DEFINITION XVII.

A Diameter of a Circle is a certain straight Line, drawn through the Centre, which is terminated both ways by the Circumference of the Circle, and, divides the Circle into two equal Parts.

Euclid here perspicuously shews, that he does not define every diameter, but that which belongs to a circle only. Because there is a diameter of quadrangles and all parallelograms, and likewise of a sphere among solid figures. But in the first of these, it is denominated a diagonal: but in a sphere, the axis; and in circles the diameter only. Indeed, we are accustomed to speak of the axis of an ellipsis, cylinder, and cone; but of a circle, with propriety, the diameter. This, therefore, in its genus, is a right-line; but as there are many right-lines in a circle, as likewise infinite points, one of which is a centre, so this only is called a diameter, which passes through the centre, and neither falls within the circumference, nor transcends its boundary; but is both ways terminated by its comprehensive bound. And these observations exhibit its origin. But that which is added in the end, that it also divides the circle into two equal parts, indicates its proper energy in the circle, exclusive of all other lines drawn through the centre, which are not terminated both ways by the circumference. But they report, that Thales first demonstrated, that the circle was bisected by the diameter. And the cause of this bisection, is the indeclineable transit of the right line, through the centre. For, since it is drawn through the middle, and always preserves the same inflexible motion, according to all its parts, it cuts off equal portions on both sides to the circumference of the circle. But if you desire to exhibit the same mathematically, conceive the diameter drawn, and one part of the circle placed on the other[171]. Then, if it is not equal, it either falls within, or without; but the consequence either of these ways must be, that a less right-line will be equal to a greater. Since all lines from the centre to the circumference are equal. The line, therefore, which tends to the exterior circumference, will be equal to that which tends to the interior. But this is impossible. These parts of the circle, then, agree, and are on this account equal. But here a doubt arises, if two semi-circles are produced by one diameter, and infinite diameters may be drawn through the centre, a double of infinities will take place, according to number. For this is objected[172] by some against the section of magnitudes to infinity. But this we may solve by affirming, that magnitude may, indeed, be divided infinitely, but not into infinites. For this latter mode produces infinites in energy, but the former in capacity only. And the one affords essence to infinite, but the other is the source of its origin alone. Two semi-circles, therefore, subsist together with one diameter, yet there will never be infinite diameters, although they may be infinitely assumed. Hence, there can never be doubles of infinites; but the doubles which are continually produced, are the doubles of finites; for the diameters which are always assumed, are finite in number. And what reason can be assigned why every magnitude should not have finite divisions, since number is prior to magnitudes, defines all their sections, pre-occupies infinity, and always determines the parts which rise into energy, from dormant capacity?