THE LEVER OF THE FIRST ORDER.

228. There are many cases in which a machine for overcoming great resistance is necessary where pulleys would be quite inapplicable. To meet these various demands a correspondingly various number of contrivances has been devised. Amongst these the lever in several different forms holds an important place.

229. The lever of the first order will be understood by reference to [Fig. 38]. It consists of a straight rod, to one end of which the power is applied by means of the weight c. At another point b the load is raised, while at a the rod is supported by what is called the fulcrum. In the case represented in the figure the rod is of iron, 1" × 1" in section and 6' long; it weighs 19 lbs. The power is produced by a 56 lb. weight: the fulcrum consists of a moderately sharp steel edge firmly secured to the framework. The load in this case is replaced by a spring balance h, and the hook of the balance is attached to the frame. The spring is strained by the action of the lever, and the index records the magnitude of the force produced at the short end. This is the lever with which we shall commence our experiments.

Fig. 38.

230. In examining the relation between the power and the load, the question is a little complicated by the weight of the lever itself (19 lbs.), but we shall be able to evade the difficulty by means similar to those employed on a former occasion ([Art. 60]); we can counterpoise the weight of the iron bar. This is easily done by applying a hook to the middle of the bar at d, thence carrying a rope over a pulley f, and suspending a weight g of 19 lbs. from its free extremity. Thus the bar is balanced, and we may leave its weight out of consideration.

231. We might also adopt another plan analogous to that of [Art. 51], which is however not so convenient. The weight of the bar produces a certain strain upon the spring balance. I may first read off the strain produced by the bar alone, and then apply the weight c and read again. The observed strain is due both to the weight c and to the weight of the bar. If I subtract the known effect of the bar, the remainder is the effect of c. It is, however, less complicated to counterpoise the bar, and then the strains indicated by the balance are entirely due to the power.

232. The lever is 6' long; the point b is 6" from the end, and b c is 5' long. b c is divided into 5 equal portions of 1'; a is at one of these divisions, 1' distant from b, and c is 5' distant from b in the figure; but c is capable of being placed at any position, by simply sliding its ring along the bar.

233. The mode of experimenting is as follows:—The weight is placed on the bar at the position c: a strain is immediately produced upon h; the spring stretches a little, and the bar becomes inclined. It may be noticed that the hook of the spring balance passes through the eye of a wire-strainer, so that by a few turns of the nut upon the strainer the lever can be restored to the horizontal position.

234. The power of 56 lbs. being 4' from the fulcrum, while the load is 1' from the fulcrum, it is found that the strain indicated by the balance is 224 lbs.; that is, four times the amount of the power. If the weight be moved, so as to be 3' from the fulcrum, the strain is observed to be 168 lbs.; and whatever be the distance of the power from the fulcrum, we find that the strain produced is obtained by multiplying the magnitude of the power in pounds by the distance expressed in feet, and fractional parts of a foot. This law may be expressed more generally by stating that the power is to the load as the distance of the load from the fulcrum is to the distance of the power from the fulcrum.

235. We can verify this law under varied circumstances. I move the steel edge which forms the fulcrum of the lever until the edge is 2' from b, and secure it in that position. I place the weight c at a distance of 3' from the fulcrum. I now find that the strain on the balance is 84 lbs.; but 84 is to 56 as 3 is to 2, and therefore the law is also verified in this instance.

236. There is another aspect in which we may express the relation between the power and the load. The law in this form is thus stated: The power multiplied by its distance from the fulcrum is equal to the load multiplied by its distance from the fulcrum. Thus, in the case we have just considered, the product of 56 and 3 is 168, and this is equal to the product of 84 and 2. The distances from the fulcrum are commonly called the arms of the lever, and the rule is expressed by stating that The power multiplied into its arm is equal to the load multiplied into its arm: hence the load may be found by dividing the product of the power and the power arm by the load arm. This simple law gives a very convenient method of calculating the load, when we know the power and the distances of the power and the load from the fulcrum.

237. When the power arm is longer than the load arm, the load is greater than the power; but when the power arm is shorter than the load arm, the power is greater than the load.

We may regard the strain on the balance as a power which supports the weight, just as we regard the weight to be a power producing the strain on the balance. We see, then, that for the lever of the first order to be efficient as a mechanical power it is necessary that the power arm be longer than the load arm.

238. The lever is an extremely simple mechanical power; it has only one moving part. Friction produces but little effect upon it, so that the laws which we have given may be actually applied in practice, without making any allowance for friction. In this we notice a marked difference between the lever and the pulley-blocks already described.

239. In the lever of the first order we find an excellent machine for augmenting power. A power of 14 lbs. can by its means overcome a resistance of a hundredweight, if the power be eight times as far from the fulcrum as the load is from the fulcrum. This principle it is which gives utility to the crowbar. The end of the bar is placed under a heavy stone, which it is required to raise; a support near that end serves as a fulcrum, and then a comparatively small force exerted at the power end will suffice to elevate the stone.

240. The applications of the lever are innumerable. It is used not only for increasing power, but for modifying and transforming it in various ways. The lever is also used in weighing machines, the principles of which will be readily understood, for they are consequences of the law we have explained. Into these various appliances it is not our intention to enter at present; the great majority of them may, when met with, be easily understood by the principle we have laid down.