How to Begin the Experiments.
For practice it is profitable to commence with the red and orange disks combined on the spindle, with a smaller red disk in front of them, the smallest being preferable. Begin by introducing say five per cent of orange and notice that a change from the standard red at the center is visible. Gradually increase the orange until it seems difficult to say whether the resulting color is more like red or orange, and then exchange the small red disk for an orange disk of the same size, and continue adding orange in the larger disks until the difference cannot be detected between the small disk and the larger combined disks.
The standards may be combined in pairs, as has been indicated with the red and orange, to produce all the intermediate hues throughout the spectrum, but it must be remembered that these combinations are to be made by joining in pairs, colors adjacent in the spectrum, red and orange, orange and yellow, yellow and green, green and blue, blue and violet. We then shall have representations of all the spectrum colors, but there are still the colors between violet and red, known in nature and art as purples, which must be produced by uniting the red and violet disks, thus completing a circuit of colors containing all the pure colors in nature.
In nature all colors are modified by light and shade, strong light producing tints and shadows more or less deep forming shades.
These effects are imitated on the color wheel by the use of a white disk combined with a disk of a standard color for tints and a black disk for shades, and can be tested in the same order as indicated for the hues, by combining each standard disk with a white or a black disk in varying proportions. It will be noticed early in disk experiments that a very small amount of white produces a decided effect in the tone of a color while a comparatively large amount of black is necessary to produce a marked change. As this is exactly the reverse of the effects of white and black pigments it is always a subject of remark. In pigments these effects are imitated by the mixture of white with a color to produce tints, and black for shades, or more generally instead of black some dark natural pigment approaching the hue of the color, may be preferred because a black pigment will too often impart an unexpected and undesirable hue to the color. As for example, in making shades of red some natural brown pigment is better than black, and so various dark browns and grays are used for different colors. Even with the disks it is impossible to imitate purest tints of all the standard colors, because in some of the colors, as peculiarly in red and blue, the rotation of the white disk seems to develop a slightly violet gray, for which effect there has as yet been no scientific explanation. This gray dulls the purity of the tint as compared with that which is found in the color under a bright illumination, but on the whole both tints and shades as well as the hues can be better illustrated with the disks than in any other way, and in addition, the advantage is secured of being able to measure and record the tone by the graduated disk in the same way as the hues are measured and recorded. A further advantage is secured in the use of disks in color instruction because with pigments, the only other method by which colors can be combined, much time must be lost not only in the mixing and applying of the colors but in the delay necessary to allow them to dry before the true results can be seen.
Fig. 8.
The shades of yellow as shown on the wheel will not be generally accepted without criticism, but careful comparison with yellow paper in shadow will prove the substantial truth of the disk results. This experiment may be tried as follows: Join two cards with a hinge of paper or cloth to form a folding screen like the covers of a book as in Fig. 8. On the surface A, paste a piece of standard yellow paper and on B, a piece of yellow shade No. 1. Hold these two surfaces toward the class in such a position that the strong light will fall on B, which is the yellow shade, and thus bring the face A, which is a standard yellow, in a position to be shaded from the light. By varying the angle of the covers with each other and turning them as a whole from side to side, a position will be secured in which the two faces will seem so nearly alike as to convince the class that this color which they may have thought to be green, is not green, but a color peculiar to itself, a shade of yellow; because the darker paper when in full light appears substantially the same as the standard yellow in the shade or shadow.
In our experiments thus far with the wheel we have combined the standards in pairs to produce the colors of the spectrum between the standards, which for convenience may be called intermediate spectrum hues, and also have combined a white disk with each of the standards to produce tints of the standards and a black disk to make shades.
By combining a white disk with an orange and a yellow disk, for example, forming a trio of disks, a variety of tints of orange yellow and yellow orange may be made. Also by the use of the black disk instead of the white a series of shades of the intermediate hues may be produced, and thus a great variety of tints and shades of many spectrum colors shown.
Now if the white and black disks are combined with each other the result will be a shade of white, i.e., a white in shadow, which is an absolutely neutral gray. As the experiments progress it will be seen that this neutral gray is a very important feature in the study of color, and therefore it may be well at this point to make sure that the disk combinations give the true gray of a white in shadow by a test similar to the one used for the shade of yellow, thus disarming criticism. Such a test may conveniently be made by covering the reverse sides of the folding covers with white on one cover and "neutral gray paper No. 1" on the other. As the neutral gray papers are made in imitation of combinations of black and white disks this experiment is as convincing as the one regarding the yellow shade. This is but one of many examples of the value of disk combinations in the classification and analysis of colors.
In an elaborate chart of colors highly recommended for primary color instruction a dozen years ago no correct understanding of the classification of colors is shown, the tints and shades being indicated by a very decided change of hue rather than a consistent modification of tone. For example, in the red scale the standard or normal red is vermilion, i.e., an orange red; shade No. 1 is simply a red less orange in hue than the standard, and shade No. 2 a shade of the standard red advocated in this system; while tint No. 1 is a broken yellow orange and tint No. 2 is much more yellow and more broken than No. 1.
Similar inconsistencies occur in all the other scales, showing that the author had no correct knowledge of the analysis of colors, and yet this was the best and practically the only aid offered for instruction in color at that time.
Neither were there any true standards for neutral grays and the term "neutral" was used in such an indefinite way as to rob it of all actual value, until by the aid of disk combinations it came to be confined to white in shadow as closely imitated by the combinations of white and black disks.
Fig. 9.
With colored papers made in imitation of the six standards and two tints and two shades of each, six scales of colors may be produced by arranging the five different tones of each color in a row, as in Fig. 9, which represents the orange scale with tints at the left and shades at the right. If, in addition to these six scales, we have two scales between each two of the standards, we may have between the orange scale and the yellow scale a yellow orange scale and an orange yellow scale, and if we thus introduce the intermediate scales between each of the other two standards, and include the red violet and violet red, we shall have eighteen scales of five tones each.
The eighteen scales as above named may be arranged as shown in Fig. 10 to form a chart of pure spectrum scales which is very valuable for study and comparison and especially so in the study of the theory of harmonies. All these tones are called pure tones and this chart is therefore called a chart of Pure Spectrum Scales.
The idea that soft, dull, broken colors produce best harmonies when used in combination may or may not be a universally accepted truth, but there is a general belief that it is much easier to make acceptable combinations with broken colors than with pure spectrum colors and their tints and shades, and therefore the temptation has been strong to select a general assortment of colors which easily harmonize because of the pleasing effect, instead of having regard solely to the educational value of colors.
Truth in education requires that when colors are classified as spectrum colors they shall all be the nearest approach possible to the true spectrum colors, and in the spectrum there are no broken or impure colors. Therefore, whenever the spectrum is set up as nature's standard or chart of colors and an imitation is made in pigments or papers, great care should be used to secure the most accurate imitation possible, but in the past this has not been the case, because of the prevailing idea that the colors must all be possible combinations of three primaries, and hence the orange, green and violet have often been very broken colors. While pure colors and their tints and shades may be advantageously combined with various tones of broken colors in one composition for artistic effect, they should be definitely divided when classified for educational purposes, and their differences clearly explained to students.
In a scale of tones in any color the several papers will harmonize more easily if the tints and shades are not too far removed from the standard, but it is thought by many good judges that the educational advantage in learning to see the relationship of color in the more extreme tones is of greater importance in the elementary grades than the facility for making most pleasing combinations. Consequently in the Bradley colored papers the tints are very light and the shades quite dark.
If, instead of adding either a white disk or a black disk to a spectrum color, by which we make pure tints and shades, we add both white and black, a line of gray colors or so-called broken colors is formed. This is most beautifully shown with the disks, and in this way a line of true broken colors is secured, because in each case a true neutral gray has been added to the color, which cannot be insured in the mixture of gray pigments. As an example, this may be shown with the three smaller sizes of the orange disks. With the medium size of these three make the combination Orange, 35; White, 10; Black 55. With the larger size disks make the proportions Orange, 16; White, 5; Black, 79, and with the smallest size Orange, 43; White, 33; Black, 24. Place these three sets of disks on the spindle at one time and you have the three tones of a broken orange scale.
With similar combinations applied to the six standards and one intermediate hue between each two, there will be material for a chart of Broken Spectrum Scales, as shown in Fig. 11, including twelve scales of three tones each. These are the most beautiful colors in art or nature when combined harmoniously. Because of the loss of color in broken colors it is not advisable to attempt so many different hues or so many tones of each hue as in pure colors, for slight differences in either hues or tones are not as readily perceived.
In these two charts of color scales two distinct classes of colors are represented, namely, pure colors and broken colors. The pure colors consist of the purest possible pigmentary imitations of spectrum colors, with their tints and shades, and the broken colors are these pure colors dulled by the admixture of neutral grays in various tones. This distinction is readily recognized under proper training, so that if a broken color is introduced into a combination of colors from a pure scale it will be readily detected, which always occurs when the attempt is made to produce a series of spectrum scales by the combination of the three primary colors red, yellow and blue. By this method, if logically carried out, the orange, green and violet are dark broken colors, and hence to a less extent the intermediate colors also, because each of these is a mixture of a pure color with a broken color. The usual result, however, is that the orange made from the red and yellow seem so out of place in the warm end of the spectrum that it is modified and made much nearer the pure color, usually, however, too yellow, while the greens and violets, which are deep and rich broken colors, may seem more harmonious, but are so dark as to be out of place among spectrum colors.
| Fig. 10. | Fig. 11. |
If light broken colors are properly combined a beautiful imitation rainbow is produced, which is more harmonious than the spectrum made from full colors. A series of such colors combined in spectrum order produce a more pleasing effect when separated by a small space of white, black, gray, silver or gold. The reason for this may be found in the discussion of simultaneous contrasts.
In nature nearly all colors are broken. First, there is always more or less vapor together with other impurities in the air, so that even in a clear day objects a few hundred feet from us are seen through a gray veil, as it were, and in a misty or hazy day this is very evident. In the case of somewhat distant foliage the general color effect is produced by the light reflected from the aggregation of leaves, some of which may be in bright sunlight and others in shadow, with a mixture of brown twigs. All these tints and shades of green and brown are mingled in one general effect in the eye. Also, owing to the rounded forms and irregular illumination of objects, we see very little full or local color in nature.
Therefore the study of broken colors becomes the most fascinating branch of this whole subject, and it also has an added interest because nearly all the colors found in tapestries, hangings, carpets, ladies' dress goods, etc., come under this head. In fact it would be hazardous for an artisan or an artist to use any full spectrum color in his work, except in threads, lines or dots. A considerable quantity of pure standard green, for instance, would mar the effect of any landscape.
It is a very interesting diversion to analyze samples of the dress goods sold each season under the most wonderful names. For example:—
"Ecru," a color sold a few seasons ago, is a broken orange yellow with a nomenclature O. 12, Y. 15, W. 17, N. 56, while this year "Leghorn" and "Furet" are two of the "new" colors, the former having a nomenclature of O. 16, Y. 54, W. 19, N. 11, and the latter O. 18, Y. 18, W. 8, N. 56, all of which are very beautiful broken orange yellows.
"Ashes of Roses" of past years is a broken violet red which can be analyzed as follows: R. 8-1/2, V. 2-1/4, W. 15-1/4, N. 74.
"Anemon" of this season is R. 28, V. 7, W. 5, N. 60, which is another broken violet red.
"Old Rose" is a broken red: R. 65-1/2, W. 24-1/2, N. 10.
"Empire" of past seasons is G. 18-1/2, B. 11, W. 16-1/2, N. 54, while "Neptune" of this season is G. 13-1/2, B. 2-1/2, W. 11, N. 73, both being broken blue greens.
"Topia," a beautiful brown, is O. 10, N. 90, a pure shade of orange, while "Bolide" is a lighter yellow orange with a nomenclature of O. 18-1/2, Y. 2-1/2, W. 1-1/2, N. 77-1/2.
We might analyze "Elephant's Breath," "Baby Blue," "Nile Green," "Crushed Strawberry" and others common in the market, but while the names will no doubt occur each season the colors will change with the fickle demands of the goddess of fashion and the interests of the manufacturers and dealers. In writing any color nomenclature the letters should be used in the following order: R.-O.-Y.-G.-B.-V.-W.-N., thus always listing the standard colors before the white or black. For example, never place Y. before O. or R., and never use N. before W. If this order is strictly adhered to the habit is soon acquired and a valuable point gained.
It has been shown that combined white and black disks form neutral gray, which is a white in shadow or under a low degree of illumination. If to such a gray a very small amount of color is added, as orange for example, by the introduction of an orange disk, this neutral gray becomes an orange gray, but unless the amount is considerable it can not be detected as an orange, but the gray may be termed a warm gray, denoting that it is affected by some one of the colors near the red end of the spectrum. If blue instead of orange is added to the neutral gray, a cool gray is produced. When green is added to a gray the result can not fairly be called either warm or cool, and hence we have termed it a green gray. According to this plan we have four classes of grays, Neutral, Warm, Cool and Green grays. As there may be many tones of each, and many intermediate combinations from red to green, or green to blue, the number of grays in nature is infinite, but these four classes with two tones of each in the papers form what may be called standards or stations from which to think of the grays, the same as the six standards in the spectrum constitute points from which to think of pure colors.
A careful consideration of the foregoing pages, accompanied with a color wheel or even a color top, can hardly fail to give a student who will make the experiments a clear idea of the use of the disks in the system of color education in which they form such an important feature, and therefore the old theory of three primaries, red, yellow and blue, and all that it leads to can be very intelligently considered and tested by them in the experiments which follow.
This old theory briefly restated is as follows: It is said "there are in nature three primary colors, red, yellow and blue; and by the mixture of these primary colors in pairs, orange, green and violet may be made." In fact leading educators have said that "in the solar spectrum, which is nature's chart of colors, the principal colors are red, orange, yellow, green, blue and violet; of these red, yellow and blue are primaries from which may be made the secondaries, orange, green and violet." All such statements as heretofore made in any popular treatment of the subject are understood to mean that in a pigmentary imitation of a spectrum the secondaries as enumerated may be produced by the mixtures of the primary pigments, because pigmentary mixtures are the only combinations generally recognized.
This theory has also included the statement that the primaries are complementary to the secondaries in pairs, and that the combination of the secondaries in pairs may produce a distinct class of colors called tertiaries.
It will be the aim of the following pages to demonstrate that in all this there is neither scientific or æsthetic truth nor educational value.