CHAPTER VII
FORM IV: JUNIOR GRADE (Continued)
STUDY OF FOOD
The pupils have been working with some of the well-known foods in all of their recipes and should have a fair knowledge of how to prepare them in simple ways for the table. It is now time for them to learn what these foods contain for the use of their bodies. Much of this part of the work can be taught in rooms without special equipment. An earnest teacher, with a few articles from home, can make the study interesting and valuable.
A series of lessons will be necessary for this purpose. The amount of work to be taken at one time is suggested, but this should be judged by the teacher. As in other lessons on theory, the remaining time of the lesson period should be used in practical work. Suggestions for such practical work are given under the lesson on "The Kitchen Fire", [page 92].
Practice lessons, to give variety and sustain interest, should be interspersed between these lessons as desired.
LESSON I
USES OF FOOD
The lesson may be introduced by asking the class to think in what way the body of a healthy baby, who is fed regularly, will have changed at the end of six months. It will be larger; it will have more flesh, more bone, more hair, etc. We want to get a name that will apply to any part of the body. No matter which part we examine through a microscope we find the same fine and beautiful texture, and to this we give a name similar to that given to fine, thin paper. We call it tissue—hair tissue, bone tissue, flesh tissue.
What has food done to the baby's tissues? It has enlarged its tissues; the child has grown larger. To the enlargement, or growth, of the tissues, we may apply the term, build, suggested by the building of a house. Then what may we say food does for the tissues of the body? We may say that food builds the tissues of the body.
Think of some persons who have taken food every day, and yet as long as you have known them they have not increased in size. What has food done for their tissues? The class must be told that the tissues of our bodies wear out through use, and that food has furnished the material to replace the worn-out parts. What do we say we are doing to clothes when we replace the worn parts? We are mending or repairing them. What does food do for our worn-out tissues? Food repairs the tissues of the body.
Do not think any more about the tissues of the body. Suppose you had not been able to get any food for several days. In what way would you be different from what you are now? You would not be as strong. Food gives strength or energy by being burned inside the body. There is a fire burning in our bodies all the time we are alive, the fuel being food. What do we require from the fire in our homes? We require heat. The fires in our bodies give us heat also. Any fire gives off both heat and energy. State another use of food to the body. Food produces heat and energy in the body.
But food does more for the body; it contains substances to keep our bodies in order. Suppose the clock gets out of order and does not keep good time, what does the watchmaker do to it? He regulates it. That is what certain kinds of food do for us. What then is another use of food? Food regulates the body.
Name the uses of food to the body.
1. It builds the tissues.
2. It repairs the tissues.
3. It produces heat and energy.
4. It regulates the body.
How then can we judge if a substance be a food? By deciding that it performs one of these duties in the body.
LESSON II
NECESSARY SUBSTANCES IN FOOD
The names of the substances in food which supply the material for the different uses of the body should be taken next.
1. For building and repairing.—(1) Mineral matter—used largely in hard tissues. (2) Nitrogenous matter, or protein—used largely for flesh. (3) Water—used in all tissues.
2. For fuel.—Carbonaceous matter (starch, sugar, fat).
3. For regulating.—Mineral matter, water.
Note.—The teacher should call attention to the fact that few foods contain all these substances, some have nearly all, some have only one, some two or more. In order to get all, we must eat a variety of foods. The class is now ready to consider the well-known foods, in order to find out which of these necessary substances each food contains, and to obtain a general idea of their comparative food values.
SOURCES OF FOOD
All nature supplies us with food. The three great divisions of nature are animal, vegetable, and mineral, and from each we obtain food, though most largely from the animal and vegetable kingdoms.
Animal food is some part of an animal's body or some product of an animal: examples—meat or fish, milk, eggs.
Vegetable food is some part of a plant: examples—vegetables, fruit, seeds.
Mineral food is some constituent of the earth's crust used as food. This mineral food is obtained by drinking water which in coursing through the earth has absorbed certain minerals, by eating plants which have absorbed the minerals from the soil, or by eating animal food which was built from plant food.
This preliminary survey of the sources of all our food gives the pupils a basis for classifying the foods with which they are familiar. They may be given exercises in doing this, and will not only find them interesting, but most useful as nature study.
STUDY OF THE COMMON FOODS
In beginning the analysis of the common foods, it must be remembered that the pupils have no knowledge of chemistry, and that what is found in each food must be discovered through the senses (seeing, smelling, tasting, feeling), or through a process of reasoning.
The pupils should also feel quite sure of what they are setting out to do; they are going to examine some particular, well-known food, to find which of the necessary food substances it contains. The food substances for which they are looking are water, mineral matter, nitrogenous matter, and carbonaceous matter (sugar, starch, fat).
It is better to provide each pupil with a sample of the food to be studied, but where conditions make this difficult, the one used by the teacher will suffice.
STUDY OF MILK
Lesson I
COMPOSITION
Milk is the best food to examine first, because it contains all the food elements except starch and because these can be easily found.
The pupils may each be asked to bring a half cup of milk from home. It may be allowed to stand in glasses while other work is taken.
When ready for the lesson, ask the pupils to look at the contents of the glass, and they will observe a difference of colour where the cream has risen. Nature itself has divided the milk into two parts. Pour off the top part and feel it. It feels greasy. Butter is made from this part. We have found fat—a carbonaceous food.
Move the milk around in the glass and let the pupils see that it is a liquid. Tell them that all liquid in a natural food is mostly water. We have, therefore, another food substance—water, a builder and regulator.
Let the pupils compare a glass of water with a glass of skimmed milk, and they see that something is dissolved in the water of the milk, giving it the white colour. Show them a glass of sour milk, where the white substance is separate from the water. Get the names curd and whey. Tell them how the cheesemaker separates sweet milk into curd and whey. If advisable, let them do it, but in any case show them some sweet milk separated by rennet. Examine the sweet whey. It tastes sweet, denoting the presence of sugar—another carbonaceous food.
Notice the greenish-yellow colour. Recall this same colour in water in which potatoes, cabbage, or other vegetables have been cooked. Tell the pupils that this colour is given by mineral matter being dissolved in the water.
There is still the curd of milk to examine. The use of the senses does not allow us to definitely decide what food substance the curd is. Tell the pupils it is protein, or find the name by a process of reasoning, thus: Recall the fact that babies live for several months on milk alone and during that time build all tissues of the body. Milk, therefore, must contain all tissue-building substances. Review the food substances which are necessary to build all body tissues—mineral matter, protein, and water. We have found the mineral matter and water in milk, but not the protein. Since curd is the only remaining part of milk, it must be largely protein.
Tell the pupils that the scum which comes on the top of milk, when it is boiled, is another kind of protein of which there is a small amount in solution in milk.
Lead the pupils to see that if starch were present, it would be in a raw form, and in this form is indigestible.
Lesson II
FOOD VALUE
The analysis of milk gives a key to the food value of milk and each of its by-products (cream, butter, butter-milk, sour milk, skim milk, curd, whey, cheese, junket). These may now be briefly discussed as to composition, food value, and cost.
CARE
Milk readily absorbs odours, bacteria, etc., and should be kept in covered, sterilized dishes in a pure, cool atmosphere.
EFFECT OF HEAT
Experiments should be made to show the effect of simmering and boiling temperatures. To save time, a different experiment may be given to each pupil, and the results reported.
1. Simmer sweet milk and note the flavour.
2. Boil sweet milk and note the flavour.
3. Simmer the curd of milk. Examine its texture.
4. Boil the curd of milk. Examine its texture and compare it with the simmered curd.
5. Boil skim milk and note the scum.
6. Simmer skim milk and note the absence of scum.
Note.—From the above experiments deduce the effect of heat on protein.
Practice lessons may now be given in preparing simple dishes in which milk is the main ingredient, or, at least, recipes may be given for these to be made at home. The following would be suitable: cream sauce, cream soups, custard, junket, cottage cheese, albuminized milk.
STUDY OF EGGS
Lesson I
PARTS
(1) Shell, (2) thick membrane, (3) white, (4) thin membrane, (5) yolk.
These parts are easily seen. Attention should be called to the pores in the shell, and it should be explained that these allow the entrance of bacteria which spoil the egg. Any means of closing these pores helps to preserve the egg.
METHODS OF PRESERVING
Cover the holes in the shell as follows:
1. Pack in salt, bran, sawdust, brine, or water-glass.
2. Coat the shells with fat or wax.
3. Wrap the eggs in paper.
Testing eggs by floating:
(1) slightly stale, (2) stale, (3) very stale
TESTS
1. In the shell:
After an egg is laid, the liquid which it contains begins to evaporate through the pores of the shell and, as this continues, a noticeable space is left inside.
(1) Shake the egg, holding it near the ear. If the contents rattle, it is somewhat stale.
(2) Drop the egg in cold water. If it sinks, it is fresh.
(3) Hold the egg between your eye and the light. If clear, it is fresh.
(4) A rough appearance of the shell denotes freshness.
2. Out of the shell:
White—this should be clear and cling to the yolk.
Yolk—this should round up like a ball.
CARE
1. If eggs are to be used in the near future, they should be washed and put in a pure, cool atmosphere. The lower shelf of the refrigerator is best, as odours rise, and eggs readily absorb these.
2. If eggs are to be preserved, they should not be washed unless their condition compels it, as washing removes the natural covering of the pores. They should be stored in a clean, cool place, and packed as soon as possible.
Lesson II
COMPOSITION
It is wiser to develop the food substances in an egg by reasoning, rather than by examining the different parts. The shell is not used for food, so it is the contents that should be studied. The class should be guided in the following sequence of thought:
1. An egg is designed by nature to become a chicken, so it must contain all of the substances necessary to build a chicken.
2. A chicken is an animal, and all animal bodies are made of the same substances. These we have seen to be mineral matter, protein, and water.
3. An egg therefore contains these three substances.
4. An egg must also contain three weeks' food for the chicken, therefore must have fuel food as well. This fuel food is found in the yolk, in the form of fat.
5. The yolk therefore contains water, mineral matter, protein, and fat.
6. The white contains water, mineral matter, and protein.
EFFECT OF HEAT ON EGGS
The following experiments will show the effect on both yolk and white of the usual methods of applying heat to eggs:
1. Boil an egg for three minutes and note the effect.
2. Boil an egg for twenty minutes and note the effect.
3. Put an egg in boiling water, remove from the fire, and let it stand covered from eight to ten minutes.
4. Fry an egg and note the effect.
Note.—The eggs may be put to boil and simmer at the beginning of the lesson, and pupils designated to take them from the heat at proper times. The eggs will then be ready to examine when required.
CONCLUSIONS
1. Boiling an egg for three minutes does not allow time for the heat to reach the yolk. The white is hard and tough just next the shell, but soft and liquid as it approaches the yolk.
2. Boiling an egg for twenty minutes hardens and toughens the white, so that it all becomes hard to dissolve or digest. It also gives the heat time to reach the centre and hardens the yolk, but does not toughen it or make it hard to dissolve or digest.
3. Allowing the egg to stand in the hot water coagulates the white to a jelly-like consistency without toughening it; it also cooks the yolk.
Lessons III, IV, etc.
USES OF EGGS
To give practice in preparing eggs and to show their special uses the following dishes would be suitable:
1. White:
For food—poached eggs on toast, simmered eggs
For cohesive (sticky) property—potato balls, fish balls
For clearing liquids—coffee
For holding air—foamy omelet
For decoration—hard-boiled eggs cut in fancy shapes for garnishing, meringue on lemon pudding, etc.
2. Yolk:
For food—egg-nog, scrambled eggs
For thickening liquids—custard, salad dressing, lemon pudding
For colouring foods—tapioca cream
For decoration—hard boiled and grated over salads.
STUDY OF VEGETABLE FOOD
Before beginning this part of the work, it would be most helpful if the class had one or two nature study lessons on the structure and organs of plants. With the pupils in possession of some knowledge thus acquired, the Household Management teacher has only to lead up to ideas of the preparation and value of these parts as food. These ideas should, as far as possible, follow in such a natural order that the pupils may even anticipate the sequence.
The outline may be as follows:
Lesson I
SOURCE
All vegetable food is obtained from plants; it is some part of a plant used as food.
PARTS OF PLANTS USED AS FOOD
1. Root—carrot, radish
2. Tuber—potato, artichoke
3. Bulb—onion
4. Stem—rhubarb, asparagus
5. Leaf—spinach, cabbage
6. Flower—cauliflower
7. Fruit—apple, orange
8. Seed—(1) Of trees (nuts)—beechnut, almond
(2) Of grasses (cereals)—wheat, corn, rice
(3) Of vines (legumes)—peas, beans, lentils.
In asking for examples of the different parts, there will be more interest and value if the questions correlate other subjects, for instance: For what fruit is Canada noted? What fruit does she import? Name a nut the squirrels gather.
Lesson II
COMPOSITION OF ANY PART OF A PLANT
From the foregoing, the pupils may infer that there are eight different foods to study. They should be led to see that in reality there is only one, as all parts of plants are, generally speaking, the same in structure. Referring to the animal body, they will know that a bone from the foot is of much the same structure as one from the face; that a piece of flesh from the leg is the same as a piece from any other part of the body. In the same way, if we study one part of a plant, it will be a type of all parts. In general the structure is as follows:
1. A framework, in cellular form, made of a substance called cellulose.
2. Material filling the cells:
(1) A juice in the cells of all parts of plants except seeds
(2) A solid in the cells of seeds.
To show the framework, some vegetable food having a white colour should be chosen, such as potato, parsnip, or apple.
It must be explained that all plants are made of a framework of numerous cells, something like a honey-comb. The cells in plants are of many different shapes, according to the plant, or the part of the plant, in which they are found. They are usually so small that they cannot be distinguished without a microscope; but occasionally they are large enough to be seen without one. Pass sections of orange or lemon, where the cells are visible. Make a drawing on the black-board of the cellular formation of a potato. Lead the class to understand that, in every case, the cell walls must be broken to get out the cell contents. To illustrate this, they may use potatoes, and break the cell walls by grating the potatoes. After they have broken up the framework, the cell contents should be strained through cheesecloth into a glass. They have now two parts to examine—cell walls and cell contents.
Cellular structure of a potato
Wash the framework to free it of any cell juice and study it first. Give its name, and note its colour and texture. Compare the framework of potatoes, strawberries, lettuce, trees, etc. Tell the class that in some cases part of the cellulose is so fibrous that it is used to make thread, cloth, or twine; for instance, flax and hemp.
Cellulose is most difficult to dissolve, so that practically little of it is digested. It serves a mechanical purpose in the digestive tract by helping to fill the organs and dilute the real food. If fibrous, it acts as an irritant and overcomes sluggishness of the intestines known as constipation. The outer coats of cereals are an example of coarse cellulose, as used in brown bread and some kinds of porridge.
Examine next the juice which was contained in the cells of the potato. The liquid shows much water; the colour indicates mineral matter in solution; the odour suggests a flavour; the white sediment is starch.
COMPOSITION OF POTATO JUICE
Water, mineral matter, flavouring matter, starch.
Draw attention to the fact that the potato is the part of the plant which acts as a storehouse. In such parts, starch is always found as the stored form of sugar; but, in parts which are not storehouses, sugar will be found in its stead. In rare cases both are found, as in the parsnip.
Note.—This is a good time to impress the fact that plants are the source of starch for manufacturing purposes. In England, potatoes are largely used; in Canada, corn. It will be interesting to state that the early settlers obtained their starch for laundry purposes at home from potatoes, by chopping or grinding them.
The insolubility of starch in cold liquids may be effectively reviewed at this part of the lesson. The starch has been lying in the water of the potato cells for several months, yet has not dissolved. Let two or three of the class gradually heat the potato juice with its starch sediment, stirring all the time to distribute the sediment evenly. They will find that a little less than boiling temperature dissolves the starch. This will show them that heat is necessary for the solution of starch, and a heat much greater than that in the body, hence raw starch is indigestible. Recall the milk lesson and the uselessness of starch as a component of milk, unless the milk be cooked.
Squeeze the juice from a sour apple or lemon, and note the taste. Explain that all fruit juices contain more or less acid. The effects of this acid in the body are similar to those of mineral matter.
Protein is also found in plant juices; but in such small quantities that it may be disregarded as a source of food supply.
GENERAL COMPOSITION OF PLANT JUICE
Water; mineral matter; flavouring matter; starch or sugar, or both; acid (in fruit juice).
Lesson III
COMPOSITION OF SOLID MATERIAL IN CELLS OF SEEDS
This part of the lesson may be developed as follows:
1. Seeds contain the building material for new plants, as well as their food for a short time.
2. Plants and animals require much the same material to build and feed them.
3. Animals require water, mineral matter, protein, sugar, starch, and fat.
4. Plants require the same; but the seed being a storehouse part of the plant, it will not have sugar, and water has to be supplied when the new plant is to be formed.
5. Seeds contain, therefore, mineral matter, protein, starch, and fat.
Note 1.—Seeds will grow in water until their stored food is used: they must then be planted in soil, to get further nourishment.
Note 2.—The two fuel foods, starch and fat, are not found together in abundance in seeds; one or the other will be much in excess. For instance, in walnuts there is a great deal of fat, while in peas and beans there is scarcely a trace of fat, but the starch is abundant.
COMPARATIVE FOOD VALUE OF DIFFERENT PARTS OF PLANTS
Only a very general idea of this should be attempted. The food value of any part of a plant can be roughly estimated by considering the office of that particular part in plant structure. Nature study will assist in this. The root collects the food to send it to the parts above; the stem is a hallway through which the food is carried in a more diluted form. The leaves serve the purpose of lungs and will not contain much food, though they naturally have a good deal of flavour; parsley, sage, and tea are examples of this. The fruit is a house to protect the seeds, and is made most attractive and delicious, so that animals will be tempted to eat this part, and thus assist in the dispersal of the seeds. The fruit has comparatively little food value as building material. The seed contains the stored material to build new plants, and therefore is the most nutritive part of all. It is the only part of the plant which contains an appreciable supply of building food, that is, which can take the place of eggs or meat in the diet. Baked beans are sometimes called "nuggets of nourishment" or "the poor man's beef".
Lesson IV
After discussing the food value of the different parts in this broad way, the pupils may be asked to consider the plant foods used in their diet and to compare their nutritive value.
The facts concerning these may be summed up as follows:
1. Green vegetables:
These generally contain much water, hardly any protein or fat, and a small amount of sugar. They are valuable mainly for their mineral matter and cellulose.
2. Root vegetables and tubers:
These are more nutritious than green vegetables, because they contain much more sugar and starch.
3. Ripe seeds (cereals, legumes, and nuts):
These are highly nutritious, because of the large amount of protein and building mineral matter they contain, and also the amount of fuel food.
DRIED VEGETABLES AND FRUIT
It is important that the value of these be pointed out. Dried foods contain all of the constituents of fresh food excepting water and a little flavour lost in evaporation, yet they are often much cheaper. Attention should be directed to the best means of restoring the water and, if necessary, of giving an additional flavour by the use of cloves, cinnamon, etc.
Canning is a better means of preserving food for export or for use when out of season, but where the expense prohibits this method, drying is a good substitute. In districts where fruit and vegetables cannot be grown or in seasons when they cannot be obtained fresh, the dried forms are cheap and have excellent food value.
THE COOKING OF VEGETABLE FOOD
As vegetable food is eaten both raw and cooked, the pupils should be asked to decide when cooking is necessary and what they wish it to accomplish.
There are only two substances in vegetable food which will require cooking, and these are:
1. Cellulose, if it be hard or tough
2. Starch, if it be present.
The pupils have found in their experiment with the potato water, that starch cooks quickly, hence the time of cooking will depend altogether on the texture of the cellulose. When the cellulose is softened at the centre, the last part which the heat reaches, the vegetable or fruit will be cooked.
If the food is cooked in water by boiling or simmering, much of the substance will pass into the cooking water. As the cell walls become softened, they allow the cell contents to partially pass out and the cooking water to pass in to fill the space. If the food is long in cooking, the water may have more value than the vegetable, and it should not be thrown away. It may be used in two ways—as a basis for a sauce or a soup.
GENERAL RULES FOR COOKING VEGETABLES
Note.—As the principles in the general rules have been taught, these rules may be dictated to the class.
PREPARATION
1. Wash, pare, peel, or scrape the vegetable, and cut it into convenient sizes.
2. Unless green vegetables are freshly gathered, soak them in cold water for an hour before cooking.
3. Soak dried vegetables at least twelve hours.
COOKING
1. Put all vegetables on to cook in boiling water, except dried vegetables, which should be put on in cold water.
2. Strong-smelling vegetables should be cooked at simmering point, the others may boil gently.
3. For vegetables that grow above ground (including onions), salt the water (one tsp. to a quart).
4. For underground vegetables, do not salt the water.
VEGETABLE RECIPE
Prepare and cook the vegetables until tender, according to the rules given above. Drain off and measure the vegetable water. For each 1/2 cup of vegetable, take 1/4 cup of the water and make into a sauce. Re-heat the vegetable in the sauce and serve in a hot dish.
Note 1.—For potatoes and tomatoes do not follow this recipe.
Note 2.—The sauce is made by thickening each cup of vegetable water with two tablespoonfuls of flour, and seasoning as desired with salt, pepper, and butter.
Note 3.—Another method of saving and using the valuable vegetable water is to make it into a soup.
GENERAL RULES FOR COOKING FRUIT
FRESH FRUIT
1. Stewed.—Put the prepared fruit in a saucepan with enough water to keep it from burning. Cover closely, and stew until tender, stirring often. Add the sugar and let the mixture boil a minute more.
2. Cooked in syrup.—Make a syrup of one part sugar to two or three parts water. Put the prepared fruit in the hot syrup, cover closely, and simmer until tender.
DRIED FRUIT
Wash the fruit thoroughly. Cover with cold water and soak twenty-four hours. Put on to cook in the same water in which it has soaked. Add spices if desired. Cover closely and simmer until tender. Add the sugar and simmer ten minutes longer. Take out the fruit, and, if necessary, boil down the syrup, then pour it over the fruit.
Lessons V, VI, etc.
While studying vegetable food, practice will be given in nearly every lesson in the preparation and cooking of vegetables or fruit, but after the completion of this series of lessons, these foods should be prepared and cooked with more intelligence and interest. For this reason, there may be, at the last, one general practical lesson devoted to vegetables and fruit, to review and impress the facts that have been taught. As potatoes, on account of their large amount of starch, require special care, an extra lesson may be given to this vegetable.
In the lesson on potatoes the attention of the class should be directed to the following:
POINTS IN COOKING POTATOES
1. Be sure to soften the cellulose thoroughly.
2. After the potatoes are cooked, get rid of all possible moisture, that they may be white and mealy.
(1) If potatoes are cooked in water, drain them thoroughly, remove the cover, and shake over the heat to dry out the starch.
(2) If potatoes are baked, break the skins and allow the moisture to escape as steam.
3. When serving mashed potatoes, pile them lightly without smoothing.
USE OF STARCH TO THICKEN LIQUIDS
A lesson on the use of starch for thickening purposes should be given before lessons on the making of a sauce or a soup from the water in which vegetables have been cooked. The necessity of separating the starch grains should be shown by experiments.
EXPERIMENTS IN USING STARCH FOR THICKENING
(Any powdered starch may be used)
1. Boil 1/4 cup of water in a small saucepan. While boiling, stir into it 1/2 tsp. of cornstarch and let it boil one minute. Observe the result. Break open a lump and examine it.
2. Mix 1 tsp. of cornstarch with 2 tsp. of cold water, and stir into 1/4 cup of boiling water. Note the result.
3. Mix 1 tsp. of cornstarch with 2 tsp. of sugar and stir into 1/4 cup of boiling water. Note the result.
4. Mix 1 tsp. of cornstarch with 2 tsp. of melted fat in a small saucepan and stir into it 1/4 cup of boiling water. Note the result.
CONCLUSIONS BASED ON THE FOREGOING EXPERIMENTS
1. Starch granules must be separated before being used to thicken a liquid:
(1) By adding a double quantity of cold liquid
(2) By adding a double quantity of sugar
(3) By adding a double quantity of melted fat.
2. The liquid which is being thickened must be constantly stirred, to distribute evenly the starch grains until they are cooked.
BASIC RECIPE FOR LIQUIDS THICKENED WITH FLOUR.
| Milk | Flour | Butter | |
| Thin cream sauce | 1 cup | 1 tbsp. | 1 tbsp. |
| Thick cream sauce | 1 cup | 2 tbsp. | 2 tbsp. |
Note.—Use thick cream sauce to pour over a food. Use thin cream sauce when solid food substance is mixed with the sauce.
VARIATIONS OF BASIC RECIPE
1. Tomato sauce.—Use strained tomato juice instead of milk.
2. Vegetable sauce.—Use vegetable water in place of the milk.
3. Cheese sauce.—Use 1/3 to 1/2 cup of grated cheese in 1 cup of thick cream sauce.
CREAM OF VEGETABLE SOUPS
At least one practice lesson should be given on the making of these soups. The value of the vegetable water should be impressed upon the pupils, and it may be pointed out that these soups are an excellent way of using the cooking water and any left-over vegetable.
The difference between tomatoes and other vegetables should be noted. Tomatoes are a fruit and, as such, contain an acid. The acid would curdle milk and must be neutralized by the use of soda, before milk can be added.
Utensils used for cream soups
PRINCIPLES OF CREAM SOUPS
1. The liquid may be all milk, part vegetable water and milk, or all vegetable water.
2. The amount of flour used for thickening depends on the vegetable. Starchy vegetables need only 1/2 tbsp. to one cup of liquid; non-starchy vegetables need 1 tbsp. to a cup.
3. The ingredients are combined as follows:
(1) The liquid is heated and thickened with flour.
(2) The seasonings of butter, salt, and pepper are added.
(3) The vegetable pulp is added in any desired quantity, usually about two tbsp. to one cup of liquid.
A special recipe should be given for cream of tomato soup, so that the proportion of soda may be correct.
Note.—If flavours of onion, bay-leaf, parsley, etc., are desired, these should be cooked with the vegetables, so as to be extracted in the vegetable water.
OUTLINE OF LESSONS ON COOKING SEEDS
CEREALS: WHEAT, OATS, CORN, RICE, RYE, BARLEY
1. Forms in which used:
(1) Whole or cracked grains—rice, cracked wheat, coarse oatmeal, etc.
(2) Granular—corn meal, cream of wheat, fine oatmeal, etc.
(3) Rolled or flaked grains—wheat, oats, corn, rice, etc.
(4) Powdered—wheat flour, rice flour, etc.
2. Cooking cereals for breakfast:
For 1 cup of water use 1/4 tsp. of salt and the following cereal—
Whole or cracked—1/4 cup of cereal
Granular—3 tbsp. of cereal
Rolled or flaked—1/2 cup of cereal.
Put salt and water in the inner part of a double boiler, and set directly over the fire. When steaming hot, gradually stir in the dry cereal, and keep stirring until the starch has thickened and boiled. Stir carefully, so as not to break the flakes of rolled cereals. Then set the inner dish inside the outer part of the double boiler, in which there should be boiling water, and cook from two to four hours.
Note 1.—Rice has very tender cellulose and cooks in 3/4 hr.
Note 2.—Rolled or flaked cereals have been steamed an hour or more to soften them for rolling, so require less cooking.
Note 3.—Cereals may be cooked for breakfast the day before, but should not be stirred while being re-heated.
LEGUMES: PEAS, BEANS, LENTILS
1. Forms in which used:
(1) Ripe seeds
(2) Meals—pea meal, etc.
2. Cooking of dried legumes:
(1) Soak in cold, soft water for twelve hours or more, and then drain and rinse. Hard water may be softened by boiling, or by the addition of soda (1/8 tsp. of soda to 1 pt. of water).
(2) Cook by simmering in softened water until they are soft.
(3) After simmering, the beans may be baked.
NUTS
Forms in which used:
1. Whole or broken nuts—used as dessert or in cakes, salads, etc.
2. Butters—ground and mixed with other ingredients to make a paste.
3. Meals—ground and used to thicken soups.
SALADS
The series of lessons on vegetable foods being finished, it is a good time to take a salad lesson. All salads were originally made from fresh young plants or salad greens, and though any food material is now used for the purpose, the subject seems to follow naturally the lessons on plant food.
The pupils should derive unusual pleasure from this work. The dishes made are most attractive and appetizing, besides affording an opportunity for each member of the class to display individual artistic skill. None of the principles are new, so that the lesson will be really a review.
The outline of notes for the class will be:
INGREDIENTS OF SALADS
1. Salad plants proper, such as lettuce, water-cress, celery, cabbage
2. Cooked vegetables, such as peas, beans, asparagus, carrots, beets
3. Meat—cold, of any kind
4. Fish—cold, of any kind
5. Eggs—hard-boiled
6. Fruit
7. Combinations of the above in great variety.
FOOD VALUES OF SALADS
This depends on the ingredients. If salad greens only are used, the food value is mainly the mineral matter, but the dish will be refreshing and appetizing, and the oil, butter, or egg used in the dressing adds nutriment.
Salads are prepared with little trouble and with no expense for fuel.
PREPARATION OF SALAD INGREDIENTS
1. Have everything cold before combining.
2. Freshen the greens in cold water until crisp.
3. Meat, fish, and solid ingredients should be seasoned some time before using, so that they may absorb the flavours of the seasoning.
4. In most cases do not combine the ingredients with the dressing until just before serving.
(1) Salad greens.—Wash thoroughly, and put in cold water until crisp, drain on a towel, wrap in a damp cloth, and put in a cool place. Cabbage and lettuce may be finely shredded.
(2) Fruit and cooked vegetables.—Cut into cubes or suitable pieces. Chill and mix with the dressing, to absorb it.
(3) Meats.—Remove the fat, skin, and gristle. Cut in cubes and chill.
(4) Fish.—Remove the bones, flake, chill, and pour dressing over; but do not mix.
DRESSINGS FOR SALADS
1. Cooked salad dressing:
| 2 tbsp. sugar | 1/4 cup vinegar |
| 1/2 tsp. mustard | 2 eggs |
| 1/2 tsp. salt | 2 tbsp. butter. |
(1) Mix the first four ingredients in a saucepan and heat until dissolved.
(2) Beat the eggs very light in a round-bottomed bowl, using a Dover egg beater.
(3) Beat the vinegar mixture into the eggs.
(4) Set the bowl, with its contents, over a dish of boiling water, then beat slowly and constantly until the mixture is thickened.
(5) Lift the bowl from the heat at once.
(6) Beat in the butter and set away to cool.
(7) If desired, a half cup of whipped or plain cream may be added just before the dressing is used.
2. Uncooked salad dressing:
| 1/4 tsp. salt | 4 tbsp. olive oil |
| 1/8 tsp. pepper | 2 tbsp. vinegar. |
(1) Stir the salt and pepper into the oil.
(2) Add the vinegar slowly and stir vigorously until well blended and slightly thickened.
(3) Serve with any salad made of salad greens.
STUDY OF MINERAL FOOD
As the study of mineral food involves a knowledge of chemistry, little more can be done in Junior classes than to teach that certain mineral compounds are required for the body, to point out their two main uses, and to lead the pupils to know the foods which generally supply these.
Their attention should be directed to the fact that all mineral matter is found, in the first place, in the earth's crust, but that, with the exception of salt, animals cannot use it in that form. Plants can use it, and they absorb it from the soil; then we eat the plants, and in that way obtain the mineral substance, or we may obtain it by eating the animals which have eaten the plants. Water also, in making its way through the earth, may dissolve certain minerals and, by drinking the water, we obtain these.
It will not be necessary to teach the names of the minerals which our food must supply, as most of these will mean nothing to the pupils. They might be asked to name one or two which are very familiar; for instance, the lime in bone and the iron in blood. They may be told that there are a few others which they will learn when they study chemistry in the high school.
The pupils have already learned that mineral matter serves two main functions in the body: that is, building and regulating, and it is a good plan to classify the well-known foods under these two headings. With a little guidance the pupils can do most of this for themselves. They know that milk serves all building purposes in a child's body, and must, therefore, contain mineral matter. Eggs build animal bodies, and must contain this substance also. Meat is the animal body that has been built, therefore meat has this substance; but we shall find in the meat lessons that there is no mineral matter in fat and that the cook cannot dissolve it out of bone, therefore muscle or lean meat must be eaten to obtain it. Seeds, too, contain building material for new plants; therefore, the building mineral matter must be stored in their cells. Hard water is known by the lime it contains, therefore this, if drunk, assists in the formation of bone.
The class must be told that the mineral in the juices of plants is mainly for regulating purposes; that is, to keep our bodies in order, or as we say, healthy. When they get out of order, we usually go to a doctor to be regulated or made well. The medicine which he prescribes often contains some mineral in solution, perhaps iron. The mineral matter which is in the juices of plants, being a more natural form than the mineral matter in the medicine, is more easily made use of in the bodily processes. This is one reason why people should eat plenty of vegetables and fruit.
Many springs also furnish water with large quantities of mineral matter in solution, which is used mainly for medicinal purposes. The pupils may know some places where we find such springs, and these should be mentioned, such as Preston Springs, Banff, and Mount Clemens, which have become health resorts through the presence of these waters. When the springs are in a distant country and their waters are known to contain a certain mineral which our bodies need, the water is bottled and shipped to us, and may be obtained from a druggist. Hunyadi Janos, Apenta, Vichy, and Apollinaris are well-known medicinal waters shipped from European springs.
SUMMARY OF SOURCES OF MINERAL FOODS
1. Building mineral matter.—Milk, eggs, lean meat, seeds, hard water
2. Regulating mineral matter.—Fruit, vegetables, mineral waters, salt.
Note.—This classification will be most useful to the pupils in preparing well-balanced meals in their diet lessons.
DIET
After studying in this elementary way the composition of the animal and vegetable foods, the pupils will be ready for simple lessons on diet. The class may now be said to have a working knowledge of the well-known foods, and they should be given a chance to use this knowledge, by combining and serving these foods for simple meals.
REFERENCE TABLES OF FOOD CONSTITUENTS
It will be helpful in this work, to guide the pupils in making out a reference table of the food constituents. This will give lists of food in which each constituent predominates, as follows:
1. Water:
Beverages (water, milk, tea, coffee, cocoa), fruit, vegetables.
2. Mineral matter:
(1) For building—milk, eggs (yolk and white), lean meat or fish, seeds, hard water
(2) For regulating—fruit, vegetables, mineral waters.
3. Protein:
Milk (curd), eggs (yolk and white), lean meat or fish, seeds.
4. Sugar:
Fruit (juice), non-starchy vegetables (juice), milk (whey), commercial sugar.
5. Starch:
Parts of plants which serve as storehouses:
Tubers—potatoes, artichokes
Roots—parsnip, tapioca, arrowroot
Stem—sago
Seeds—cereals, legumes, some nuts (peanuts, chestnuts).
6. Fat:
Milk (cream), egg-yolk, meat or fish (fat), fruit, as the olive (oil), most nuts (walnut, butternut, pecan, peanut, etc.).
Besides the necessary substances in food, the pupils must be told that there are other points for the housekeeper to consider when preparing the meals, namely:
1. The amount of each food substance required daily.
2. Special requirements of individuals according to: (1) age, (2) occupation, (3) climate, (4) season.
Under 1, above, it may be explained, that when a meal is prepared which gives the body a correct proportion of each food substance, it is said to be well balanced. From numerous experiments the "Dietary Standard" for one day for a grown person has been calculated to be:
Water—about 5 pints, two of which are taken in solid food
Mineral matter—1 ounce
Protein—3 to 4-1/2 ounces
Fat—2 ounces
Sugar and starch (together)—14 to 18 ounces.
Although the pupils cannot be expected to follow this table accurately, from lack of sufficient knowledge, it will be of some assistance to them in choosing a combination of food for the home meals.
Under 2, above, some of the variations of food are obvious, but some must be taught. Children require simple, nourishing food, which will contain plenty of protein and mineral matter for tissue building as well as much fuel food. Their diet should be varied and abundant.
In old age the diet should also be simple, because of the lack of vigour in the digestive organs, but the amount of building material should be decreased. The food of old people should contain proportionately more carbonaceous material.
Brain workers require less food than those engaged in active muscular work, and it should be less stimulating and less bulky. Their diet should be in a form that is easily digested.
With the foregoing general ideas in mind, the pupils may be asked to prepare menus for simple home meals. These should be assigned as home work, so that plenty of time can be given to their consideration, and then they may be brought to the class for criticism. The best of these should be chosen for actual practice in school work.
Note.—It is intended that this part of the work shall be presented in a very rudimentary way. The teacher should feel satisfied if she succeeds in implanting ideas of the importance of these food considerations, so that the pupils will be ready for more specific instruction to be gained in higher schools or from their own reading. Cheap bulletins on Human Nutrition, published by Cornell University, will be excellent reading on this subject.
PREPARING AND SERVING MEALS
Before the pupils are given a meal to prepare and serve, table setting should be reviewed, and the rules of table service taught as follows:
RULES FOR SERVING
1. The hostess serves the soup, salad, dessert, tea, and coffee; the host serves the meat and fish.
2. Vegetables and side dishes may be served by some one at the table or passed by the waitress.
3. Dishes are served at the left of each person, commencing with the chief guest.
4. Guests are served first; ladies before gentlemen.
5. In each course, remove the dishes containing the food before removing the soiled plates.
6. When one course is finished, take the tray in the left hand, stand on the left side of the person, and remove the individual soiled dishes with the right hand, never piling them.
7. Before dessert is served, if necessary, remove the crumbs from the cloth with a brush, crumb knife, or napkin.
8. Tea or coffee may be poured at table or served from a side table by the waitress.
Note.—Extra cutlery and napkins should be conveniently placed on a side table, in case of accident.
Where the class consists of twelve or more pupils, it must be divided for the preparation and serving of a meal. Each section should prepare and serve a meal for the others, until all have had experience. As breakfast and luncheon are the simpler meals, they should be taken first in the order of lessons. The duties of the cooking and serving should be definitely settled, and each girl given entire responsibility for a certain part of the work.
Those who are served should represent a family. Members should be chosen to act as father, mother, lady guest, gentleman guest, and children of varying ages, so that the duties and serving of each may be typified.