2. Flowerless Plants

In the light of what has been said about flowers it may well be questioned how anything can be a plant and still have no flower. The fact is that flowers as we commonly understand them are unknown in the plants about to be discussed, but that what corresponds to a flower, and performs the function of a flower all plants must and do have. In the case of most flowering plants the possession of flowers is one of the beauties of nature in its most resplendent mood, while in the so-called flowerless plants the functions of flowers are performed by tiny microscopic organs, even the existence of which has been only recently discovered. Because flowering plants produce their sexual organs in such a gorgeous setting, for all the world to see their matings they have been called phanerogams, which means literally visible marriage, while the flowerless plants which perform similar functions in more secret ways are called cryptogams, meaning hidden marriage.

These cryptogams or flowerless plants occur in far greater numbers in the world than flowering plants, but their size in most cases is very much less. Many individuals are so small, as in the case of bacteria, that a single one can only be seen after it has been magnified many hundreds of times by the microscope. Of the cryptogams some of the largest, certainly the most beautiful, and probably the best known are

THE FERNS

In nearly all woods one may find delicate feathery plants with graceful, usually much divided leaves that nearly always start up from the ground like a slowly opening, but somewhat fuzzy coil. ([Figure 62].) Ferns, at least most of those that grow in America, uncoil their leaves in this way, almost without exception. The accompanying figure shows the procedure, and in addition to this character one may hunt in vain for flowers.

While they bear no flowers we already know that nature could not leave them with no means of reproduction without abandoning them to a childless old age and the consequent extinction of the race of ferns. So far from the truth is this that ferns make up a goodly proportion of the world’s vegetation, and there are many hundreds of different kinds known. The lack of flowers, of course, explains why ferns do not bear seeds which are matured in a fruit or ripened ovary.

On the back of the leaves of most ferns, along or near the edges of the finer subdivisions, one may



Fig. 61. A general view. Fig. 62. Its uncoiling spring condition. Fig. 63. The back of one of the smaller divisions of the leaf showing the collection of spore cases (sori). These are sometimes borne on special leaves, but in most of our American kinds on the backs of ordinary foliage leaves.

find, at the proper season, collections or rows of tiny, usually brownish dots. These contain often thousands of microscopic objects known generally as spores, and from this fact the dots are called spore-cases, or more technically sori. ([Figure 63].) The process by which new plants are formed is a



Aerial Roots of Fig Trees Hanging Over the Edge of a Cave in the Rain Forest, San Lorenzo, Santo Domingo. (Photo by the author. Courtesy of Brooklyn Botanic Garden.)



Venus’s Flytrap, an Insectivorous Plant of the Southeastern United States. The fringed valves of its leaves close together when an insect alights between them. (Courtesy of Brooklyn Botanic Garden.)

somewhat complicated one, but the spores in these brown dots are the agency which makes reproduction possible, and the actual mechanism of it, one of the most interesting achievements in plant life, will be described in the chapter on “How Plants Produce Their Young.” Sometimes the spores are not borne on the backs of ordinary foliage leaves but on special leaves that bear, very often, nothing else.

Ferns are much like ordinary flowering plants; except for their lack of flowers, they have all the root, stem, and leaf characters of their more showy neighbors. While most of them have compound leaves, even sometimes twice or thrice compounded, a few have simple, narrow leaves without teeth, and one kind in tropical America has threadlike leaves. In many tropical rain forests, so called from their dripping wet condition, ferns form large trees, and these tree ferns are among the most graceful and feathery of all plants. There are, too, a few climbing kinds—one, called the climbing fern, is a native of the eastern United States. Then there is the walking fern, that seems to upset the statement that plants do not move as animals do. It sends out delicate runners that, rooting at the tips, form new plants, often several feet from the parent plant.

The characteristic of having, even in the simplest form, stems, leaves, and roots, with all that this implies in their internal structure, marks them off at once from all other flowerless plants. In ferns there is always some internal equipment for carrying food from one part of the plant, the roots, to another, and this ability is possessed by virtue of ducts or vessels through the stem and leaves. This system, found in all flowering plants and ferns, but nowhere else in the plant world, is called the vascular system, or literally, a vessel system. We shall see how important was the acquirement of this system of vessels, when we get to the chapter on the History of the Plant Kingdom. Its appearance upon the earth marks as important a stage in the development of plants as the dawn of a definite backbone did upon animal life.

Ferns, then, are vascular cryptogams because they do have conducting vessels in their stems, and they produce their young by a process of hidden marriage which will be described later. All other cryptogams or flowerless plants are without this system of vessels and are called therefore non-vascular cryptogams. Numerically they are tremendously important; upon them depend many manufacturing processes like bread making, brewing, and all arts using fermentation. But they are hardly recognized as plants by the general reader, and because of their size and the necessity of studying them with a microscope in order to understand their structure they will be treated here only briefly.

OTHER FLOWERLESS PLANTS

The remaining flowerless plants, having no duct system in their make-up, are, as we know, called non-vascular cryptogams. This is a general term for a very large group of plants, some quite obvious and well known like a mushroom, for instance; others so small or of such uncertain structure that they are not even well known by experts. This great mass of plant life, more numerous than all the other kinds of plants combined, contains many different forms, some of which are of gigantic size. A single plant of a certain Pacific Coast seaweed regularly exceeds in length the height of the tallest



Fig. 64. A moss plant. Fig. 65. A mushroom, a common type of the fungi, which include also puffballs, molds, and many disease-causing microscopic organisms. Fig. 66. A common seaweed, a representative of the algæ, which include the green scum on the top of ponds, and the kelp from which fertilizer is now being made. Fig. 67. A lichen, a common cryptogamous plant on logs and rocks. Our native kinds are usually grayish-green in color.

known trees. And yet other inhabitants of the water, certain kinds that float freely, are microscopic in size. The latter occur in such enormous numbers that their tiny decomposed skeletons after dropping to the bottom of the sea form the diatomaceous earth, so much used in polishing machinery. The commercial product now comes from deposits of these skeletons laid down in past ages, which, due to changes in the land and water surfaces of the earth, are now found in Virginia, Nevada, California, and in Bohemia. All these must have been in the bed of waters long since gone, which teemed with these microscopic organisms. To-day there are over ten thousand different kinds known, yet so small are they that their dimensions are measured in thousandths of an inch!

Somewhat lower in the scale of life—and by this we mean simpler in structure—than the ferns are the mosses. ([Figure 64].) There are thousands of different kinds, but everyone is familiar with the collective growth of the commoner sorts which makes the velvety mossy carpet in our woods. The individual plants are small, but in many kinds sufficiently large to be seen without a microscope. Most important of all, practically every one of them has the ordinary green color of the better known plants, and as we shall see in the section devoted to “Leaves as Factories for the Making of Food,” that stamps them at once as plants, if other things did not.

Mosses are almost infinite in their habits, some growing on the dry rocks or trunks of trees, many growing in moist woods, some in the water, and immense quantities of certain kinds in bogs. The peculiar bog mosses, known as sphagnum, play an important part in forming peat and perhaps coal. While mosses are otherwise not of much commercial importance, they are among nature’s most beautiful ground covers, carpeting many a nook and dell with a soft, velvety, almost cushionlike growth.

Although they are rather small, they appear to have a somewhat definite stem and tiny leaflike appendages of it, without, however, having the vascular system found in all ferns. Mosses might almost be considered miniature ferns, of which they are perhaps only simple ancestors. Their vegetative or green parts vary much in shape, size, and the arrangement of the tiny leaflike appendages, and while most of them are a beautiful bright green, nearly all the bog or sphagnum mosses are rather ashy gray in color. In most of the typical mosses there arises from among the vegetative growth of them a slender stalk, at the top of which is a small capsulelike organ. This contains the spores, and it is upon this long slender stalk and its spore-filled capsule, really marvelous in its internal structure and mechanism for the discharge of the spores, that mosses depend for their reproduction. As in the case of the ferns this process will be considered later, along with that of some other plants. This whole story of how plants produce their young, perhaps the most fascinating of any part of the study of plant life, is so fundamentally a part of their history and shows nature in her most maternal moods, that a special chapter will be devoted to it. There we shall see, as a whole, how these vastly different acts of fertilization and reproduction are, in different groups of plants, all responses to that insistent command for life, more life, in a never-ending stream.

The chief characters to remember about mosses are that they are very simple, but practically always green plants that have some differentiation into stem and leaf; that, while they have no vascular system, their structure and particularly the mode of reproduction suggests that they are not very distant from the ferns, and quite likely simple ancestors of them. These characters are of more importance than appears on the surface, as we shall presently see, for they mark mosses off from many other nonvascular flowerless plants which have quite different structure and altogether different mode of life.

If you will turn to the chapter on Plant Behavior and read particularly the sections on “Leaves as Factories for the Manufacture of Food” and “Borrowing from the Living and Robbing from the Dead,” you will see in the food habits of the plants there noted the great difference that exists between plants, like mosses and ferns, that have green coloring matter in them, and those we are about to mention that never do. The lack of this green coloring substance tells us at once that plants of this sort live only on the dead remains of other plants. In the case of these nonvascular flowerless plants there are certain modes of growth that, in some forms at least, are always associated with this scavenger-like food habit.

The common mushroom ([Figure 65]) is the best known of that large group of plants, called generally fungi, which produce no green coloring matter, have no leaves attached to a stem, and always live on decayed vegetable, or sometimes inhabit living animals, even man himself. The mushroom with its brownish stalk and buttonlike dome is familiar enough, but there are literally thousands of different kinds, a common sort forming “brackets” on the trunks of trees. While perhaps everyone would recognize these as plants, peculiar as they are in their often weird shapes and unusual as they nearly always are in their color, there are many minute kinds of fungi that scarcely anyone would even think of as a plant, and yet for better or worse they are incomparably the most powerful plants in the world. For upon these microscopic fungi man depends for many things. It is certain kinds of them that make the manufacture of cheese possible. They turn milk sour (pasteurizing milk is merely stopping their work), give to yeast its power of “raising” bread, all brewing depends upon them, every process of fermenting the juice of fruits for wine making or for whatever else, the decay of wood—all these processes and scores of others, whether for the good or evil of mankind, depend upon the work of these plants, any one of which is so small that a single individual must be magnified hundreds of times to detect it. Many of them are the “germs”—better called bacteria—that cause diseases like tuberculosis, cholera, typhoid, anthrax, and diphtheria. All surgeons wage incessant warfare against a host of them that attack wounds and form pus. They live in our intestines and have much to do with digestion, and unhappily with indigestion, so that we may be said to carry about with us a whole flora of them! Nearly all the diseases of plants, like the blight of potato and the rust on wheat, are caused by them. Some other kinds live in the soil, and many flowering plants depend absolutely for getting their food upon the work of these fungi. Unfortunately their minute size and consequently obscure mode of life demand technical skill and the use of the microscope to detect them, so we must leave them here, always keeping in mind that these smallest of all plants are charged with a power for good or evil; so far as man’s life is concerned, greater perhaps than all other plants.

While most fungi, particularly those familiar ones like mushrooms and puffballs, are inhabitants of the land, the remaining group of nonvascular flowerless plants are nearly all water plants. Most of the better known ones live in the sea, and as the wrack or tangle washed up on the shore we recognize them as seaweed. The algæ ([Figure 66]), which is a general name for such plants—and they live in the sea, in fresh water, and even on dry land—are, so far as structure is concerned, the simplest of all plants.

Those that are fastened to rocks are often beautifully colored, much branched, and many kinds bear small bladders that act as buoys. These coast seaweeds are generally of different colors, those nearest the surface being generally greenish, the deeper water kinds reddish or brown. None of these seaweeds are found at great depths, because the really deep parts of the ocean are almost, if not quite, dark. Seaweeds, and in fact all the algæ, have green coloring matter in them, even where this is masked by reds and browns, as is the case in some particularly showy kinds. As you will find in the section on “Leaves as Factories for the Making of Food,” no plant with green coloring matter can live in the dark. That is why seaweeds are not found in the great deeps of the sea, some of which are several miles below the shore line along the coasts, and are so cold and dark that neither plants nor animals can grow in them.

Those seaweeds that grow along the coast, and are uncovered by the retreating tides, are well known by everyone, but by far the greater number of algæ float without anchorage of any kind. One kind that has been torn from its anchorage occurs in such enormous quantities that off the coast of America it has formed literally a floating island composed entirely of dense mats of a species of seaweed. This place, known as the “Sargasso Sea” from the name of the seaweed forming it, was the terror of old mariners and Columbus’s ship was fouled in it for two weeks. The area occupied by the weed is several hundred miles long and wide, and while old sea yarns about ships being caught in it and never escaping are gross exaggerations, it is certainly one of the most curious of plant growths, due entirely to a nonvascular cryptogam.

Of those kinds that are never anchored the number is legion, and in addition to those forming the diatomaceous earth, already mentioned, there are many more. They form almost the only food of hosts of creatures of the sea, but because of their floating freely in the water, the consequent difficulty of collecting them, and their unusually minute size, little is likely to be known of them, except by the experts.

Other algæ are always found in fresh water and form the scum found on stagnant pools. Individuals of any of these are so minute that, while under the microscope they are of the greatest beauty, their structure must remain for most of us a sealed book.

Summary Of What Plants Are

We have now traced, in only the briefest fashion, the outlines of what plants are, reversing the order of nature in beginning with those most complex but best known, the flowering plants. As we shall see later, these are the climax of prodigal nature and are to be considered the end rather than the beginning of plant life on the earth. Then, and still more briefly, have we stopped to see those less known plants that produce no flowers, such as the ferns, mosses, fungi, and finally the seaweeds or algæ. These are all to be considered as the ancestors of flowering plants, the ferns the nearest to them and the algæ probably the most distant relatives. The development of plants from the minutest alga up to our most gorgeous flowering plant, is an infinitely slow and painful process. With many mistakes, with its pathway strewn with the wreckage of forlorn hopes and false starts, it is incomparably the most dramatic story in the plant world. Some of its details will be told in the chapter on the “History of the Plant Kingdom.”

Nor can we leave the discussion of what plants are without some mention of the thing that really makes up their structure, whether it be a microscopic bacterial organism or the Big Tree of California. For the unit of all animal and plant life is the cell. In its simplest form it is merely a minute sac with a definite wall and inside the wall is a substance known as protoplasm, literally protos, first, and plasma, thing formed. It is protoplasm that forms the living tissue of all plants and animals; it is life itself. No one has ever succeeded in making any, notwithstanding that many learned men have tried for years. Its inclosure in the cell wall, its power of self-division and consequent multiplication of the units, make up those first things about which most of us can never know much, but the end of which we recognize in the beauty of plant life all about us. For only under the highest powers of the microscope may cells be seen and studied. Just as bankers reckon mills as a definite unit of a cent, and yet none of them has ever seen a mill, so we must think of cells as the definite unit of all living things, although most of us will never see a cell. But, unlike the mill, cells may be seen by those equipped to see them, and this study, the development and grouping of them to form all the varied objects that inhabit the plant world, is known as histology. It is literally the internal history of plants and animals, and lies quite outside the scope of this book. What we must never forget is that whatever knowledge we have gained, either from the foregoing account of what plants are, or from our observation of them, is, after all, only a partial notion of them, as unsatisfactory as our estimate of what people really are, from merely looking at the outside of the houses in which they live. The outer form we may know and admire, the inner substance must ever remain for most of us a secret treasure house the value of which is certain, but the key to which we do not possess.

CHAPTER II
PLANT BEHAVIOR