RESISTANCE TO COMPRESSION.
356. We proceed to examine into the capability of timber to resist forces of longitudinal compression, either as a pillar or in any other form of “strut,” such for instance, as the jib of the crane represented in [Fig. 17]. The use of timber as a strut depends in a great degree upon the coherence of the fibres to each other, as well as upon their actual rigidity. The action of timber in resisting forces of compression is thus very different from its action when resisting forces of extension; we can examine, by actual experiment, the strength of timber under the former conditions, as the weights which it will be necessary to employ are within the capabilities of our lecture room apparatus.
357. The apparatus is shown in [Fig. 50]. It consists of a lever of the second order, 10' long, the mechanical advantage of which is threefold; the resistance of the pillar d e to crushing is the load to be overcome, and the power consists of weights, to receive which the tray b is used; every pound placed in the tray produces a compressive force of 3 lbs. on the pillar at d. The fulcrum is at a and guides at g. The lever and the tray would somewhat complicate our calculations unless their weights were counterpoised. A cord attached to the extremity of the lever passes over a pulley f; at the other end of this cord, sufficient weights c are attached to neutralize the weight of the apparatus. In fact, the lever and tray now swing as if they had no weight, and we may therefore leave them out of consideration. The pillar to be experimented upon is fitted at its lower end e into a hole in a cast iron bracket: this bracket can be adjusted so as to take in pieces of different lengths; the upper end of the pillar passes through a hole in a second piece of cast iron, which is bolted to the lever: thus our little experimental column is secured at each end, and the risk of slipping is avoided. The stands are heavily weighted to secure the stability of the arrangement
Fig. 50.
358. The first experiment we shall make with this apparatus is upon a pine rod 40" long and 0"·5 square; the lower bracket is so placed that the lever is horizontal when just resting upon the top of the rod. Weights placed in the tray produce a pressure three times as great down the rod, the effect of which will first be to bend the rod, and, when the deflection has reached a certain amount, to break it across. I place 28 lbs. in the tray: this produces a pressure of 84 lbs. upon the rod, but the rod still remains perfectly straight, so that it bears this pressure easily. When the pressure is increased to 96 lbs. a very slight amount of deflection may be seen. When the strain reaches 114 lbs. the rod begins to bend into a curved form, though the deflection of the middle of the rod from its original position is still less than 0"·25. Gradually augmenting the pressure, I find that when it reaches 132 lbs. the deviation has reached 0"·5; and finally, when 48 lbs. is placed in the tray, that is, when the rod is subjected to 144 lbs., it breaks across the middle. Hence we see that this rod sustained a load of 96 lbs. without sensibly bending, but that fracture ensued when the load was increased about half as much again. Another experiment with a similar rod gave a slightly less value (132 lbs.) for the breaking load. If I add these results together, and divide the sum by 2, I find 138 lbs. as the mean value of the breaking load, and this is a sufficiently exact determination.
359. Let us next try the resistance of a shorter rod of the same section. I place a piece of pine 20" long and 0"·5 square in the apparatus, firmly securing each end as in the former case. The lower bracket is adjusted so as to make the lever horizontal; the counterpoise, of course, remains the same, and weights are placed in the tray as before. No deflection is noticed when the rod supports 126 lbs.; a very slight amount of bending is noticeable with 186 lbs.; with 228 lbs., the amount by which the centre of the rod has deviated laterally from its original position is about 0"·2; and finally, when the load reaches 294 lbs., the rod breaks. Fracture first occurs in the middle, but is immediately followed by other fractures near where the ends of the rod are secured.
360. Hence the breaking load of a rod 20" long is more than double the breaking load of a rod of 40" long the same section; from this we learn that the sections being equal, short pillars are stronger than long pillars. It has been ascertained by experiment that the strength of a square pillar to resist compression is proportional to the square of its sectional area. Hence a rod of pine, 40" long and 1" square, having four times the section of the rod of the same length we have experimented on, would be sixteen times as strong, and consequently its breaking weight would amount to nearly a ton. The strength of a rod used as a tie depends only on its section, while the strength of a rod used as a strut depends on its length as well as on its section.
CONDITION OF A BEAM STRAINED BY A TRANSVERSE FORCE.
361. We next come to the important practical subject of the strength of timber when supporting a transverse strain; that is, when used as a beam. The nature of a transverse strain may be understood from [Fig. 51], which represents a small beam, strained by a load at its centre. [Fig. 52] shows two supports 40" apart, across which a rod of pine 48" × 1" × 1" is laid; at the middle of this rod a hook is placed, from which a tray for the reception of weights is suspended. A rod thus supported, and bearing weights, is said to be strained transversely. A rafter of a roof, the flooring of a room, a gangway from the wharf to a ship, many forms of bridge, and innumerable other examples, might be given of beams strained in this manner. To this important subject we shall devote the remainder of this lecture and the whole of the next.
362. The first point to be noticed is the deflection of the beam from which a weight is suspended. The beam is at first horizontal; but as the weight in the tray is augmented, the beam gradually curves downwards until, when the weight reaches a certain amount, the beam breaks across in the middle and the tray falls.
Fig. 51.
For convenience in recording the experiments the tray chain and hooks have been adjusted to weigh exactly 14 lbs. ([Fig. 52]). a b is a cord which is kept stretched by the little weights d: this cord gives a rough measure of the deflection of the beam from its horizontal position when strained by a load in the tray. In order to observe the deflection accurately an instrument is used called the cathetometer (g). It consists of a small telescope, always directed horizontally, though capable of being moved up and down a vertical triangular pillar; on one of the sides of the pillar a scale is engraved, so that the height of the telescope in any position can be accurately determined. The cathetometer is levelled by means of the screws h h, so that the triangular pillar on which the telescope slides is accurately vertical: the dotted line shows the direction of the visual ray when the centre c of the beam is seen by the observer through the telescope.
Fig. 52.
Inside the telescope and at its focus a line of spider’s web is fixed horizontally; on the bar to be observed, and near its middle point c, a cross of two fine lines is marked. The tray being removed, the beam becomes horizontal; the telescope of the cathetometer is then directed towards the beam, so that the lines marked upon it can be seen distinctly. By means of a screw the telescope may be raised or lowered until the spider’s web inside the telescope is observed to pass through the image of the intersection of the lines. The scale then indicates precisely how high the telescope is on the pillar.
363. While I look through the telescope my assistant suspends the tray from the beam. Instantly I see the cross descend in the field of view. I lower the telescope until the spider’s web again passes through the image of the intersection of the lines, and then by looking at the scale I see that the telescope has been moved down 0"·19, that is, about one-fifth of an inch: this is, therefore, the distance by which the cross lines on the beam, and therefore the centre of the beam itself, must have descended. Indeed, even a simpler apparatus would be competent to measure the amount of deflection with some degree of precision. By placing successively one stone after another upon the tray, the beam is seen to deflect more and more, until even without the telescope you see the beam has deviated from the horizontal.
364. By carefully observing with the telescope, and measuring in the way already described, the deflections shown in [Table XXIII]. were determined. The scale along the vertical pillar was read after the spider’s web had been adjusted for each increase in the weight. The movement from the original position is recorded as the deflection for each load.
Table XXIII.—Deflection of a Beam.
A rod of pine 48" × 1" × 1"; resting freely on supports 40" apart; and laden in the middle.
| Number of Experiment. | Magnitude of load. | Deflection. |
|---|---|---|
| 1 | 14 | 0"·19 |
| 2 | 28 | 0"·37 |
| 3 | 42 | 0"·55 |
| 4 | 56 | 0"·74 |
| 5 | 70 | 0"·94 |
| 6 | 84 | 1"·13 |
| 7 | 98 | 1"·35 |
| 8 | 112 | 1"·61 |
| 9 | 126 | 1"·95 |
| 10 | 140 | 2"·37 |
365. The first column records the number of the experiment. The second represents the load, and the third contains the corresponding deflections. It will be seen that up to 98 lbs. the deflection is about 0"·2 for every stone weight, but afterwards the deflection increases more rapidly. When the weight reaches 140 lbs. the deflection at first indicated is 2"·37; but gradually the cross lines are seen to descend in the field of the telescope, showing that the beam is yielding and finally it breaks across. This experiment teaches us that a beam is at first deflected by an amount proportional to the weight it supports; but that when two-thirds of the breaking weight is reached, the beam is deflected more rapidly.
366. It is a question of the utmost importance to ascertain the greatest load a beam can sustain without injury to its strength. This subject is to be studied by examining the effect of different deflections upon the fibres of a beam. A beam is always deflected whatever be the load it supports; thus by looking through the telescope of the cathetometer I can detect an increase of deflection when a single pound is placed in the tray: hence whenever a beam is loaded we must have some deflection. An experiment will show what amount of deflection may be experienced without producing any permanently injurious effect.
367. A pine rod 40" × 1" × 1" is freely supported at each end, the distances between the supports being 38", and the tray is suspended from its middle point. A fine pair of cross lines is marked upon the beam, and the telescope of the cathetometer is adjusted so that the spider’s line exactly passes through the image of the intersection. 14 lbs. being placed in the tray, the cross is seen to descend; the weight being removed, the cross returns precisely to its original position with reference to the spider’s line: hence, after this amount of deflection, the beam has clearly returned to its initial condition, and is evidently just as good as it was before. The tray next received 56 lbs.; the beam was, of course, considerably deflected, but when the weight was removed the cross again returned,—at all events, to within 0"·01 of where the spider’s line was left to indicate its former position. We may consider that the beam is in this case also restored to its original condition, even though it has borne a strain which, including the tray, amounted to 70 lbs. But when the beam has been made to carry 84 lbs. for a few seconds, the cross does not completely return on the removal of the load from the tray, but it shows that the beam has now received a permanent deflection of 0"·03. This is still more apparent after the beam has carried 98 lbs., for when this load is removed the centre of the beam is permanently deflected by 0"·13. Here, then, we may infer that the fibres of the beam are beginning to be strained beyond their powers of resistance, and this is verified when we find that with 28 additional pounds in the tray a collapse ensues.
368. Reasoning from this experiment, we might infer that the elasticity of a beam is not affected by a weight which is less than half that which would break it, and that, therefore, it may bear without injury a weight not exceeding this amount. As, however, in our experiments the weight was only applied once, and then but for a short time, we cannot be sure that a longer-continued or more frequent application of the same load might not prove injurious; hence, to be on the safe side, we assume that one-third of the breaking weight of a beam is the greatest load it should be made to bear in any structure. In many cases it is found desirable to make the beam much stronger than this ratio would indicate.
369. We next consider the condition of the fibres of a beam when strained by a transverse force. It is evident that since the fracture commences at the lower surface of the beam, the fibres there must be in a state of tension, while those at the concave upper surface of the beam are compressed together. This condition of the fibres may be proved by the following experiment.
370. I take two pine rods, each 48" × 1" × 1", perfectly similar in all respects, cut from the same piece of timber, and therefore probably of very nearly identical strength. With a fine tenon saw I cut each of the rods half through at its middle point. I now place one of these beams on the supports 40" apart, with the cut side of the beam upwards. I suspend from it the tray, which I gradually load with weights until the beam breaks, which it does when the total weight is 81 lbs.
If I were to place the second beam on the same supports with the cut upwards, then there can be no doubt that it would require as nearly as possible the same weight to break it. I place it, however, with the cut downwards, I suspend the tray, and find that the beam breaks with a load of 31 lbs. This is less than half the weight that would have been required if the cut had been upwards.
371. What is the cause of this difference? The fibres being compressed together on the upper surface, a cut has no tendency to open there; and if the cut could be made with an extremely fine saw, so as to remove but little material, the beam would be substantially the same as if it had not been tampered with. On the other hand, the fibres at the lower surface are in a state of tension; therefore when the cut is below it yawns open, and the beam is greatly weakened. It is, in fact, no stronger than a beam of 48" × 0"·5 × 1", placed with its shortest dimension vertical. If we remember that an entire beam of the same size required about 140 lbs. to break it ([Art. 366]), we see that the strength of a beam is reduced to one-fourth by being cut half-way through and having the cut underneath.
372. We may learn from this the practical consequence that the sounder side of a beam should always be placed downwards. Any flaw on the lower surface will seriously weaken the beam: so that the most knotty face of the wood should certainly be placed uppermost. If a portion of the actual substance of a beam be removed—for example, if a notch be cut out of it—this will be almost equally injurious on either side of the beam.
373. We may illustrate the condition of the upper surface of the beam by a further experiment. I make two cuts 0"·5 deep in the middle of a pine rod 48" × 1" × 1". These cuts are 0"·5 apart, and slightly inclined; the piece between them being removed, a wedge is shaped to fit tightly into the space; the wedge is long enough to project a little on one side. If the wedge be uppermost when the beam is placed on the supports, the beam will be in the same condition as if it had two fine cuts on the upper surface. I now load the beam with the tray in the usual manner, and I find it to bear 70 lbs. securely. On examining the beam, which has curved down considerably, I find that the wedge is held in very tightly by the pressure of the fibres upon it, but, by a sharp tap at the end, I knock out the wedge, and instantly the load of 70 lbs. breaks the beam; the reason is simple—the piece being removed, there is no longer any resistance to the compressive strain of the upper fibres, and consequently the beam gives way.
374. The collapse of a beam by a transverse strain commences by fracture of the fibres on the lower surface, followed by a rupture of all fibres up to a considerable depth. Here we see that by a transverse force the fibres in a beam of 48" × 1" × 1" have been broken by a strain of 140 lbs. ([Art. 366]); but we have already stated ([Art. 353]) that to tear such a rod across by a direct pull at each end a force of about four tons is necessary. The breaking strain of the fibres must be a certain definite quantity, yet we find that to overcome it in one way four tons is necessary, while by another mode of applying the strain 140 lbs. is sufficient.
375. To explain this discrepancy we may refer to the experiment of [Art. 28], wherein a piece of string was broken by the transverse pull of a piece of thread in illustration of the fact that one force may be resolved into two others, each of them very much greater than itself. A similar resolution of force occurs in the transverse deflection of the beam, and the force of 140 lbs. is changed into two other forces, each of them enormously greater and sufficiently strong to rupture the fibres. We need not suppose that the force thus developed is so great as four tons, because that is the amount required to tear across a square inch of fibres simultaneously, whereas in the transverse fracture the fibres appear to be broken row after row; the fracture is thus only gradual, nor does it extend through the entire depth of the beam.
376. We shall conclude this lecture with one more remark, on the condition of a beam when strained by a transverse force. We have seen that the fibres on the upper surface are compressed, while those on the lower surface are extended; but what is the condition of the fibres in the interior? There can be no doubt that the following is the state of the case:—The fibres immediately beneath the upper surface are in compression; at a greater depth the amount of compression diminishes until at the middle of the beam the fibres are in their natural condition; on approaching the lower surface the fibres commence to be strained in extension, and the amount of the extension gradually increases until it reaches a maximum at the lower surface.
LECTURE XII.
THE STRENGTH OF A BEAM.
A Beam free at the Ends and loaded in the Middle.—A Beam uniformly loaded.—A Beam loaded in the Middle, whose Ends are secured.—A Beam supported at one end and loaded at the other.
A BEAM FREE AT THE ENDS AND LOADED
IN THE MIDDLE.
377. In the preceding lecture we have examined some general circumstances in connection with the condition of a beam acted on by a transverse force; we proceed in the present to inquire more particularly into the strength under these conditions. We shall, as before, use for our experiments rods of pine only, as we wish rather to illustrate the general laws than to determine the strength of different materials. The strength of a beam depends upon its length, breadth, and thickness; we must endeavour to distinguish the effects of each of these elements on the capacity of the beam to sustain its load.
We shall only employ beams of rectangular section; this being generally the form in which beams of wood are used. Beams of iron, when large, are usually not rectangular, as the material can be more effectively disposed in sections of a different form. It is important to distinguish between the stiffness of a beam in its capacity to resist flexure, and the strength of a beam in its capacity to resist fracture. Thus the stiffest beam which can be made from the cylindrical trunk of a tree 1' in diameter is 6" broad and 10"·5 deep, while the strongest beam is 7" broad and 9"·75 deep. We are now discussing the strength (not the stiffness) of beams.
378. We shall commence the inquiry by making a number of experiments: these we shall record in a table, and then we shall endeavour to see what we can learn from an examination of this table. I have here ten pieces of pine, of lengths varying from 1' to 4', and of three different sections, viz. 1" × 1", 1" × 0"·5, and 0"·5 × 0"·5. I have arranged four different stands, on which we can break these pieces: on the first stand the distance between the points of support is 40", and on the other stands the distances are 30," 20", and 10" respectively; the pieces being 4', 3', 2', and 1' long, will just be conveniently held on the supports.
379. The mode of breaking is as follows:—The beam being laid upon the supports, an S hook is placed at its middle point, and from this S hook the tray is suspended. Weights are then carefully added to the tray until the beam breaks; the load in the tray, together with the weight of the tray, is recorded in the table as the breaking load.
380. In order to guard as much as possible against error, I have here another set of ten pieces of pine, duplicates of the former. I shall also break these; and whenever I find any difference between the breaking loads of two similar beams, I shall record in the table the mean between the two loads. The results are shown in Table XXIV.
Table XXIV.—Strength of a Beam.
Slips of pine (cut from the same piece) supported freely at each end; the length recorded is the distance between the points of support; the load is suspended from the centre of the beam, and gradually increased until the beam breaks;
| Formula, P = 6080 | area of section × depth |
| span |
| Number of Experiment. | Dimensions. | Mean of the observations of the breaking load in lbs. | P. Calculated breaking load in lbs. | Difference of the observed and calculated values. | ||
|---|---|---|---|---|---|---|
| Span. | Breadth. | Depth. | ||||
| 1 | 40"·0 | 1"·0 | 1"·0 | 152 | 152 | 0·0 |
| 2 | 40"·0 | 0"·5 | 1"·0 | 77 | 76 | -1·0 |
| 3 | 40"·0 | 1"·0 | 0"·5 | 38 | 38 | 0·0 |
| 4 | 40"·0 | 0"·5 | 0"·5 | 19 | 19 | 0·0 |
| 5 | 30"·0 | 1"·0 | 0"·5 | 59 | 51 | -8·0 |
| 6 | 30"·0 | 0"·5 | 0"·5 | 25 | 25 | 0·0 |
| 7 | 20"·0 | 1"·0 | 0"·5 | 74 | 76 | +2·0 |
| 8 | 20"·0 | 0"·5 | 0"·5 | 36 | 38 | +2·0 |
| 9 | 10"·0 | 1"·0 | 0"·5 | 154 | 152 | -2·0 |
| 10 | 10"·0 | 0"·5 | 0"·5 | 68 | 76 | +8·0 |
381. In the first column is a series of figures for convenience of reference. The next three columns are occupied with the dimensions of the beams. By span is meant the distance between the points of support; the real length is of course greater; the depth is that dimension of the beam which is vertical. The fifth column gives the mean of two observations of the breaking load. Thus for example, in experiment No. 5 the two beams used were each 36" × 1" × 0"·5, they were placed on points of support 30" distant, so the span recorded is 30": one of the beams was broken by a load of 58 lbs., and the second by a load of 60 lbs.; the mean between the two, 59 lbs., is recorded as the mean breaking load. In this manner the column of breaking loads has been found. The meaning of the two last columns of the table will be explained presently.
382. We shall endeavour to elicit from these observations the laws which connect the breaking load with the span, breadth, and depth of the beam.
383. Let us first examine the effect of the span; for this purpose we bring together the observations upon beams of the same section, but of different spans. Sections of 0"·5 × 0"·5 will be convenient for this purpose; Nos. 4, 6, 8, and 10 are experiments upon beams of this section. Let us first compare 4 and 8. Here we have two beams of the same section, and the span of one (40") is double that of the other (20"). When we examine the breaking weights we find that they are 19 lbs. and 36 lbs.; the former of these numbers is rather more than half of the latter. In fact, had the breaking load of 40" been ¾ lb. less, 18·25 lbs., and had that of 20" been ½ lb. more, 36·5 lbs., one of the breaking loads would have been exactly half the other.
384. We must not look for perfect numerical accuracy in these experiments; we must only expect to meet with approximation, because the laws for which we are in search are in reality only approximate laws. Wood itself is variable in quality, even when cut from the same piece: parts near the circumference are different in strength from those nearer the centre; in a young tree they are generally weaker, and in an old tree generally stronger. Minute differences in the grain, greater or less perfectness in the seasoning, these are also among the circumstances which prevent one piece of timber from being identical with another. We shall, however, generally find that the effect of these differences is small, but occasionally this is not the case, and in trying many experiments upon the breaking of timber, discrepancies occasionally appear for which it is difficult to account.
385. But you will find, I think, that, making reasonable allowances for such difficulties as do occur, the laws on the whole represent the experiments very closely.
386. We shall, then, assume that the breaking weight of a bar of 40" is half that of a bar of 20" of the same section, and we ask, Is this generally true? is it true that the breaking weight is inversely proportional to the span? In order to test this hypothesis, we can calculate the breaking weight of a bar of 30" (No. 6), and then compare the result with the observed value; if the supposition be true, the breaking weight should be given by the proportion—
30" : 40" :: 19 : Answer.
The answer is 25·3 lbs.; on reference to the table we find 25 lbs. to be the observed value, hence our hypothesis is verified for this bar.
387. Let us test the law also for the 10" bar, No. 10—
10" : 40" :: 19 : Answer.
The answer in this case is 76, whereas the observed value is 68, or 8 lbs. less; this does not agree very well with the theory, but still the difference, though 8 lbs., is only about 11 or 12 per cent. of the whole, and we shall still retain the law, for certainly there is no other that can express the result as well.
388. But the table will supply another verification. In experiment No. 3 a 40" bar, 1" broad, and 0"·5 deep, broke with 38 lbs.; and in experiment No. 7 a 20" bar of the same section broke with 74 lbs.; but this is so nearly double the breaking weight of the 40" bar, as to be an additional illustration of the law, that for a given section the breaking load varies inversely as the span.
389. We next inquire as to the effect of the breadth of the beam upon its strength? For this purpose we compare experiments Nos. 3 and 4: we there find that a bar 40" × 1" × 0"·5 is broken by a load of 38 lbs., while a bar just half the breadth is broken by 19 lbs. We might have anticipated this result, for it is evident that the bar of No. 3 must have the same strength as two bars similar to that of No. 4 placed side by side.
390. This view is confirmed by a comparison of Nos. 7 and 8, where we find that a 20" bar takes twice the load to break it that is required for a bar of half its breadth. The law is not quite so well verified by Nos. 5 and 6, for half the breaking weight of No. 5, namely 29·5 lbs., is more than 25, the observed breaking weight of No. 6: a similar remark may be made about Nos. 9 and 10.
391. Supposing we had a beam of 40" span, 2" broad, and 0"·5 deep, we can easily see that it is equivalent to two bars like that of No. 3 placed side by side; and we infer generally that the strength of a bar is proportional to its breadth; or to speak-more definitely, if two beams have the same span and depth, the ratio of their breaking loads is the same as the ratio of their breadths.
392. We next examine the effect of the depth of a beam upon its strength. In experimenting upon a beam placed edgewise, a precaution must be observed, which would not be necessary if the same beam were to be broken flatwise. When the load is suspended, the beam, if merely laid edgewise on the supports, would almost certainly turn over; it is therefore necessary to place its extremities in recesses in the supports, which will obviate the possibility of this occurrence; at the same time the ends must not be prevented from bending upwards, for we are at present discussing a beam free at each end, and the case where the ends are not free will be subsequently considered.
393. Let us first compare together experiments Nos. 2 and 3; here we have two bars of the same dimensions, the section in each being 1"·0 × 0"·5, but the first bar is broken edgewise, and the second flatwise. The first breaks with 77 lbs., and the second with 38 lbs.; hence the same bar is twice as strong placed edgewise as flatwise when one dimension of the section is twice as great as the other. We may generalize this law, and assert that the strength of a rectangular beam broken edgewise is to the strength of a beam of like span and section broken flatwise, as the greater dimension of the section is to the lesser dimension.
394. The strength of a beam 40" × 0"·5 × 1" is four times as great as the strength of 40" × 0"·5 × 0"·5, though the quantity of wood is only twice as great in one as in the other. In general we may state that if a beam were bisected by a longitudinal cut, the strength of the beam would be halved when the cut was horizontal, and unaltered when the cut was vertical; thus, for example, two beams of experiment No. 4, placed one on the top of the other, would break with about 40 lbs., whereas if the same rods were in one piece, the breaking load would be nearly 80 lbs.
395. This may be illustrated in a different manner. I have here two beams of 40" × 1" × 0"·5 superposed; they form one beam, equivalent to that of No. 1 in bulk, but I find that they break with 80 lbs., thus showing that the two are only twice as strong as one.
396. I take two similar bars, and, instead of laying them loosely one on the other, I unite them tightly with iron clamps like those represented in [Fig. 56]. I now find that the bars thus fastened together require 104 lbs. for fracture. We can readily understand this increase of strength. As soon as the bars begin to bend under the action of the weight, the surfaces which are in contact move slightly one upon the other in order to accommodate themselves to the change of form. By clamping I greatly impede this motion hence the beams deflect less, and require a greater load before they collapse; the case is therefore to some extent approximated to the state of things when the two rods form one solid piece, in which case a load of 152 lbs. would be required to produce fracture.
397. We shall be able by a little consideration to understand the reason why a bar is stronger edgewise than flatwise. Suppose I try to break a bar across my knee by pulling the ends held one in each hand, what is it that resists the breaking? It is chiefly the tenacity of the fibres on the convex surface of the bar. If the bar be edgewise, these fibres are further away from my knee and therefore resist with a greater moment than when the bar is flatwise: nor is the case different when the bar is supported at each end, and the load placed in the centre; for then the reactions of the supports correspond to the forces with which I pulled the ends of the bar.
398. We can now calculate the strength of any rectangular beam of pine:
Let us suppose it to be 12' long, 5" broad, and 7" deep. This is five times as strong as a beam 1" broad and 7" deep for we may conceive the original beam to consist of 5 of these beams placed side by side (Art 391); the beam 1" broad and 7" deep, is 7 times as strong as a beam 7" broad, 1" deep ([Art. 393]). Hence the original beam must be 35 times as strong as a beam 7" broad, 1" deep; but the beam 7" broad and 1" deep is seven times stronger than a beam the section of which is 1" × 1", hence the original beam is 245 times as strong as a beam 12' long and 1" × 1" in section; of which we can calculate the strength, by [Art. 388], from the proportion—
144" : 40" :: 152 : Answer.
The answer is 42·2 lbs., and thus the breaking load of the original beam is about 10,300 lbs.
399. It will be useful to deduce the general expression for the breaking load of a beam l" span, b" broad, and d" deep, supported freely at the ends and laden in the centre.
Let us suppose a bar l" long, and 1" × 1" in section. The breaking load is found by the proportion—
l : 40 :: 152 : Answer;
and the result obtained is 6080/l. A beam which is d" broad, l" span, and 1" deep, would be just as strong as d of the beams l" × 1" × 1" placed side by side; of which the collective strength would be—
| 6080 | |
| ————— | × d. |
| l |
If such a beam, instead of resting flatwise, were placed edgewise, its strength would be increased in the ratio of its depth to its breadth—that is, it would be increased d-fold—and would therefore amount to
| 6080 | |
| ————— | × d². |
| l |
We thus learn the strength of a beam 1" broad, d" deep, and l" span. The strength of b of these beams placed side by side, would be the same as the strength of one beam b" broad, d" deep, and l" span, and thus we finally obtain
| 6080 | |
| ————— | × d² × b. |
| l |
Since b d is the area of the section, we can express this result conveniently by saying that the breaking load in lbs. of a rectangular pine beam is equal to
| 6080 × | area of section × depth |
| span |
the depth and span being expressed in inches linear measure, and the section in square inches.
400. In order to test this formula, we have calculated from it the breaking loads of all the ten beams given in [Table XXIV]. and the results are given in the sixth column. The difference between the amount calculated and the observed mean breaking weight is shown in the last column.
401. Thus, for example, in experiment No. 7 the span is 20", breadth, 1", depth 0"·5; the formula gives, since the area is 0"·5,
| 0·5 × 0·5 | ||
| P = 6080 | ————— | = 76 |
| 20 |
This agrees sufficiently with 74 lbs., the mean of two observed values.
402. Except in experiments Nos. 5 and 10, the differences are very small, and even in these two cases the differences are not sufficient to make us doubt that we have discovered the correct expression for the load generally sufficient to produce fracture.
403. We have already pointed out that a beam begins to sustain permanent injury when it is subjected to a load greater than half that which would break it ([Art. 368]), and we may infer that it is not in general prudent to load a beam which is part of a permanent structure with more than about a third or a fourth of the breaking weight. Hence if we wanted to calculate a fair working load in lbs. for a beam of pine, we might obtain it from the formula.
| area of section × depth | |
| 1500 × | —————————— |
| span |
Probably a smaller coefficient than 1500 would often be used by the cautious builder, especially when the beam was liable to sudden blows or shocks. The coefficient obtained from small selected rods such as we have used would also be greater than that found from large beams in which imperfections are inevitable.
404. Had we adopted any other kind of wood we should have found a similar formula for the breaking weight, but with a different numerical coefficient. For example, had the beams been made of oak the number 6080 must be replaced by a larger figure.