EXAMPLE OF THE SUN AND THE RAYS.
5. In order to clear up this point, the following illustration has been much used. Let us imagine a multitude of rays, which start from a single centre; and you will succeed in conceiving the multitude begotten in the intelligible world. But, admitting this proposition, that things begotten in the intelligible, and which are called multitude, exist simultaneously, one observation must be added: in the circle, the rays which are not distinct may be supposed to be distinct, because the circle is a plane. But there, where there is not even the extension proper to a plane, where there are only potentialities and beings without extension, all things must be conceived as centres united together in a single centre, as might be the rays considered before their development in space, and considered in their origin, where, with the centre, they form but a single and same point. If now you imagine developed rays, they will depend from the points from where they started, and every point will not be any the less a centre, as nothing will separate it from the first centre. Thus these centres, though united to the first centre, will not any the less have their individual existence, and will form a number equal to the rays of which they are the origins. As many rays as will come to shine in the first centre, so many centres will there seem to be; and, nevertheless, all together will form but a single one. Now if we compare all intelligible entities to centres, and I mean centres that coincide in a single centre and unite therein, but which seem multiple because of the different rays which manifest, without begetting them, such rays could give us some idea of the things by the contact of which intelligible being seems to be manifold and present everywhere.