STABLE AND UNSTABLE EQUILIBRIUM.
Fig. 28.
103. An iron rod a b, capable of revolving round an axis passing through its centre p, is shown in [Fig. 28].
The centre of gravity lies at the centre b, and consequently, as is easily seen, the rod will remain at rest in whatever position it be placed. But let a weight r be attached to the rod by means of a binding screw. The centre of gravity of the whole is no longer at the centre of the rod; it has moved to a point s nearer the weight; we may easily ascertain its position by removing the rod from its axle and then ascertaining the point about which it will balance. This may be done by placing the bar on a knife-edge, and moving it to and fro until the right position be secured; mark this position on the rod, and return it to its axle, the weight being still attached. We do not now find that the rod will balance in every position. You see it will balance if the point s be directly underneath the axis, but not if it lie to one side or the other. But if s be directly over the axis, as in the figure, the rod is in a curious condition. It will, when carefully placed, remain at rest; but if it receive the slightest displacement, it will tumble over. The rod is in equilibrium in this position, but it is what is called unstable equilibrium. If the centre of gravity be vertically below the point of suspension, the rod will return again if moved away: this position is therefore called one of stable equilibrium. It is very important to notice the distinction between these two kinds of equilibrium.
104. Another way of stating the case is as follows. A body is in stable equilibrium when its centre of gravity is at the lowest point: unstable when it is at the highest. This may be very simply illustrated by an ellipse, which I hold in my hand. The centre of gravity of this figure is at its centre. The ellipse, when resting on its side, is in a position of stable equilibrium and its centre of gravity is then clearly at its lowest point. But I can also balance the ellipse on its narrow end, though if I do so the smallest touch suffices to overturn it. The ellipse is then in unstable equilibrium; in this case, obviously, the centre of gravity is at the highest point.
Fig. 29.
105. I have here a sphere, the centre of gravity of which is at its centre; in whatever way the sphere is placed on a plane, its centre is at the same height, and therefore cannot be said to have any highest or lowest point; in such a case as this the equilibrium is neutral. If the body be displaced, it will not return to its old position, as it would have done had that been a position of stable equilibrium, nor will it deviate further therefrom as if the equilibrium had been unstable: it will simply remain in the new position to which it is brought.
106. I try to balance an iron ring upon the end of a stick h, [Fig. 29], but I cannot easily succeed in doing so. This is because its centre of gravity s is above the point of support; but if I place the stick at f, the ring is in stable equilibrium, for now the centre of gravity is below the point of support.
PROPERTY OF THE CENTRE OF GRAVITY
IN A REVOLVING WHEEL.
107. There are other curious consequences which follow from the properties of the centre of gravity, and we shall conclude by illustrating one of the most remarkable, which is at the same time of the utmost importance in machinery.
Fig. 30.
108. It is generally necessary that a machine should work as steadily as possible, and that undue vibration and shaking of the framework should be avoided: this is particularly the case when any parts of the machine rotate with great velocity, as, if these be heavy, inconvenient vibration will be produced when the proper adjustments are not made. The connection between this and the centre of gravity will be understood by reference to the apparatus represented in the accompanying figure ([Fig. 30]). We have here an arrangement consisting of a large cog wheel c working into a small one b, whereby, when the handle h is turned, a velocity of rotation can be given to the iron disk d, which weighs 14 lbs, and is 18" in diameter. This disk being uniform, and being attached to the axis at its centre, it follows that its centre of gravity is also the centre of rotation. The wheels are attached to a stand, which, though massive, is still unconnected with the floor. By turning the handle I can rotate the disk very rapidly, even as much as twelve times in a second. Still the stand remains quite steady, and even the shutter bell attached to it at e is silent.
109. Through one of the holes in the disk d I fasten a small iron bolt and a few washers, altogether weighing about 1 lb.; that is, only one-fourteenth of the weight of the disk. When I turn the handle slowly, the machine works as smoothly as before; but as I increase the speed up to one revolution every two seconds, the bell begins to ring violently, and when I increase it still more, the stand quite shakes about on the floor. What is the reason of this? By adding the bolt, I slightly altered the position of the centre of gravity of the disk, but I made no change of the axis about which the disk rotated, and consequently the disk was not on this occasion turning round its centre of gravity: this it was which caused the vibration. It is absolutely necessary that the centre of gravity of any heavy piece, rotating rapidly about an axis, should lie in the axis of rotation. The amount of vibration produced by a high velocity may be very considerable, even when a very small mass is the originating cause.
110. In order that the machine may work smoothly again, it is not necessary to remove the bolt from the hole. If by any means I bring back the centre of gravity to the axis, the same end will be attained. This is very simply effected by placing a second bolt of the same size at the opposite side of the disk, the two being at equal distances from the axis; on turning the handle, the machine is seen to work as smoothly as it did in the first instance.
111. The most common rotating pieces in machines are wheels of various kinds, and in these the centre of gravity is evidently identical with the centre of rotation; but if from any cause a wheel, which is to turn rapidly, has an extra weight attached to one part, this weight must be counterpoised by one or more on other portions of the wheel, in order to keep the centre of gravity of the whole in its proper place. Thus it is that the driving wheels of a locomotive are always weighted so as to counteract the effect of the crank and restore the centre of gravity to the axis of rotation. The cause of the vibration will be understood after the lecture on centrifugal force ([Lect. XVII].).
LECTURE V.
THE FORCE OF FRICTION.
The Nature of Friction.—The Mode of Experimenting.—Friction is proportional to the pressure.—A more accurate form of the Law.—The Coefficient varies with the weights used.—The Angle of Friction.—Another Law of Friction.—Concluding Remarks.