WHEELS.

169. The wheel is one of the most simple and effective devices for overcoming friction. A sleigh is an admirable vehicle on a smooth surface such as ice, but it is totally unadapted for use on common roads; the reason being that the amount of friction between the sleigh and the road is so great that to move the sleigh the horse would have to exert a force which would be very great compared with the load he was drawing. But a vehicle properly mounted on wheels moves with the greatest ease along the road, for the circumference of the wheel does not slide, and consequently there is no friction between the wheel and the road; the wheel however turns on its axle, therefore there is sliding, and consequently friction, at the axle, but the axle and the wheel are properly fitted to each other, and the surfaces are lubricated with oil, so that the friction is extremely small.

170. With large wheels the amount of friction on the axle is less than with small wheels; other advantages of large wheels are that they do not sink much into depressions in the roads, and that they have also an increased facility in surmounting the innumerable small obstacles from which even the best road is not free.

171. When it is desired to make a pulley turn with extremely small friction, its axle, instead of revolving in fixed bearings, is mounted upon what are called friction wheels. A set of friction wheels is shown in the apparatus of [Fig. 66]: as the axle revolves, the friction between the axles and the wheels causes the latter to turn round with a comparatively slow motion; thus all the friction is transferred to the axles of the four friction wheels; these revolve in their bearings with extreme slowness, and consequently the pulley is but little affected by friction. The amount of friction in a pulley so mounted may be understood from the following experiment. A silk cord is placed on the pulley, and 1 lb. weight is attached to each of its ends: these of course balance. A number of fine wire hooks, each weighing 0·001 lb., are prepared, and it is found that when a weight of 0·004 lb. is attached to either side it is sufficient to overcome friction and set the weights in motion.