THE OTIS SYSTEM
The curvature of the Tower’s legs imposed a problem unique in elevator design, and it caused great annoyance to Eiffel, the fair’s Commission, and all others concerned. Since a vertical shaftway anywhere within the open area beneath the first platform was esthetically unthinkable, the elevators could be placed only in the inclined legs. The problem of reaching the first platform was not serious. The legs were wide enough and their curvature so slight in this lower portion as to permit them to contain a straight run of track, and the service could have been designed along the lines of an ordinary inclined railway. It was estimated that the great majority of visitors would go only to this level, attracted by the several international restaurants, bars and other features located there. Two elevators to operate only that far were contracted for with no difficulty—one to be placed in the east leg and one in the west.
To transport people to the second platform was an altogether different problem. Since there was to be a single run from the ground, it would have been necessary to form the elevator guides either with a constant curvature, approximating that of the legs, or with a series of straight chords connected by short segmental curves of small radius. Eiffel planned initially to use the first method, but the second was adopted ultimately, probably as being the simpler because only two straight lengths of run were found to be necessary.
Bids were invited for two elevators on this basis—one each for the north and south legs. Here the unprecedented character of the matter became evident—there was not a firm in France willing to undertake the work. The American Elevator Company, the European branch of Otis Brothers & Company, did submit a proposal through its Paris office, Otis Ascenseur Cie., but the Commission was compelled to reject it because a clause in the fair’s charter prohibited the use of any foreign material in the construction of the Tower. Furthermore, there was a strong prejudice against foreign contractors, which, because of the general background of disfavor surrounding the project during its early stages, was an element worth serious consideration by the Commission. The bidding time was extended, and many attempts were made to attract a native design but none was forthcoming.
[Larger Image]
Figure 24.—General arrangement of
Otis elevator system in Eiffel Tower.
(From The Engineer (London),
July 19, 1889, vol. 68, p. 58.)
As time grew short, it became imperative to resolve the matter, and the Commission, in desperation, awarded the contract to Otis in July 1887 for the amount of $22,500.[10] A curious footnote to the affair appeared much later in the form of a published interview[11] with W. Frank Hall, Otis’ Paris representative:
“Yes,” said Mr. Hall, “this is the first elevator of its kind. Our people for thirty-eight years have been doing this work, and have constructed thousands of elevators vertically, and many on an incline, but never one to strike a radius of 160 feet for a distance of over 50 feet. It has required a great amount of preparatory study and we have worked on it for three years.”
“That was before you got the contract?”
“Quite so, but we knew that, although the French authorities were very reluctant to give away this piece of work, they would be bound to come to us, and so we were preparing for them.”
Such supreme confidence must have rapidly evaporated as events progressed. Despite the invaluable advertising to be derived from an installation of such distinction, the Otises would probably have defaulted had they foreseen the difficulties which preceded completion of the work.
The proposed system ([fig. 24]) was based fundamentally upon Otis’ standard hydraulic elevator, but it was recognizable only in basic operating principle ([fig. 25]). Tracks of regular rail section replaced the guides because of the incline, and the double-decked cabin ([fig. 29]) ran on small flanged wheels. This much of the apparatus was really not unlike that of an ordinary inclined railway. Motive power was provided by the customary hydraulic cylinder ([fig. 26]), set on an angle roughly equal to the incline of the lower section of run. Balancing the cabin’s dead weight was a counterpoise carriage ([fig. 27]) loaded with pig iron that traveled on a second set of rails beneath the main track. Like the driving system, the counterweight was rope-geared, 3 to 1, so that its travel was about 125 feet to the cabin’s 377 feet.
Everything about the system was on a scale far heavier than found in the normal elevator of the type. The cylinder, of 38-inch bore, was 36 feet long. Rather than a simple nest of pulleys, the piston rods pulled a large guided carriage or “chariot” bearing six movable sheaves ([fig. 28]). Corresponding were five stationary sheaves, the whole reeved to form an immense 12-purchase tackle. The car, attached to the free ends of the cables, was hauled up as the piston drew the two sheave assemblies apart.
Figure 25.—Schematic diagram of the rigging of the Otis system.
(Adapted from Gustave Eiffel, La Tour de Trois Cents Mètres, Paris, 1900, p. 127.)
In examining the system, it is difficult to determine what single element in its design might have caused such a problem as to have been beyond the engineering ability of a French firm, and to have caused such concern to a large, well-established American organization of Otis’ wide elevator and inclined railway experience. Indeed, when the French system—which served the first platform from the east and west legs—is examined, it appears curious that a national technology capable of producing a machine at such a level of complexity should have been unable to deal easily with the entire matter. This can be plausibly explained only on the basis of Europe’s previously mentioned lack of experience with rope-geared and other cable-hung elevator systems. The difficulty attending Otis’ work, usually true in the case of all innovations, lay unquestionably in the multitudes of details—many of them, of course, invisible when only the successfully working end product is observed.
More than a matter of detail was the Commission’s demand for perfect safety, which precipitated a situation typical of many confronting Otis during the entire work. Otis had wished to coordinate the entire design process through Mr. Hall, with technical matters handled by mail. Nevertheless, at Eiffel’s insistence, and with some inconvenience, in 1888 the company dispatched the project’s engineer, Thomas E. Brown, Jr., to Paris for a direct consultation. Mild conflict over minor details ensued, but a gross difference of opinion arose ultimately between the American and French engineers over the safety of the system. The disagreement threatened to halt the entire project. In common with all elevators in which the car hangs by cables, the prime consideration here was a means of arresting the cabin should the cables fail. As originally presented to Eiffel, the plans indicated an elaborate modification of the standard Otis safety device—itself a direct derivative of E. G. Otis’ original.
If any one of the six hoisting cables broke or stretched unduly, or if their tension slackened for any reason, powerful leaf springs were released causing brake shoes to grip the rails. The essential feature of the design was the car’s arrest by friction between its grippers and the rails so that the stopping action was gradual, not sudden as in the elevator safety. During proof trials of the safety, made prior to the fair’s opening by cutting away a set of temporary hoisting cables, the cabin would fall about 10 feet before being halted.
Figure 26.—Section through the Otis power cylinder.
(Adapted from Gustave Eiffel, La Tour de Trois Cents Mètres, Paris, 1900, pl. 22.)
Figure 27.—Details of the counterweight carriage in the Otis system.
(From Gustave Eiffel, La Tour de Trois Cents Mètres, Paris, 1900, pl. 224.)
Although highly efficient and of unquestionable security, this safety device was considered an insufficient safeguard by Eiffel, who, speaking in the name of the Commission, demanded the application of a device known as the rack and pinion safety that was used to some extent on European cog railways. The commissioners not only considered this system more reliable but felt that one of its features was a necessity: a device that permitted the car to be lowered by hand, even after failure of all the hoisting cables. The serious shortcomings of the rack and pinion were its great noisiness and the limitation it imposed on hoisting speed. Both disadvantages were due to the constant engagement of a pinion on the car with a continuous rack set between the rails. The meeting ended in an impasse, with Brown unwilling to approve the objectionable apparatus and able only to return to New York and lay the matter before his company.
While Eiffel’s attitude in the matter may appear highly unreasonable, it must be said that during a subsequent meeting between Brown and Kœchlin, the French engineer implied that a mutual antagonism had arisen between the Tower’s creator and the Commission. Thus, since his own judgment must have had little influence with the commissioners at that time, Eiffel was compelled to specify what he well knew were excessive safety provisions.
This decision placed Otis Brothers in a decidedly uncomfortable position, at the mercy of the Commission. W. E. Hale, promoter of the water balance elevator—who by then had a strong voice in Otis’ affairs—expressed the seriousness of the matter in a letter to the company’s president, Charles R. Otis, following receipt of Brown’s report on the Paris conference. Referring to the controversial cogwheel, Hale wrote
... if this must be arranged so that the car is effected [sic] in its operation by constant contact with the rack and pinion ... so as to communicate the noise and jar, and unpleasant motion which such an arrangement always produces, I should favor giving up the whole matter rather than allying ourselves with any such abortion.... we would be the laughing stock of the world, for putting up such a contrivance.
This difficult situation apparently was the product of a somewhat general contract phrased in terms of service to be provided rather than of specific equipment to be used. This is not unusual, but it did leave open to later dispute such ambiguous clauses as “adequate safety devices are to be provided.”
Although faced with the loss not only of all previously expended design work but also of an advertisement of international consequence, the company apparently concurred with Hale and so advised Paris. Unfortunately, there are no Otis records to reveal the subsequent transactions, but we may assume that Otis’ threat of withdrawal prevailed, coupled as it was with Eiffel’s confidence in the American equipment. The system went into operation as originally designed, free of the odious rack and pinion.
That, unfortunately, was not the final disagreement. Before the fair’s opening in May 1889, the relationship was strained so drastically that a mutually satisfactory conclusion to the project must indeed have seemed hopeless. The numerous minor structural modifications of the Tower legs found necessary as construction progressed had necessitated certain equivalent alteration to the Otis design insofar as its dependency upon the framework was affected. Consequently, work on the machinery was set back by some months. Eiffel was informed that although everything was guaranteed to be in full operation by opening day on May 1, the contractual deadline of January 1 could not possibly be met. Eiffel, now unquestionably acting on his own volition, responded by cable, refusing all payment. Charles Otis’ reply, a classic of indignation, disclosed to Eiffel the jeopardy in which his impetuosity had placed the success of the entire project:
After all else we have borne and suffered and achieved in your behalf, we regard this as a trifle too much; and we do not hesitate to declare, in the strongest terms possible to the English language, that we will not put up with it ... and, if there is to be War, under the existing circumstances, propose that at least part of it shall be fought on American ground. If Mr. Eiffel shall, on the contrary, treat us as we believe we are entitled to be treated, under the circumstances, and his confidence in our integrity to serve him well shall be restored in season to admit of the completion of this work at the time wanted, well and good; but it must be done at once ... otherwise we shall ship no more work from this side, and Mr. Eiffel must charge to himself the consequences of his own acts.
This message apparently had the desired effect and the matter was somehow resolved, as the machinery was in full operation when the Exposition opened. The installation must have had immense promotional value for Otis Brothers, particularly in its contrast to the somewhat anomalous French system. This contrast evidently was visible to the technically unsophisticated as well as to visiting engineers. Several newspapers reported that the Otis elevators were one of the best American exhibits at the fair.
In spite of their large over-all scale and the complication of the basic pattern imposed by the unique situation, the Otis elevators performed well and justified the original judgment and confidence which had prompted Eiffel to fight for their installation. Aside from the obvious advantage of simplicity when compared to the French machines, their operation was relatively quiet, and fast.
The double car, traveling at 400 feet per minute, carried 40 persons, all seated because of the change of inclination. The main valve or distributor that controlled the flow of water to and from the driving cylinder was operated from the car by cables. The hydraulic head necessary to produce pressure within the cylinder was obtained from a large open reservoir on the second platform. After being exhausted from the cylinder, the water was pumped back up by two Girard pumps ([fig. 31]) in the engine room at the base of the Tower’s south leg.