A BODY FALLS 16' IN THE FIRST SECOND.

503. The apparatus by which this important truth maybe demonstrated is shown in [Fig. 67]. A part of it has been already employed in performing the experiment of Galileo, but two other parts must now be used which will be briefly explained.

504. At a a pendulum is shown which vibrates once every second; it need not be connected with any clockwork to sustain the motion, for when once set vibrating it will continue to swing some hundreds of times. When this pendulum is at the middle of its swing, the bob just touches a slender spring, and presses it slightly downwards. The electric current which circulates about the magnets g ([Art. 489]) passes through this spring when in its natural position; but when the spring is pressed down by the pendulum, the current is interrupted. The consequence is that, as the pendulum swings backwards and forwards, the current is broken once every second. There is also in the circuit an electric alarm bell c, which is so arranged that, when the current passes, the hammer is drawn from the bell; but, when the current ceases, a spring forces the hammer to strike the bell. When the circuit is closed, the hammer is again drawn back. The pendulum and the bell are in the same circuit, and thus every vibration of the pendulum produces a stroke of the bell. We may regard the strokes from the bell as the ticks of the pendulum rendered audible to the whole room.

505. You will now understand the mode of experimenting. I draw the pendulum aside so that the current passes uninterruptedly. An iron ball is attached to one of the electro-magnets, and it is then gently hoisted up until the height of the ball from the ground is about 16'. A cushion is placed on the floor in order to receive the falling body. You are to look steadily at the cushion while you listen for the bell. All being ready, the pendulum, which has been held at a slight inclination, is released. The moment the pendulum reaches the middle of its swing it touches the spring, rings the bell, breaks the current which circulated around the magnet, and as there is now nothing to sustain the ball, it drops down to the cushion; but just as it arrives there, the pendulum has a second time broken the electric circuit, and you observe the falling of the ball upon the cushion to be identical with the second stroke of the bell. As these strokes are repeated at intervals of a second, it follows that the ball has fallen 16' in one second. If the magnet be raised a few feet higher, the ball may be seen to reach the cushion after the bell is heard. If the magnet be lowered a few feet, the ball reaches the cushion before the bell is heard.

506. We have previously shown that the space is proportional to the square of the time. We now see that when the time is one second, the space is 16 feet. Hence if the time were two seconds, the space would be 4 × 16 = 64 feet; and in general the space in feet is equal to 16 multiplied by the square of the time in seconds.

507. By the help of this rule we are sometimes enabled to ascertain the height of a perpendicular cliff, or the depth of a well. For this purpose it is convenient to use a stop-watch, which will enable us to measure a short interval of time accurately. But an ordinary watch will do nearly as well, for with a little practice it is easy to count the beats, which are usually at the rate of five a second. By observing the number of beats from the moment the stone is released till we see or hear its arrival at the bottom, we determine the time occupied in the act of falling. The square of the number of seconds (taking account of fractional parts) multiplied by 16 gives the depth of the well or the height of the cliff in feet, provided it be not high.

THE ACTION OF GRAVITY IS INDEPENDENT
OF THE MOTION OF THE BODY.

508. We have already learned that the effect of gravity does not depend upon the actual chemical composition of the body. We have now to learn that its effect is uninfluenced by any motion which the body may possess. Gravity pulls a body down 16' per second, if the body starts from rest. But suppose a stone be thrown upwards with a velocity of 20 feet, where will it be at the end of a second? Did gravity not act upon the stone, it would be at a height of 20 feet. The principle we have stated tells us that gravity will draw this stone towards the earth through a distance of 16', just as it would have done if the stone had started from rest. Since the stone ascends 20' in consequence of its own velocity, and is pulled back 16' by gravity, it will, at the end of a second, be found at the height of 4'. If, instead of being shot up vertically, the body had been projected in any other direction, the result would have been the same; gravity would have brought the body at the end of one second 16' nearer the earth than it would have been had gravity not acted. For example, if a body had been shot vertically downwards with a velocity of 20', it would in one second have moved through a space of 36'.

509. We shall illustrate this remarkable property by an experiment. The principle of doing so is as follows:—Suppose we take two bodies, a and b. If these be held at the same height, and released together, of course they reach the ground at the same instant; but if a, instead of being merely dropped, be projected with a horizontal velocity at the same moment that b is released, it is still found that a and b strike the floor simultaneously.

510. You may very simply try this without special apparatus. In your left hand hold a marble, and drop it at the same instant that your right hand throws another marble horizontally. It will be seen that the two marbles reach the ground together.

511. A more accurate mode of making the experiment is shown by the contrivance of [Fig. 68].

Fig. 68.

In this we have an arrangement by which we ensure that one ball shall be released just as the other is projected. At a b is shown a piece of wood about 2" thick; the circular portion (2' radius) on which the ball rests is grooved, so that the ball only touches the two edges and not the bottom of the groove. Each edge of the groove is covered with tinfoil c, but the pieces of tinfoil on the two sides must not communicate. One edge is connected with one pole of the battery k, and the other edge with the other pole, but the current is unable to pass until a communication by a conductor is opened between the two edges. The ball g supplies the bridge; it is covered with tinfoil, and therefore, as long as it rests upon the edges, the circuit is complete; the groove is so placed that the tangent to it at the lowest point b is horizontal, and therefore, when the ball rolls down the curve, it is projected from the bottom in a horizontal direction. An india-rubber spring is used to propel the ball; and by drawing it back when embraced by the spring, I can communicate to the missile a velocity which can be varied at pleasure. At h we have an electro-magnet, the wire around which forms part of the circuit we have been considering. This magnet is so placed that a ball suspended from it is precisely at the same height above the floor as the tinned ball is at the moment when it leaves the groove.

512. We now understand the mode of experimenting. So long as the tinned ball g remains on the curve the bridge is complete, the current passes, and the electro-magnet will sustain h, but the moment g leaves the curve, h is allowed to fall. We invariably find that whatever be the velocity with which g is projected, it reaches the ground at the same instant as h arrives there. Various dotted lines in the figure show the different paths which g may traverse; but whether it fall at d, at e, or at f, the time of descent is the same as that taken by h. Of course, if g were not projected horizontally, we should not have arrived at this result; all we assert is that whatever be the motion of a body, it will (when possible) be at the end of a second, sixteen feet nearer the earth than it would have been if gravity had not acted. If the body be projected horizontally, its descent is due to gravity alone, and is neither accelerated nor retarded by the horizontal velocity. What this experiment proves is, that the mere fact of a body having velocity does not affect the action of gravity thereon.

513. Though we have only shown that a horizontal velocity does not affect the action of gravity, yet neither does a velocity in any direction. This is verified, like the first law of motion, by the accordance between the consequences deduced from it and the facts of observation.

514. We may summarize these results by saying that no matter what be the material of which a particle is composed, whether it be heavy or light, moving or at rest, if no force but gravity act upon the particle for t seconds, it will then be 16t² feet nearer the earth than it would have been had gravity not acted.

Fig. 69.

515. A proposition which is of some importance may be introduced here. Let us suppose a certain velocity and a certain force. Let the velocity be such that a point starting from a, [Fig. 69], would in one second move uniformly to b. Let the force be such that if it acted on a particle originally at rest at a, it would in one second draw the particle to d; if then the force act on a particle having this velocity where will it be at the end of the second? Complete the parallelogram a b c d, and the particle will be found at c. By what we have stated the force will equally discharge its duty whatever be the initial velocity. The force will therefore make the particle move to a distance equal and parallel to a d from whatever position the particle would have assumed, had the force not acted; but had the force not acted, the particle would have been found at b: hence, when the force does act, the particle must be found at c, since b c is equal and parallel to a d.