Bones of the Extremities.

The Scapula in its double spine, the osseous arch formed by the confluence of the acromion with the coracoid process, and the substitution of a distinct foramen for the suprascapular notch, agrees with that of the Megatherium: but the span of the acromial arch is relatively wider, and the surface for the articulation of the clavicle is better marked. This articular surface, which is distinctly shewn upon the acromion of both the scapulæ in Pl. [XX]. is the more interesting, as being the only evidence of the clavicle of the Scelidothere which we at present possess; but it is enough to prove that this quadruped enjoyed all the advantages in the actions of the fore extremity, which arise out of the additional fixation of the shoulder-joint afforded by the clavicle—a bone which the extinct Megatherioids are the largest of the mammiferous class to possess in a completely developed state. The form, position, and aspect of the glenoid cavity for the humerus closely correspond with the condition of the same part in the Megatherium. The limits of the acromial and coronoid portions of the arch were still defineable in the present skeleton, which indicates the nonage of the individual in the unanchylosed condition of most of the epiphysiaes.

In regard to the presence of a clavicle in the Megalonyx M. Lund has deduced certain conclusions, which, if well founded, would be equally applicable to the present allied species, and to the great Megatherium. I am induced, therefore, to offer a few physiological observations on that bone, which appear to me to lead to a more correct interpretation of its uses and relations in the great mammiferous animals now under consideration.

When the anterior extremities in mammalia are used simply for the purpose of progressive motion on dry land, as in the Pachyderms and Ruminants, or in water, as in the Cetaceans, there is no clavicle; this bone is introduced between the sternum and acromion, in order to give firmness and fixity to the shoulder-joint when the fore-leg is to discharge some other office than that of locomotion. In these cases, however, the clavicle exists in various degrees of development, and even its rudiment may be dispensed with in some of the actions which require a considerable extent of lateral or outward motion, and of freedom of rotation of the fore-limb. When, therefore, we find the clavicle fully developed in the skeleton of an extinct mammiferous animal, and so placed as to give the humeral articulation all the benefit of this additional mechanism, we may confidently expect that it will afford an insight into the habits and mode of life of such extinct species. M. Lund[[51]] has argued from the clavicle of the Megalonyx, that it climbed like a Sloth. “Animals,” says Sir C. Bell,[[52]] “which fly or dig, or climb, as Bats, Moles, Porcupines, Squirrels, Ant-eaters, Armadillos, and Sloths, have this bone; for in them, a lateral or outward motion is required.” But in regard to the present problem, we have to enquire whether the clavicle manifests any modifications of form, of strength, or development in relation to the special differences of these several actions, with which its presence is asserted to be associated?

In mammals which fly, the clavicle is always complete: the rabbit, the fox, and the badger are instances of burrowing animals in which the clavicle is absent or rudimental. The presence of a perfect clavicle is not more constant in climbing quadrupeds. The Ai, for example, has an incomplete clavicle, which is attached to the acromion process, and terminates in a point about one-fourth of the distance between the acromion and the top of the sternum, to which the clavicular style is attached by a long slender ligament: the advantage, therefore, which a perfect clavicle affords in the fixation of the shoulder-joint, is lost to this climber par excellence. Again, the Bears, which are the bulkiest quadrupeds that are gifted with the faculty of climbing, and this in so perfect a degree that the Sun-bears of the Eastern Tropics may be termed arboreal animals,—these scansorial quadrupeds are destitute of even the smallest rudiment of a clavicle, as I have ascertained by repeated careful dissection.

Since, therefore, a clavicle in any degree of development is not essential to a climbing quadruped, we must seek for some other relation and use of that remarkably strong, and perfect bone, as it exists in the Megathere, Megalonyx, and Scelidothere. The absence of ‘dentes primores’ or of anterior or incisive teeth in these quadrupeds at once sets aside any idea of its connection with an action of the fore extremities, very common in the mammals which possess clavicles, viz., that of carrying the food to the mouth, and holding it there to be gnawed by the teeth. Flying is of course out of the question, although our surprise would hardly be less at seeing a beast as bulky as an elephant climbing a tree, than it would be to witness it moving through the air. If now we restrict our comparison to the relations of the clavicle in that order of Mammalia to which the extinct species in question belonged, we shall see that it is most constant, strongest, and most complete in those species which make most use of their strong and long claws in displacing the earth, as the Armadillos and Orycteropus: and, as the clavicle is incomplete in one climbing Edental, we are naturally led to conclude that its perfect development in an extinct species must have been associated with uses and relations analogous to those with which it coexists in other genera of the same order. Thus it will be seen, that, in rejecting the conclusion drawn by M. Lund from the presence of a clavicle, I concur in the opinion expressed by Dr. Buckland[[53]] that the Megatherium—and with it the Megalonyx and Scelidotherium—had the shoulder-joint strengthened by the clavicle, in reference to the office of the fore-arm, as an instrument to be employed in digging roots out of the ground. Not, however, that these gigantic quadrupeds fed on roots, but rather, as the structure of the teeth would show, on the foliage of the trees uprooted by the agency of this powerful mechanism of the fore-legs, and of the otherwise unintelligible colossal strength of the haunches, hind legs, and tail.

The humerus presents a large convex oval head, on each side of which is a tuberosity for the implantation of the supra- and sub-scapular muscles: these tuberosities do not rise above the articular convexity, so as to restrict the movements of the shoulder-joint, as in the Horse and Ruminants, but exhibit a structure and disposition conformable to those which characterize the proximal extremity of the humerus in other mammalia which enjoy rotatory movements of the upper or fore-limb. The tuberosities are, however, relatively more developed, and give greater breadth to the proximal end of the humerus in the Scelidothere than in the Megathere. The distal end of the humerus, although mutilated, clearly indicates that it had the same characteristic breadth of the external and internal condyles, as in the Megatherium. In fig. 1. Pl. [XXV]. which gives a front view of the left humerus, the broad internal condyle, with its extremity broken off, is seen projecting to the left hand; both in this figure and in fig. 2. in which the internal side of the humerus is turned towards the observer, the wide groove, with its two osseous boundaries, is shewn, which plainly indicates that the left condyle was perforated for the direct passage of the artery or median nerve, or of both, to the fore-arm. The groove for the musculo-spiral nerve on the outer side of the humerus is over-arched at its upper part by a strong obtuse process; which is comparatively less developed in the Megatherium. The trochlear or inferior articular surface of the humerus presents, as in the Megatherium, two well-marked convexities, with an intervening concavity: this indication of the rotatory power of the fore-leg is confirmed by the form of the head of the radius.

In Pl. [XXV]. fig. 4. a view is given of this articular surface: it presents the form of a subcircular gentle concavity, which plays upon the outer convexity of the humeral articular surface: immediately below the upper concavity the radius presents a lateral smooth convex surface, which rotates upon a small concavity on the ulna, analogous to the ‘lesser semilunar,’ in human anatomy, in which the mechanism for rotation, so far as the upper joint of the radius is concerned, is not more elaborately wrought out than in the present extinct edentate quadruped. The radius expands as it proceeds to the elbow-joint, where it attains a breadth indicative of the great power and size of the unguiculate paw, of which it may be called the stem, and to the movements of which it served as the pivot.

All the bones of the fore-limb just described—the scapula, the humerus, and the radius,—indicate by the bold features and projections of the muscular ridges and tubercles the prodigious force which was concentrated upon the actions of the fore-paw, and the ulna, in its broad and high olecranon (of which a side view is given in fig. 2. Pl. [XXV].) gives corresponding evidence. The great semilunar concavity is traversed by a sub-median smooth ridge, which plays upon the interspace of the two humeral convexities. The body of the bone is subcompressed, straight, and diminishes in size as it approaches the carpal joint: the immediate articulating surfaces are wanting in both the radius and ulna, the epiphyseal distal extremities having become detached from their respective diaphyses.

Of the terminal segment of the locomotive extremities, the only evidence among the remains of the skeleton of the Scelidothere is the ungueal phalanx figured at Pl. [XXVII]. 3, 4, and 5; but as it is uncertain whether it belongs to the fore or hind-foot, it will be described after the other bones of the extremities have been noticed.

Of these bones the femur is the most remarkable, both for its great proportional size, and its extreme breadth, as compared with its length or thickness: but in all these circumstances the affinity of the Scelidothere with the Megathere is prominently brought into view. There is no other known quadruped with which the Scelidothere so closely corresponds in this respect. In proceeding, however, to compare together the thigh-bones of these two extinct quadrupeds, several differences present themselves, which are worthy of notice: of these the first is the presence in the Scelidothere of a depression for a ‘ligamentum teres’ on the back part of the head of the femur, near its junction with the neck of the bone: this is shewn in the posterior view of the femur given in Pl. [XX]. The head itself forms a pretty regular hemisphere: the great trochanter does not rise so high as in the Megatherium, but, relatively, it emulates it in breadth: the small trochanter is proportionally more developed: the external contour of the shaft of the femur is straighter in the Scelidothere than in the Megathere, and the shaft itself is less bowed forwards at that part. The articular condyles occupy a relatively smaller space upon the distal extremity of the femur in the Scelidothere, and they differ more strikingly from those of the Megathere, in being continued one into the other: the rotular surface, for example, which is shewn in fig. 5. Pl. [XXV]. is formed by both condyles, while in the Megatherium it is a continuation exclusively of the external articular surface.

The patella, which works upon the above-mentioned surface, is a thick strong ovate bone, with the smaller end downwards: rough and convex externally, smooth on the internal surface, which is concave in the vertical and convex in the transverse directions.

Of the bones of the leg only the proximal end of the tibia is preserved; but this is valuable, as shewing another well-marked difference between the Scelidothere and Megathere; for whereas in the latter the fibula is anchylosed with the tibia, this bone, in the Scelidothere, presents a smooth flat oval articular surface, which is shewn in fig. 2. Pl. [XXVII]. below the outer part of the head of the bone; from the size and appearance of which, I infer, that the fibula would not have become confluent with the tibia, even in the mature and full-grown animal.

The relative length of the fore and hind extremities cannot be precisely determined from the present imperfect skeleton of the Scelidothere; but there is good evidence for believing, that the fore extremity was the shortest. The humerus is shorter than the femur by one-ninth part of the latter bone; and the radius, which wants only the distal epiphysis, must have been shorter than the humerus. Now the relative development of the fore and hind legs is one of the points to be taken into consideration in an attempt to determine the habits and nature of an extinct mammal.

In climbing animals the prehensile power is more essential to the hinder than to the fore parts or extremities. In the leech the principal sucker is in the tail; and higher organized climbers, in like manner, depend mainly on their posterior claspers in descending trees, and hold on by means of them whilst selecting the place for the next application of those at the fore part of the body, whether their place be supplied by the beak, as in the Maccaws, or the fore-feet or hands in the Mammalia.

But, although we perceive the hinder limbs to be the last to lose the advantageous structure of the hand in the Quadrumanous species, and notwithstanding that the tail is for this purpose sometimes specially organized to serve as a prehensile instrument, yet we find that the power of grasping the branches of trees by either legs or tail is never maintained at the expense of undue bulk and weight of those organs. On the contrary, as the fore-limbs are the main instruments in the active exertions of climbing, so they are the strongest as well as the longest in all the best climbers, and the weight of the body which they have to drag along is diminished by dwarfish proportions of the hinder limbs, as in the Orangs and the Sloths.

Can those huge quadrupeds have been destined to climb that had the pelvis and hinder extremities more ponderous and bulky in proportion to the fore parts of the body than in any other known existing or extinct vertebrate animals?

M. Lund argues for the scansorial character of the Megalonyx, because its anterior extremities are longer than the posterior ones; but if they somewhat exceed the hind legs in length, how vastly inferior are they in respect of their breadth and thickness. The prehensile faculty of the hinder limbs of the best climbers, as the Sloths, Orangs, and Chameleons is by no means dependent on the superior mass of muscle and bone which enters into their conformation, but is associated with the very reverse conditions.

It is impossible to survey the discrepancy of size between the femur and the humerus of the Scelidothere, as exhibited in Pl. [XX]., without a conviction that it relates to other habits than those of climbing trees. The expanse of the sacrum, the evidence of the muscular masses employed in working the hind legs and tail, which is afforded by the capacity of the cavity lodging the part of the spinal marrow from which the nerves of those muscles were derived, both indicate the actions of the hind legs and tail to have been more powerful and energetic than would be required for mere prehension: and the association of hinder extremities so remarkable for their bulk, with a long and powerful tail, forbids my yielding assent to the speculation set forth by M. Lund, as to the prehensile character of the tail of the Megalonyx.

Astragalus.—In the examination of this characteristic bone I have kept in view the question of the habits of the Megatherioid quadrupeds in general, and the especial affinities of the Scelidotherium, in illustration of which I shall notice at the same time the peculiarities of the astragalus of the Sloth, Megatherium and Armadillo.[[54]]

The upper articular surface of the astragalus of the Scelidotherium (Pl. [XXVI]. fig. 4.), presents, in its transverse contour, two convex pulleys, a and b, and an intermediate concavity, forming one continuous articular surface. The external or fibular trochlea (a) is strictly speaking convex only at its posterior part, the upper surface gradually narrowing to a ridge, as it advances forwards from which, the inner and outer parts slope away at an angle of 35°.

The tibial[[55]] convexity (b) is more regular and less elevated, it has only half the antero-posterior extent of the outer pulley; its marginal contour forms an obtuse angle at the inner side.

In the Megatherium the upper articular surface of the astragalus is also divided into two trochleæ, of which the one on the fibular side (fig. 3, a), is of much greater relative size and extent than the tibial one (b), and is raised nearly four inches above the level of the latter, although in the oblique position in which the bone is naturally placed in the skeleton, the highest part of each convexity is on the same level. The fibular trochlea differs also from that in the Scelidothere in being regularly convex in the transverse as well as the antero-posterior direction. The tibial convexity resembles that in the Scelidothere, save in its smaller relative size; its internal margin likewise forms an angular projection below the internal malleolus.

The upper surface of the astragalus of the Mylodon, or Megalonyx(?) (Pl. [XXVIII]. fig. 5.),[[56]] differs from that in the Megatherium in having a narrower fibular trochlear ridge.

The astragalus of the Ai (Bradypus tridactylus) differs widely from that of either the Megathere, Mylodon(?) or Scelidothere in having a conical cavity on the upper surface, in place of the fibular convexity, in which concavity the distal end of the fibula rotates like a pivot. This mechanism is closely related to the scansorial uses of the inwardly inflected foot of the Sloth.

If the astragalus of an Armadillo[[57]] were placed side by side with that of the Megathere, it would be very difficult to determine the analogous parts, especially of the upper surface, unless guided by the intermediate structure presented by the Scelidothere. The upper surface of this bone, in the Armadillo, is, however, divided into two transversely convex trochleæ, separated by a much wider transversely concave surface. The fibular trochlea resembles that of the Scelidothere in having its upper and outer facets sloping away at an acute angle, but without meeting at a ridge anteriorly; this surface is not more raised above the tibial trochlea than in the Scelidothere.

The inner trochlea differs from that of the Scelidothere in having a greater relative antero-posterior extent, and in forming, in place of an uniform convex surface, a trochlea similar in structure to that on the outer side. The extent of rough surface on the upper part of the astragalus intervening between the articular surface for the bones of the leg, and that for the scaphoides is extremely small in the Megathere and Mylodon(?); it is relatively greater in the Scelidothere; it is still more extensive in the Armadillo; but is the longest in the Sloth. The anterior extremity of the astragalus which is entirely occupied by the scaphoid articular surface is very peculiar in the Scelidothere (Pl. [XXVI]. fig. 2.): it presents one convex and two concave facets, which, however, form part of one continuous articular surface: the convex facet forms the internal part of the surface, and presents a rhomboidal form with the long axis vertical. The concave facets (c and d) are extended transversely and placed one above the other; they are slightly concave in the transverse, and nearly flat in the vertical directions.

In the Megatherium (fig. 1.) the scaphoid surface of the astragalus is divided only into one concave and one convex portion, both continuous with each other: the concave facet (c) corresponds with the upper concavity in the Scelidothere, but is a pretty uniform subcircular depression, fourteen lines in depth: the convex facet, d, is continued across the whole breadth of the under part of the scaphoid surface and corresponds with both the inner convex, and lower concave surfaces of the scaphoid articulation in the Scelidothere.

In the Mylodon(?) (Pl. [XXVIII]. fig. 3.), the articular facet, corresponding with that marked (c) in the astragali of the Megathere and Scelidothere, is simply flattened, instead of being concave; the rest of the scaphoid surface corresponds with that in the Megatherium.

In the Armadillo the scaphoid articular surface is undivided and wholly convex: in this part of the astragalus, therefore, we find the Scelidothere deviating from the Armadillo further than does the Megathere; while the Mylodon or Megalonyx(?) most resembles the Armadillo in the configuration of this part of the astragalus.

If we compare the outer surfaces of the astragalus in these quadrupeds, we shall find, however, that the Scelidothere and Armadillo closely agree: the outer facet of the fibular trochleæ, above described, is continued in the Scelidothere (Pl. [XXVIII]. fig. 2.), upon the fibular side of the astragalus reaching nearly half-way down the posterior part, and down nearly the whole of its anterior.

In the Armadillo, it extends over the whole of the anterior part of the outer side of the astragalus. In both animals the lower boundary of this articular surface describes a strong sigmoid curve.

In the Megatherium (Pl. [XXVIII]. fig. 1), the corresponding surface for the fibular malleolus on the outer side of the astragalus is formed by a comparatively very small semicircular flattened facet, which by its roughness indicates that the end of the fibula was attached to it by ligamentous substance, and that the synovial bag was not continued upon that surface as in the Scelidothere and Armadillo.

In the Mylodon(?) (Pl. [XXVIII]. fig. 4), even this rough facet is wanting and the fibular trochlea is bounded by the angle which divides the upper from the outer surface of the astragalus.

Turning now our attention to the under surface of the astragalus, we observe that it presents in the Scelidothere (Pl. [XXVI]. fig. 6), an irregular quadrate form, having the outer side occupied by an elongated subovate articular facet, e, for the calcaneum, bounded externally by a sharp edge, with its long axis and its greatest concavity in the antero-posterior direction, and slightly convex from side to side: a second calcaneal articular surface (f) is situated at the inner and anterior angle; it is oblong and nearly flat; is continuous with the inferior concave facet of the scaphoid articulation, but is divided from the convex facet by a groove: the two calcaneal articulations are separated by a deep and rough depression, traversing the under surface of the astragalus diagonally, and increasing in breadth towards the posterior and internal angle. The inner side of the astragalus presents a convex protuberance.

The correspondence between the astragalus of the Scelidothere and Megathere is best seen at the under surface of the bone: in both the two calcaneal articulations are separated by the diagonal depression, and the internal and anterior surface is continuous with the scaphoid articulation. In the Megathere, however, in consequence of the absence of the inferior concavity which characterizes the Scelidothere, the anterior calcaneal facet (f) appears as a more direct backward continuation of the scaphoidal surface; but they are divided by a more marked angle than is represented in the figure (fig. 5, Pl. [XXVI].). The posterior and outer calcaneal surface in the Megathere (e) is broader in proportion to its length, continued further upwards upon the outward surface, is consequently more convex in the transverse direction, and is not bounded externally by so sharp and prominent a ridge as in the Scelidothere. The protuberance from the inner surface of the astragalus is more compressed laterally in the Megathere than in the Scelidothere. The correspondence between the astragali of the Mylodon(?) (Pl. [XXVIII]. fig. 6) and Megathere in the conformation of the under surface is so close, that the few differences which exist will be sufficiently appreciated by an inspection of the figures.

In the Armadillo the astragalus, in consequence of the greater production of its anterior part, presents more of an angular than a quadrate figure; and the scaphoid articular surface, being proportionally carried forwards, is altogether separated from the anterior calcaneal surface. The posterior and inner calcaneal surface resembles that in the Scelidothere, but is less inclined upwards; and is continuous with the posterior part of the tibial articular surface.

Thus the astragalus in the structure of its two most important articulations, viz. that which receives the superincumbent weight from the leg, and that which transmits it to the heel, presents a closer correspondence in the Scelidothere with that of the Dasypus, than with that of the Megathere or Mylodon.

The ungueal phalanx of the Scelidothere before alluded to, is represented of the natural size in Pl. [XXVII]. The side view, fig. 3. shows the position of the articular surface on the proximal end, sloping obliquely towards the under surface, and overtopped by an obtuse protuberance, calculated to impede any upward retraction of the claw: the present joint, in fact, illustrates in every particular the argument by which Cuvier established the true affinities of the allied extinct genus Megalonyx.[[58]]

The present phalanx is, however, less compressed, and less incurved than those of the Megalonyx, which have been hitherto described; but it more resembles in these proportions one of the smaller, and presumed hinder, ungueal phalanges of the Megatherium. The upper and lateral parts of the bone are rounded, and it gradually tapers to the apex, which is broken off. The osseous sheath for the claw is developed only at the under part of the bone: it presents the form of a thick flat plate of bone, with the margin very regularly and obliquely bevelled off, and having a vertical process of bone attached lengthwise to the middle of its under surface. This process must have served for the insertion of a very powerful flexor tendon. The figures of this bone preclude the necessity of any further verbal description.

M. Lund lays most stress upon the argument founded on the inward inflection of the sole of the foot in the Megalonyx, and appeals with greatest confidence to this structure in support of his hypothesis of the scansorial habits of that extinct Edental.[[59]]

It is quite true that the Quadrumana derive advantage from this position of the foot in climbing trees, and that it is carried to excess in the Sloths, which can only apply the outer edge of the foot to the ground. But we may ask, was the inversion of the sole of the foot actually carried to such an extent in the Megalonyx? And, admitting its existence in an inferior degree, is it then conclusive as to the scansorial habits of that species?

M. Lund expressly states that it is produced by a different structure and arrangement of the tarsal bones, from that which exists in the Sloth, but he does not specify the nature of this difference.

If the astragalus, which I have referred with doubt to the Megalonyx, do not actually belong to that genus, it is evidently part of a very closely allied species. Now this astragalus, as we have seen, resembles most closely that of the Megatherium; and since we may infer that the calcaneum, scaphoides, and cuboides had a like correspondence, the inclination of the sole of the foot inwards must have been very slight, as I have determined from examination of the structure and co-adaptation of those bones in the incomplete skeleton of the Megatherium in the London College of Surgeons. Such an inclination of the foot may be conceived to have facilitated the bending of the long claws upon the sole, during the ordinary progressive movements of the animal, but it is quite insufficient to justify the conclusion, that it related to an application of the hind-feet for the purposes of climbing.

It is not without interest again to call to mind the deviation of the structure of the astragalus of the Scelidothere from the Megatherioid to the Dasypodoid type of structure. For if the Megatherioid type of structure had really been one suitable to the exigencies of climbing quadrupeds, it might have been expected to have exhibited the scansorial modifications more decidedly, as the species diminished in stature; but as regards the instructive bone of the hind-foot, the modifications of which we have just been considering, this is by no means the case.

DESCRIPTION OF A MUTILATED LOWER JAW OF THE
MEGALONYX JEFFERSONII.

In the preceding section an astralagus was described, which was regarded as belonging possibly to the same Edentate species as the jaw figured and described, p. 69, Pl. [XVIII]. and XIX., under the name of Mylodon Darwinii; but the same correspondence,—that of relative size,—renders it equally possible that this astragalus may belong to the species of Megalonyx to which the lower jaw now under consideration appertains. There could be no doubt, from its structure, that it was the astragalus of a gigantic species of the order Bruta, and of the Megatherioid family, and more nearly allied to the Megathere than is the Scelidothere, but sufficiently distinct from both.

The lower jaw, figured in Pl. [XXIX]., is the only fossil brought home by Mr. Darwin that could be confidently referred to the genus Megalonyx; but the form of the tooth in place on the right side of the jaw fully justifies this determination. The jaw itself is deeply and firmly imbedded in the matrix, so that only the upper or alveolar border is visible. The coronoid and condyloid processes are broken away, and the texture of the remaining part of the jaw was too friable, and adhered too firmly to the surrounding matrix to admit of more of its form being ascertained than is figured.

There were four molars on each side of this jaw; the large oblique perforation near the fractured symphysis is the anterior extremity of the wide dental canal. The forms of the alveoli are best preserved in the right ramus: the first is the smallest, and seems to have contained a tooth, of which the transverse section must have been simply elliptical: the second tooth is likewise laterally compressed, but the transverse section is ovate, the great end being turned forwards: the third socket presents a corresponding form, but a larger size: the fourth socket is too much mutilated to allow of a correct opinion being formed as to the shape of the tooth which it once contained. The natural size of the tooth in situ, and of the adjoining socket, is given in Pl. [XXIX]., fig. 2. The difference of form which the jaw of the Megalonyx presents, as compared with that of the Mylodon, especially in the greater recedence of the two horizontal rami from each other, will be appreciated by comparing Pl. [XVIII]. with Pl. [XXIX].

DESCRIPTION OF A FRAGMENT OF THE SKULL AND OF THE TEETH OF THE
MEGATHERIUM CUVIERI.

Notwithstanding the full, accurate, and elaborate accounts of the skeleton of the Megatherium given by Bru,[[60]] Cuvier,[[61]] Pander and D’Alton,[[62]] and Mr. Clift,[[63]] the fragments of this most gigantic of quadrupeds brought home by Mr. Darwin, possess much interest, and have added, what could hardly have been anticipated, important information as to the dental system, whereby an error in the generic character of the Megatherium has been corrected.

The fragments here alluded to are portions of the skull of three full-grown Megatheres: the most perfect part of which affords a view of the posterior, and of part of the basal surface, which regions of the cranium have not hitherto been elsewhere figured or described, (Pl. [XXX].)

The plane of the occipital foramen forms with that of the base of the skull an angle of 140°, the plane of the posterior surface of the skull forms with the basal plane an angle of 68°. The occipital condyles are therefore terminal, or form the most posterior parts of the cranium. The extent of their convex curvature in the antero-posterior direction, which equals that of a semicircle, indicates that the Megatherium possessed considerable freedom and extent of motion of the head. The condyles are not extended in the lateral direction so far as in the Toxodon; their axis is more oblique than in the Glossotherium, and their internal surface is more parallel with the axis of the skull, the foramen magnum not presenting that infundibuliform expansion which is so characteristic of the Glossotherium. The occipital condyles resemble most in form and position those of the Scelidotherium; but in the angle of the occipital plane the Megatherium is intermediate between the Scelidothere and Glossothere. The ex-occipitals terminate laterally and inferiorly, each in a short, but strong obtuse process. The posterior plane of the skull is traversed by a strong arched intermuscular crest, which forms the upper boundary of a pretty deep fossa, which is divided by a median vertical ridge, extending downwards to within an inch of the upper margin of the foramen magnum. A second strong obtuse transversely arched ridge curves over the first, and forms the upper boundary of the posterior or occipital region of the skull: the interspace between the two transverse ridges is very irregular, and indicates the firm implantation of powerful nuchal muscles or ligaments, (Pl. [XXX]. fig. 1.)

In the configuration and angle of the occipital plane the Megatherium indicates the same general correspondence with the Edentate type, which has been pointed out in the descriptions of the crania of the Glossothere and Scelidothere: and the resemblance to the Scelidothere is not less striking in the small proportional size of the cranium in this quadruped, which surpasses the rest of its class in so great a degree in the colossal proportions of its hinder parts.

Having detected in the base of the skull of the Scelidothere an articular semicircular pit for the head of the styloglossal bone, similar to, but relatively smaller than, that remarkable one in the skull of the Glossothere, it became a matter of interest to determine whether this structure, which does not exist in any of the existing Edentals, should likewise be present in the gigantic type of the Megatherioid family. The result of a careful removal of the matrix from the basal region of one of the cranial fragments of the Megatherium was the detection of this articular cavity, in each temporal bone in the same relative position as in the Glossothere and Scelidothere. The styloid articular cavity is relatively smaller, and shallower, than in the Glossothere, its proportions being much the same as those of the Scelidothere. The cranial or posterior extremity of the stylo-hyoid bone in the Scelidotherium is bent upwards at an obtuse angle (Pl. [XXI].), and terminates in an articular ball which rotates in this cavity. The size of this bone, and its mode of articulation, indicates great power and muscularity of tongue in the Megatherioids, and calls to mind the importance of that organ in the Giraffe, which subsists on the same kind of food as that which I have supposed to have supported the Megatherioids, although the general organization of these animals and the mode in which the foliage was brought within reach of the tongue are as opposite as can well be imagined.

The anterior condyloid foramen presents scarcely one-half the absolute size of that of the Glossothere, whence we may infer a correspondingly inferior development of the tongue in the Megathere. The fractured parietes of the cranial cavity of the Megatherium every where exhibit evidences of the great extent of the air-cells or sinuses continued from the nasal cavity: on the basilar aspect of the cranium they extend as far back as the jugular foramina: the whole of the basi-sphenoid being thus excavated, and permeable to air, derived from the sphenoid sinuses, (Pl. [XXX]. fig. 2.). The vertical diameter of the cranial cavity is four inches, eight lines; its transverse diameter, which is greatest in the posterior third part of the cavity, corresponding with the posterior part of the cerebrum is six inches: from the indications afforded by the remains of the cranial cavity in Mr. Darwin’s specimens, I conclude that the brain of the Megatherium was more depressed, and upon the whole, smaller by nearly one-half than that of the Elephant; but with the cerebellum relatively larger, and situated more posteriorly with relation to the cerebral hemispheres: whence it may be concluded that the Megatherium was a creature of less intelligence, and with the command of fewer resources, or a less varied instinct than the Elephant.

It has been usual to characterize the Megatherium, in conformity with the concurrent descriptions of Bru, Cuvier, and D’Alton, by the dental formula of molares ⁴⁄₄ ⁴⁄₄, i. e. by the presence of four grinding teeth on each side of the upper, as of the lower jaw. It was the agreement of the excellent authorities above cited in this statement, which induced Mr. Clift and myself to regard a single detached tooth, which formed part of the valuable collection of remains of the Megatherium deposited in the Hunterian Museum by Sir Woodbine Parish, as being, from its comparatively small size, the tooth of either a younger individual or of a smaller species of Megatherium. Upon clearing away the matrix from the palatal and alveolar surface of one of the cranial fragments of the Megatherium in Mr. Darwin’s collection, I was gratified by the detection of the crown of a fifth molar, corresponding in size and form with the detached tooth, above alluded to: its small size, and its position have doubtless occasioned its being over-looked in the cranium of the great skeleton at Madrid.

The anterior molar of the upper jaw presents a nearly semicircular transverse section, with the angles rounded off; the three succeeding teeth are four-sided, with the transverse somewhat exceeding the antero-posterior diameter: they are rather longer and larger than the first: the last molar is likewise four-sided, but presents a sudden diminution of diameter, and is relatively broader. The following are the respective dimensions of the upper maxillary teeth.

First Molar.Second Molar.Third Molar.Fourth Molar.Fifth Molar.
In.Lines.In.Lines.In.Lines.In.Lines.In.Lines.
Length8694948752
Transverse diameter1924232014
Antero-posterior diameter152020111010

Besides the differences in size, the upper molars vary as to their curvature: this difference is exhibited in the vertical section of these teeth figured in Pl. [XXXI]. The convexity of the curve of the first, second and third molars is directed forwards; the fourth is straight, its anterior surface only describing a slight convexity in the vertical direction; the fifth tooth is curved, but in a contrary direction to the others; and the bases of the five molars thus present a general convergence towards a point a little way behind the middle of the series.

The next peculiarity to be noticed in these remarkable teeth is the great length of the pulp-cavity (d), the apex of which is parallel with the alveolar margin of the jaw: a transverse fissure is continued from this apex to the middle concavity of the working surface of the tooth, which is thus divided into two parts. Each of these parts consists of three distinct substances,—a central part analogous to the body or bone of the tooth or ‘dentine,’ a peripheral and nearly equally thick layer of cæmentum, and an intermediate thinner stratum of a denser substance, which is described in Mr. Clift’s memoir on the Megatherium as ‘enamel,’ and to which substance in the compound teeth of the Elephant, it is analogous both in its relative situation, and relative density to the other constituents.

Microscopic examinations of thin and transparent slices of the tooth of the Megatherium prove, however, that the dense layer separating the internal substance from the cæmentum is not enamel, but presents the same structure as the hard ‘dentine’ or ivory of the generality of Mammalian teeth; and corresponds with the thin cylinder of hard ‘dentine’ in the tooth of the Sloth. No species of the Order Bruta has true enamel entering into the composition of its teeth; but the modifications of structure which the teeth present in the different genera of this order are considerable, and their complexity is not less than that of the enamelled teeth of the Herbivorous Pachyderms and Ruminantia, in consequence of the introduction of a dental substance into their composition corresponding in structure with that of the teeth of the Myliobates, Psammodus, and other cartilaginous fishes.

The microscopic investigation of the structure of the teeth of the Megatherium was undertaken chiefly with the view of comparing this structure with that of the teeth of the Sloth and Armadillo, and of thus obtaining an insight into the food, and an additional test of the real nature of the disputed affinities of the Megatherium. The central part of the tooth (c. Pl. [XXXI].) consists of a coarse ivory, like the corresponding part of the tooth of the Sloth. It is traversed throughout by medullary canals ¹⁄₁₅₀₀ of an inch in diameter, which are continued from the pulp-cavity, and proceed, at an angle of 50°, to the plane of the dense ivory, parallel to each other, with a slightly undulating course, having regular interspaces, equal to one and a half diameters of their own areæ, and generally anastomosing in pairs by a loop of which the convexity is turned towards the origin of the tubes of the fine dentine, as if each pair so joined consisted of a continuous reflected canal, (c. fig. 1, Pl. [XXXII].) The loops are generally formed close to the fine dentine. In a few situations I have observed one of the medullary canals continued across the fine dentine, and anastomosing with the corresponding canals of the cæmentum. The interspaces of the medullary canals of the coarse dentine are principally occupied by calcigerous tubes which have an irregular course, anastomose reticularly, and terminate in very fine cells. The more regular and parallel calcigerous tubes, which constitute the thin layer of hard dentine, are given off from the convexity of the terminal loops of the medullary canals. The course of these tubes (b. fig. 1, Pl. [XXXII].) is rather more transversely to the axis of the tooth than the medullary canals from which they are continued. They run parallel to each other, but with minute undulations throughout their course, in which they are separated by interspaces equal to one and a half their own diameter. As they approach the cæmentum they divide and sub-divide, and grow more wavy and irregular: their terminal branches take on a bent direction, and form anastomoses, dilate into small cells, and many are seen to become continuous with the radiating fibres or tubes of the cells or corpuscles of the contiguous cæmentum. This substance enters largely into the constitution of the compound tooth of the Megatherium: it is characterized, like the cæmentum of the Elephant’s grinder, by the presence of numerous radiated cells, or purkingian corpuscles, scattered throughout its substance, but may be distinguished by wide medullary canals which traverse it in a direction parallel with each other, and forming a slight angle with the transverse axis of the tooth. These canals are wider than those of the central coarse dentine, their diameter being ¹⁄₁₂₀₀th of an inch; they are separated by interspaces equal to from four to six of their own diameters, divide a few times dichotomously in their course, and finally anastomose in loops, the convexity of which is directed towards, and in most cases is in close contiguity with, the layer of dense dentine.

Fine calcigerous tubes are every where given off at right angles from the medullary canals of the cæmentum, which form a rich reticulation in their interspaces, and a direct continuation between the loops of the medullary canals and the calcigerous tubes of the dense dentine. The cæmentum differs from the coarse dentine in the larger size and wider interspaces of its medullary canals, and by the presence of the bone-corpuscles in their interspaces; but they are brought into organic communication with each other, not only by means of the tubes of the dense dentine, but by occasional continuity of the medullary canals across that substance. The tooth of the Megatherium thus offers an unequivocal example of a course of nutriment from the dentine to the cæmentum, and reciprocally. Retzius observes with respect to the human tooth, that “the fine tubes of the cæmentum enter into immediate communications with the cells and tubes of the dentine (zahnknochen), so that this part can obtain from without the requisite humours after the central pulp has almost ceased to exist.” In the Megatherium, however, those anastomoses have not to perform a vicarious office, since the pulp maintains its full size and functional activity during the whole period of the animal’s existence. It relates to the higher organized condition, and greater degree of vitality of the entire grinder in that extinct species.

The conical cavities (d. Pl. [XXXI].) attest the size and form of the persistent pulp; the diameter of its base is equal to the part of the crown of the tooth which is formed by the coarse and fine dentine. From the gradual thinning off and final disappearance of these substances as they reach the base of the tooth, I conclude that they were both formed at the expense of the pulp. The fine tubes and cells must have been excavated in its peripheral layer for the reception of the hardening salts of the dense dentine, and the rest converted into the parallel series of medullary canals with their respective systems of calcigerous tubes, in a manner closely analogous to the development of the entire tooth of the Orycteropus. The coarser dentine of the tooth of the Megatherium differs, in fact, from the entire tooth of the Orycteropus, only in that the parallel medullary canals and their radiating calcigerous tubes are not separated from the contiguous canals by a distinct layer of cæmentum, and that the medullary canals anastomose at their peripheral extremities. The wide spaces, (e. Pl. [XXXI].) indicate the thickness of the dental capsule by the ossification of which the exterior stratum of cement was formed. It was not until I knew the true structure of the tooth of the Megatherium, that I could comprehend the mode of its formation. The parallel layers of enamel in the Elephant’s grinder are formed, as is well known, by membranous plates passing from the coronal end of the closed capsule towards the base of the tooth; but a certain extent of enamel can only thus be formed, and when the crown of the grinder has once protruded, and come into use, the enamel cannot be added to. The modification of the structure of the tooth of the Megatherium readily permits the uninterrupted and continuous formation of the dense substance which is analogous to the enamel of the Elephant’s grinder.

With respect to the question of the respective affinities of the Megatherium to the Bradypodoid or Dasypodoid families, the result of this examination of the teeth speaks strongly for its closer relationship with the former group: the Megalonyx, Mylodon, and Scelidotherium, in like manner correspond in the structure of their teeth with the Sloth, and differ from the Armadillo.

If from a similarity of dental structure we may predicate a similarity of food, it may reasonably be conjectured that the leaves and soft succulent sprouts of trees may have been the staple diet of the Megatherioid quadrupeds, as of the existing Sloths. Their enormous claws, I conclude, from the fossorial character of the powerful mechanism by which they were worked, to have been employed, not, as in the Sloths, to carry the animal to the food, but to bring the food within the reach of the animal, by uprooting the trees on which it grew.

In the remains of the Megatherium we have evidence of the frame-work of a quadruped equal to the task of undermining and hauling down the largest members of a tropical forest. In the latter operation it is obvious that the immediate application of the anterior extremities to the trunk of the tree would demand a corresponding fulcrum, to be effectual, and it is the necessity for an adequate basis of support and resistance to such an application of the fore extremities which gives the explanation to the anomalous development of the pelvis, tail, and hinder extremities in the Megatherioid quadrupeds. No wonder, therefore, that their type of structure is so peculiar; for where shall we now find quadrupeds equal, like them, to the habitual task of uprooting trees for food?