outline and never coalesce; whereas in the order Reticularia, the sarcode is merely a semi-fluid protoplasm or colourless viscid fluid, without the smallest surface-layer or film, so that their pseudopodia possess no definiteness either in shape, size or number. Sometimes they are cylindrical, and sometimes form broad flat bands, whilst they are often drawn into threads of such extreme tenuity, as to require a high magnifying power to discern them. They coalesce and fuse into each other so freely and so completely when they meet, that no part of their substance can be regarded as having more than a viscous consistence. Their margins are not defined by continuous lines, but are broken by granules irregularly disposed among them, so that they appear as if torn; and these granules, when the animal is in a state of activity, are in constant motion, passing along the pseudopodia from one end to the other, or passing through the connecting threads of this animated network from one pseudopodium to another, with considerable rapidity, analogous to the movement of the particles in the cells of the hairs of the Tradescantia and other plants.[[7]]

The sarcode body of the Gromiæ is inclosed in a yellowish brown horny envelope or test of an oval shape, with a single round orifice of moderate size, through which the pseudopodia extend into the surrounding water, some forms of the animal being marine, others inhabitants of fresh water. When the animal is at rest all is drawn within the test, and when its activity recommences, single fine threads are put out which move about in a groping manner until they find some surface to which they may attach themselves. When fixed, sarcode flows into them so that they rapidly increase in size, and then they put forth finer ramifications, which diverging come in contact with those from other stems, and by mutual fusion form bridges of connection between the different branching systems; for the protoplasm spreads over the exterior of the test, and from it pseudopodia extend and coalesce, wherever they meet, so that the whole forms a living network, extending to a distance of six or eight times the length of the body. [Fig. 96] represents the Gromia oviformis with its pseudopodia extended.

Fig. 96. Gromia oviformis.

In the Gromiæ the granular particles in the semi-fluid protoplasm are in constant motion. In the finer filaments there is but one current, and a particle may be seen to be carried to the extremity, and return again bringing back with it any granules that may be advancing; and should particles of food adhere to the filament they take part in the general movement. In the broader filaments two currents carrying particles pass backwards and forwards in opposite directions at the same time, and the network in which these motions are going on is undergoing continual changes in its arrangements. New filaments are put forth sometimes from the midst of the ramifications, while others are retracted; and occasionally a new centre of radiation is formed at a point where several threads meet. The food consists of diatoms and morsels of vegetable matter; but the Gromiæ have no vent, so that the indigestible matter collects in a heap within them. However, as the form of the test is such that the animal cannot increase its size, it leaves it when it becomes too small for its comfort and forms another, and it is supposed to get rid of the effete matter at the same time. The Gromiæ have no nucleus or contractile vesicle.