INTRODUCTION.

297. The mechanical powers discussed in these lectures may be grouped into two classes,—the first where ropes or chains are used, and the second where ropes or chains are absent. Belonging to that class in which ropes are not employed, we have the screw discussed in the last lecture; and the lever discussed in [Lecture VIII.]; while among those machines in which ropes or chains form an essential part of the apparatus, the pulley and the wheel and axle hold a prominent place. We have already examined several forms of the pulley, and we now proceed to the not less important subject of the wheel and axle.

298. Where great resistances have to be overcome, but where the distance through which the resistance must be urged is short, the lever or the screw is generally found to be the most appropriate means of increasing power. When, however, the resistance has to be moved a considerable distance, the aid of the pulley, or the wheel and axle, or sometimes of both combined, is called in. The wheel and axle is the form of mechanical power which is generally used when the distance is considerable through which a weight must be raised, or through which some resistance must be overcome.

Fig. 46.

299. The wheel and axle assumes very many forms corresponding to the various purposes to which it is applied. The general form of the arrangement will be understood from [Fig. 46]. It consists of an iron axle b, mounted in bearings, so as to be capable of turning freely; to this axle a rope is fastened, and at the extremity of the rope is a weight d, which is gradually raised as the axle revolves. Attached to the axle, and turning with it, is a wheel a with hooks in its circumference, upon which lies a rope; one end of this rope is attached to the circumference of the wheel, and the other supports a weight e. This latter weight may be called the power, while the weight d suspended from the axle is the load. When the power is sufficiently large, e descends, making the wheel to revolve; the wheel causes the axle to revolve, and thus the rope is wound up and the load d is raised.

300. When compared with the differential pulley as a means of raising a weight, this arrangement appears rather bulky and otherwise inconvenient, but, as we shall presently learn, it is a far more economical means of applying energy. In its practical application, moreover, the arrangement is simplified in various ways, two of which may be mentioned.

301. The capstan is essentially a wheel and axle; the power is not in this case applied by means of a rope, but by direct pressure on the part of the men working it; nor is there actually a wheel employed, for the pressure is applied to what would be the extremities of the spokes of the wheel if a wheel existed.

302. In the ordinary winch, the power of the labourer is directly applied to the handle which moves round in the circumference of a circle.

303. There are innumerable other applications of the principle which are constantly met with, and which can be easily understood with a little attention. These we shall not stop to describe, but we pass on at once to the important question of the relation between the power and the load.