2. Hidden Marriage of Flowerless Plants

As we stated in the first chapter cryptogams, while they produce no flowers, must bear organs that perform the functions of flowers in the reproduction of new individuals. Because, generally speaking, the process is more hidden in its manifestations, and nearly always requires the aid of the microscope to detect it, it is not so well known as the reproductive processes of flowering plants by those who have not the opportunity to manipulate such instruments. The act, however, is just as interesting, and, as we shall presently see, it may well be considered the ancestor of those more showy methods of producing young, which have been all too inadequately treated in the preceding pages. While the parts having to do with reproduction in flowerless plants are microscopic in size, it is possible to understand the broad outlines of what goes on and perhaps the life history of such plants is as well illustrated in ferns as in anything else.

THE LIFE HISTORY OF A FERN

In the discussion of ferns in the first chapter we found that on the back of some of their leaves, or occasionally on special leaves devoted to the purpose, were many small brownish or dark spots, arranged in rather definite fashion, and known as sori. ([Figure 63].) Each sorus contains many minute bodies known as spores, not unlike very miniature seeds in general appearance, but quite unlike them in behavior and mode of life. No better idea of their size can be gleaned than to record the fact that in each sorus there may be about one hundred small, often short-stalked spore cases, known as sporangia, and that in each sporangium well over forty, and sometimes over sixty, spores will be crowded. A healthy specimen of many of our common ferns will bear about ten or a dozen leaves, each of which is divided into many divisions, and among these divisions of the leaf there may be at least fifty that bear from fifteen to twenty sori. It can be easily figured from this that a healthy plant of this fern may and usually does produce over forty-five million spores, each of which contains within it the opportunity of developing into a new plant. There is thus a prodigality in producing the means of renewal of life among ferns that far outstrips the production of seeds in even the most prolific of flowering plants.

When the spores in the sporangium are mature and therefore ready for the next stage in their life history several things must happen. With somewhere about six thousand of them crowded together under each sorus, more room to develop is obviously the first consideration. This is provided for by the fact that when the spores are ripe the sporangia have the ability to throw them considerable distances; then of course the wind can carry them much farther. To be of any use they must fall upon damp ground, for some degree of moisture is absolutely necessary for what is about to happen to them. In nature countless millions never do fall in a favorable location, or, if they did, such an enormous production of fern spores would soon make the world exclusively a fern garden. The comparatively minute fraction of them that ever do find congenial surroundings, once they are expelled from the spore case, then begin a process that is not unlike the germination of a seed. For the spore must take in water from the soil, which by osmotic pressure finally bursts it open. From the burst spore a minute tube, known as the protonema, or literally first thread, begins to develop. It is, of course, of microscopic size, and yet near its base there is a branch tube formed, differing from it in structure and ultimately forming rhizoids, which are rootlike hairs. Both the protonema and the rhizoids begin growing, the first forming, usually flat on the ground, an often heart-shaped body having the characteristic green coloring matter of all plants. The rhizoids multiply and look not unlike roots. This young, still microscopic plant, grows apace, and may soon be distinguished with the naked eye. It looks not unlike a heart-shaped mass of greenish tissue quite flat on the ground, and is called a thallus.

Up to this point, then, we may trace the story of any fern which has thrown off its cloud of spores and from which develops this tiny thallus, looking not in the least like a fern nor as though it could ever be modified into one. Because this thallus is,



(A1) archegonia, (A2) antheridia, and (A3) the rhizoids. B: Prothallus, showing the young plant with its first leaf (B1), its own roots (B3) and the rhizoids of the prothallus (B2). Drawing and legend for it slightly altered from Kraemer.

in the truest sense, merely a preparation for the process that will produce another fern, it is always known as a prothallus. The prothallus is thus the first stage in the reproduction of ferns, a very simple stage, with only the faintest indication that the thallus might be considered the vegetative and its rhizoids perhaps the rootlike counterparts of foliage and roots of mature ferns. As we shall see presently, even this differentiation has not the significance that such a structure in flowering plants would indicate. There is not, as yet, the faintest indication of sexes that need to mate in order to produce their young. The spore has so far only produced a tiny flat body of green tissues with a few rootlike threads, so unlike the fern from which it started that its true significance, or even the fact that it had ought to do with ferns was not known until about the middle of the last century.

This green cushiony prothallus keeps on growing, its heart-shaped mass becoming divided into an obviously left and right hand side and the rhizoids multiplying in number. They are always borne on the lower side next the ground, or next whatever the prothallus may be growing on. Near the notch of the heart-shaped prothallus are developed a few flask-shaped bodies which contain within them an egg cell or single ovum, the female reproductive body. By a series of changes this egg cell becomes embedded in a mucilaginous material. This flask-shaped body with the female egg cell inside is known as the archegonium. From among the rhizoids there may, at about the same time, be found developing small globular organs that have in them a number of tiny cells, each of which has attached many minute threadlike tails. The globular organs, with their minute, tailed cells are known as antheridia, and comprise the male reproductive equipment. Just as in flowering plants, neither the archegonia (female) nor the antheridia (male) can produce offspring without mating and the method by which this marriage is accomplished differs tremendously both in practice and in its significations from that in phanerogams. In the first place, the male and female reproductive cells are separated by a considerable distance, they are both inclosed in structurally different casings, and the whole operation is so microscopic that insects can be of no service. Nor can the wind do for them what we have seen that it does for the pollen of pines and grasses.

Of the aids to fertilization there remains then only the water, which plays such an important part in the mating of the eelgrass and ditch grass among flowering plants. But in these ferns a very different drama is about to be enacted. The male cells, as we have seen, are provided with slender tails, which are movable. They move, in fact, to such good purpose that the male cell can actually swim in the water. Of course its minute size demands only the merest drop of water, in which it will take the only excursion of its brief life. For just as soon as it is mature, a heavy dew or the tiniest particle of water will set free the little male messengers. The water too has not been without effect on the female cell. More remarkable still, this mucilaginous matter contains in it a substance that acts as a lure to the swimming male cells. In any event they do swim directly to the entrance of the female cell’s abode, through it and to her, when the union is effected. At once there is thrown across the entrance a membrane that excludes all other males, and the fertilization is complete. From this union of the male and female cells a true young fern begins to develop. First a young leaf and roots, finally a stem and in the end, of course, a full-grown fern producing spores, ready to renew the whole process.

Some ferns do not follow all the steps exactly as we have outlined, for all of them have not the structure of the typical one whose life history has been sketched above. In the adder’s-tongue fern, for instance there is a stalklike prolongation from the base of the only leaf the plant bears, on which all the spores are borne. In certain others, as in the ostrich fern, the spores are borne on leaflike growths that serve only this function. Most ferns, however, bear spores on otherwise unmodified foliage leaves and the great bulk of them on the under side of such leaves.

There are several things about the life history of a fern that differ fundamentally from any flowering plant and perhaps the chief is what is known as the alternation of generations. A spore, for instance, can never produce a fern as a seed will always produce a flowering plant. In this respect they are like many insects that always have two or sometimes three different stages in their life history. Only by the complicated method of first a spore then the prothallus, from which archegonia and antheridia are produced, followed by the free swimming male cells fertilizing the female, can a fern reproduce itself. As we shall see in the chapter on the History of the Plant Kingdom, this alternation of generations, the absolute necessity of water in which to carry on the fertilization, and above all the ability of the male cells for free swimming in the water, are all landmarks in the development of plant life. In its simplest form fertilization in flowerless plants is characterized by one or all these processes, as it is in the ferns, while in the flowering plants, the act is accomplished by processes, discussed previously, which, in the development of the plant kingdom, mark a period only comparable, in the history of man, to such tremendous achievements as the acquirement of speech or the ability to make a fire.

LIFE HISTORY OF A MOSS

Ever since the war, the peat-forming mosses, known as sphagnum, have become more widely known to the general public than any of the ten or twelve thousand mosses known to grow on the earth. Its power of absorption, greater than linen bandages, made it extensively used to pad surgical dressings. Hundreds of thousands of these sphagnum



A Small Cloud of Wind-Blown Pollen of the Japanese Red Pine (Pinus densiflora). (Photo by C. Stuart Gager. Courtesy of Brooklyn Botanic Garden.)



A Coconut Grove in the Philippine Islands. The people of tropical regions have more uses for this plant than there are days of the year. Its fruits will float in the sea for months without injury and it is thought to have been distributed all over the tropical world by ocean currents. Its true wild home is not certainly known, but is probably tropical America. See chapter V for an account of the tree. (Courtesy of Brooklyn Botanic Garden.)

dressings were made, and the collection of sphagnum from the bogs in which it nearly always grows was the task of many who could render no other service.

The reproduction of sphagnum is not unlike that of ferns already described. There is the same necessity of a film of water in which the free swimming male can fertilize the female. But some other things about their reproduction of young differ from ferns.

In the first place sphagnum is a nonvascular cryptogam, in that its leaves have no veins or ducts in them and its minute stem is also without those conducting passages that characterize all ferns, and the flowering plants, which are considered the most highly developed of all plant life. (See Chapter I for a discussion of this point, in the section devoted to “Flowerless Plants.”)

In this moss, also, there are small branches, some of which bear only the tiny leaves, but some bear leaves and the reproductive organs. The female or archegonia are much like those in the ferns, and the antheridia or male are also, as in the ferns, minute globular organs in which are the male cells. The branches bearing males are greenish, yellow, or even reddish, quite unlike the ashy gray foliage leaves which give to sphagnum its characteristic ashy gray color. Unlike the ferns, the male cells of sphagnum have only two tails, but they nevertheless swim, tail first, to the female, when the time for fertilization comes. The female branches are found mostly toward the upper end of the plant and bear the archegonia at their extremities.

From what we know of the reproductive stages in the ferns it is now obvious enough that in sphagnum moss, as we ordinarily see it, we have, because it bears antheridia and archegonia, a quite different condition from the ordinary spore-bearing leaves of ferns. For as yet spores have not been developed on the moss. The mating of male and female cells, directly on the plant, proves that in this “plant,” at least, our ordinary notion of this moss is mostly confined to a stage in its life history comparable in ferns to the production of archegonia and antheridia on the fern prothallus. From this mating of the male and female cells there results, as in the ferns, the production of a spore-bearing structure. This consists of a spore case, matured for the most part in the chamber occupied by the fertilized female cell, but ultimately its cap is carried upward. Later on the spore case ruptures, releasing the spores. As in the ferns, these germinate, forming a short green protonema followed by a prothallus. From this a short leafy branch develops, which completes the life cycle, as this is the young moss plant.

In other words, sphagnum, as we ordinarily see it, produces, on the plant, male and female cells which unite to form a spore case with spores in it. These are shed, develop into a protonema which is followed by the prothallus and from this the young moss plant develops. In ferns the conspicuous well-known stage is the spore-bearing one, in sphagnum it is the production of male and female cells directly on what appears to be the mature plant.

There are many other kinds of mosses than sphagnum, and their life histories differ in slight degrees from it. But they all agree in this, that the greenish, feathery little moss plant is a stage in its life history bearing male and female cells, the mating of which produces a spore-bearing contrivance. In most of the familiar green mosses this is a capsulelike body on a short stalk, usually well elevated above the green mass of plants. From this the spores are shed and develop into a protonema or “first thread” just as in ferns. Unlike them, and unlike sphagnum, the green mosses produce no thallus, and the young leaves of the moss are developed directly from this protonema.

LIFE HISTORY OF A MUSHROOM

The common mushroom that we eat is easily enough divided into a thick stalk, known as a stipe, and a broad hood called a pileus. The under side of the pileus is seen to be composed of thin plaits set closely together and radiating from the center toward the edge. These are known as gills. From among the gills the spores are shed when they are mature, usually foretold by the changing of the color of the gills from whitish to purplish and even to brown or blackish. The spores are then shed and ready for the next stage. From what we already know about ferns and mosses, it is clear that from these spores a mushroom cannot develop without the production of male and female cells and all the rest of that process of hidden marriage that characterizes all flowerless plants. But in most mushrooms no one has ever seen, nor have the most carefully conducted experiments ever demonstrated the germination of the spore. So far as we know at the present, many mushrooms may or may not produce their young through the germination of their spores in their native fields and meadows and the subsequent production of male and female reproductive organs. But if their spores do produce such organs, which all our knowledge of spores makes probable, it is, in a truer sense than in most cryptogams, a case of hidden marriage. The process of producing their young is thus a secret one that scientists have not yet been able to disclose. Of course it is a common practice of mushroom growers to purchase spawn from seedsmen which under favorable conditions will produce many young mushroom plants. This, however, is the production of young without mating of the sexes, a fairly common characteristic of many other plants which will be considered presently.

As we saw in the section devoted to Flowerless Plants in Chapter I, there are many other kinds of fungi than the familiar edible mushroom and their close relatives, the often deadly poisonous toadstools. The reproductive processes in these other fungi are fairly well understood, but they can hardly be included here. In the mold on bread, the yeast used in baking, the rust of wheat and the diseases of other plants and of animals, the individual organism is so minute that it can only be detected under the microscope. Their reproductive processes are, of course, on such a minute scale that they could be followed with profit only by those equipped to study them. They have been described in many botanical textbooks, and those interested in them should consult such books.

In recapitulating the reproductive processes in cryptogamous plants the thing that distinguishes them from all flowering plants is that they bear, in some stage of their life history, a spore. From this, in the great bulk of them, a mature plant never develops. Only by the production from the spore of some contrivance for bearing male and female cells, which may, as in some seaweeds, even be on different plants, can a mating of these be accomplished, and from this union will develop the mature plant. There are many modifications of this plan, but in nearly all of them the presence of water, for the free swimming of the male cell to its mate, is essential. Just as in flowering plants and in all the larger animals, however, the reproduction of young in cryptogams is a sexual process depending on the union of male and female. While in phanerogams that process may well be spoken of as visible marriage, with all the pageantry of insects and beautifully colored flowers, in cryptogams the process is not only a hidden marriage, its ways are sometimes so secret that, even in the common mushroom, the actual mating is conjectured rather than demonstrated.

THE PRODUCTION OF YOUNG PLANTS WITHOUT MATING

It is so generally true in all plants that a union of male and female is necessary for the production of young, and, as we have seen in most of them, the process is so uniformly successful that still another mode of producing them seems almost unnecessary. Yet in a surprisingly large number of plants new individuals, both of flowering and flowerless plants, are regularly produced without such a union and where sexuality has nothing to do with the increase.

In the life plant—a thick-leaved shrub from Mexico commonly grown in greenhouses—the leaves are wavy margined. From their edges, especially when injured, many tiny new plants will often start to grow. Even if the leaf is cut up into fairly small pieces many of these will develop young plants, and in various forms of the common rex begonia the leaves are usually cut into small pieces by gardeners for the production of young plants which always sprout from such pieces. It is useless to multiply such cases, as everyone knows of the production of young plants from the ends of strawberry runners, the cutting up of potatoes, the universal garden practice of making cuttings, and the sprouting of willows, all of which are effective by virtue of this faculty of plants to produce young quite without the intervention of different sexes. Not so well known are the cases of a liverwort, a small relative of the mosses, which, if chopped into fine pieces, each will develop into a new plant. We have already spoken of the spawn of mushrooms; and even on sphagnum moss, in addition to its sexual reproduction, it produces sterile branches that will root and, after separation from the old plant, form a new one.

Wherever this tendency is found, whether it be in a microscopic seaweed, some of which know no other means of reproduction, or in the showy begonia, it depends for its success upon a property of the ultimate unit of its structure, the cell. Sometimes, as in bacteria or the most minute seaweeds and in some other kinds, the whole plant consists of a single microscopic cell, when it is said to be a unicellular plant. All others, in which the grouping or modifications of the cell makes more complex structures, such as trees or shrubs and all the plants that grow, both flowering and flowerless, are called multicellular plants. Whether they be of one or many cells, these have the faculty of dividing, and by this division making two where one existed before the division. This division of cells is what happens in the normal growth of plants and it is this division, in more unusual ways, that results in the production of new plants without mating of the sexes. As cells are themselves microscopic, of course their division is equally so, and cannot be described in detail here. It has been many times described and pictured both in books on plants and animals, as it is the ultimate unit of the structure of both.

Plant life, then, seems to be better provided with means to renew itself than most animals, for, as we have seen, it has several methods to rely on. These may be divided into sexual, which includes both that in flowering plants with their visible mating and in flowerless plants with invisible mating, and asexual, literally without sex. In the latter are all those unicellular plants that reproduce themselves by simple division of the cell, and also those flowering plants that either naturally, as in life plant, or by the gardener’s art of making cuttings, produce new plants quite without the intervention of the sexes. Whether it be sexual or asexual, nature has more than fulfilled its obligation to the plant world in providing it opportunities for self-renewal. No matter what apparently unfavorable condition arises and often in spite of an almost unbelievable wastage of potential life stuff, the renewal goes on, or else there is the total disappearance of the species. So strong is this tendency to provide for renewal of their kind that many plants, if injured or cut by a mower, will almost in their last gasp hurriedly flower and set seeds, and we have already seen that the little liverwort, even if cut to pieces, also obeys that nearly universal law of nature: “Be fruitful and multiply.”

CHAPTER IV
THE FAMILIES OF FLOWERING PLANTS AND THEIR RELATIONSHIP

THERE are perhaps over 150,000 different kinds of flowering plants known in the world to-day, but the flowerless ones are fewer than these in numbers. No one really knows how many thousands of the cryptogams there may be in the world, for all of them have not yet been described, and there are doubtless thousands of which we merely suspect the existence. Flowering plants are so much better known, and have for 2,000 years been the subject of scientific writings, that their relationships and obvious groupings into families are fairly definite and often easily recognizable.

In our ordinary discussions or gossip of neighbors or relatives, the absolutely necessary starting point is to know their name. Their acquirement of this by christening, or by the adoption of it through the usage of parents, settles for life what they will be called. Plants are also christened, and that ceremony is one of the most important events in our subsequent discussion of them.