THE PATH OF A PROJECTILE IS A PARABOLA.

520. We have already seen, in the experiments of [Fig. 68], that a body projected horizontally describes a curved path on its way to the ground, and we have to determine the geometrical nature of the curve. As the movement is rapid, it is impossible to follow the projectile with the eye so as to ascertain the shape of its path with accuracy; we must therefore adopt a special contrivance, such as that represented in [Fig. 70].

b c is a quadrant of wood 2" thick; it contains a groove, along which the ball b will run when released. A series of cardboard hoops are properly placed on a black board, and the ball, when it leaves the quadrant, will pass through all these hoops without touching any, and finally fall into a basket placed to receive it. The quadrant must be secured firmly, and the ball must always start from precisely the same place. The hoops are easily adjusted by trial. Letting the ball run down the quadrant two or three times, we can see how to place the first hoop in its right position, and secure it by drawing pins; then by a few more trials the next hoop is to be adjusted, and so on for the whole eight.

521. The curved line from the bottom of the quadrant, which passes through the centres of the hoops, is the path in which the ball moves; this curve is a parabola, of which f is the focus and the line a a the directrix.

Fig. 70.

It is a property of the parabola that the distance of any point on the curve from the focus is equal to its perpendicular distance from the directrix. This is shown in the figure. For example, the dotted line f d, drawn from f to the centre of the lowest hoop d, is equal in length to the perpendicular d p let fall from d on the directrix a a.

522. The direction in which the ball is projected is in this case horizontal, but, whatever be the direction of projection, the path is a parabola. This can be proved mathematically as a deduction from the theorem of [Art. 515].

LECTURE XVI.
INERTIA.

Inertia.—The Hammer.—The Storing of Energy.—The Fly-wheel.—The Punching Machine.