Frequency Table for the Message
| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 15 | 13 | 15 | 8 | 13 | 20 | 16 | 16 | 30 | 21 | 13 | 27 | 14 | 19 | 15 | 26 | 13 | 9 | 33 | 30 | 17 | 12 | 19 | 20 | 19 | 11 |
This clearly eliminates Cases 4, 5 and 6.
Referring to the recurring words and groups above noted, we figure the number of letters between each.
| AII | ... | AII | 45 | = | 3×3×5 |
| BK | ... | BK | 345 | = | 23×3×5 |
| CT | ... | CT | 403 | No factors | |
| CTW | ... | CTW | 60 | = | 2×2×3×5 |
| DL | ... | DL | 75 | = | 3×5×5 |
| ES | ... | ES | 14 | = | 2×7 |
| FJ | ... | FJ | 187 | No factors | |
| NP | ... | NP | 14 | = | 2×7 |
| OL | ... | OL | 120 | = | 2×2×2×3×5 |
| OS | ... | OS | 220 | = | 11×2×2×5 |
| OSB | ... | OSB | 465 | = | 31×3×5 |
| PO | ... | PO | 105 | = | 7×3×5 |
| SQ | ... | SQ | 250 | = | 2×5×5×5 |
| TLF | ... | TLF | 80 | = | 2×2×2×2×5 |
| TP | ... | TP | 405 | = | 3×3×3×3×5 |
| UV | ... | UV | 115 | = | 23×5 |
| XMKU | ... | XMKU | 120 | = | 2×2×2×3×5 |
| UV | ... | UV | 73 | No factors | |
| YJ | ... | YJ | 85 | = | 17×5 |
The dominant factor is clearly 5, so we may consider that five alphabets were used, indicating a keyword of five letters. Writing the message in lines of five letters each and making a frequency table for each of the five columns so formed, we find the following: