FOOTNOTES:

[1] The great Dismal Swamp is a grand peat bog, and doubtless other of the swamps of the coast, as far south as Florida and the Gulf, are of the same character.


[PART I.]

THE ORIGIN, VARIETIES, AND CHEMICAL CHARACTERS OF PEAT.

1. What is Peat?

By the general term Peat, we understand the organic matter or vegetable soil of bogs, swamps, beaver-meadows and salt-marshes.

It consists of substances that have resulted from the decay of many generations of aquatic or marsh plants, as mosses, sedges, coarse grasses, and a great variety of shrubs, mixed with more or less mineral substances, derived from these plants, or in many cases blown or washed in from the surrounding lands.

2. The conditions under which Peat is formed.

In this country the production of Peat from fallen and decaying plants, depends upon the presence of so much water as to cover or saturate the vegetable matters, and thereby hinder the full access of air. Saturation with water also has the effect to maintain the decaying matters at a low temperature, and by these two causes in combination, the process of decay is made to proceed with great slowness, and the solid products of such slow decay, are compounds that themselves resist decay, and hence they accumulate.

In the United States there appears to be nothing like the extensive moors or heaths, that abound in Ireland, Scotland, the north of England, North Germany, Holland, and the elevated plains of Bavaria, which are mostly level or gently sloping tracts of country, covered with peat or turf to a depth often of 20, and sometimes of 40, or more, feet. In this country it is only in low places, where streams become obstructed and form swamps, or in bays and inlets on salt water, where the flow of the tide furnishes the requisite moisture, that our peat-beds occur. If we go north-east as far as Anticosti, Labrador, or Newfoundland, we find true moors. In these regions have been found a few localities of the Heather (Calluna vulgaris), which is so conspicuous a plant on the moors of Europe, but which is wanting in the peat-beds of the United States.

In the countries above named, the weather is more uniform than here, the air is more moist, and the excessive heat of our summers is scarcely known. Such is the greater humidity of the atmosphere that the bog-mosses,—the so-called Sphagnums,—which have a wonderful avidity for moisture, (hence used for packing plants which require to be kept moist on journeys), are able to keep fresh and in growth during the entire summer. These mosses decay below, and throw out new vegetation above, and thus produce a bog, especially wherever the earth is springy. It is in this way that in those countries, moors and peat-bogs actually grow, increasing in depth and area, from year to year, and raise themselves above the level of the surrounding country.

Prof. Marsh informs the writer that he has seen in Ireland, near the north-west coast, a granite hill, capped with a peat-bed, several feet in thickness. In the Bavarian highlands similar cases have been observed, in localities where the atmosphere and the ground are kept moist enough for the growth of moss by the extraordinary prevalence of fogs. Many of the European moors rise more or less above the level of their borders towards the centre, often to a height of 10 or 20 and sometimes of 30 feet. They are hence known in Germany as high moors (Hochmoore) to distinguish from the level or dishing meadow-moors, (Wiesenmoore). The peat-producing vegetation of the former is chiefly moss and heather, of the latter coarse grasses and sedges.

In Great Britain the reclamation of a moor is usually an expensive operation, for which not only much draining, but actual cutting out and burning of the compact peat is necessary.

The warmth of our summers and the dryness of our atmosphere prevent the accumulation of peat above the highest level of the standing water of our marshes, and so soon as the marshes are well drained, the peat ceases to form, and in most cases the swamp may be easily converted into good meadow land.

Springy hill-sides, which in cooler, moister climates would become moors, here dry up in summer to such an extent that no peat can be formed upon them.

As already observed, our peat is found in low places. In many instances its accumulation began by the obstruction of a stream. To that remarkable creature, the beaver, we owe many of our peat-bogs. These animals, from time immemorial, have built their dams across rivers so as to flood the adjacent forest. In the rich leaf-mold at the water's verge, and in the cool shade of the standing trees, has begun the growth of the sphagnums, sedges, and various purely aquatic plants. These in their annual decay have shortly filled the shallow borders of the stagnating water, and by slow encroachments, going on through many years, they have occupied the deeper portions, aided by the trees, which, perishing, give their fallen branches and trunks, towards completing the work. The trees decay and fall, and become entirely converted into peat; or, as not unfrequently happens, especially in case of resinous woods, preserve their form, and to some extent their soundness.

In a similar manner, ponds and lakes are encroached upon; or, if shallow, entirely filled up by peat deposits. In the Great Forest of Northern New York, the voyager has abundant opportunity to observe the formation of peat-swamps, both as a result of beaver dams, and of the filling of shallow ponds, or the narrowing of level river courses. The formation of peat in water of some depth greatly depends upon the growth of aquatic plants, other than those already mentioned. In our Eastern States the most conspicuous are the Arrow-head, (Sagittaria); the Pickerel Weed, (Pontederia;) Duck Meat, (Lemna;) Pond Weed, (Potamogeton;) various Polygonums, brothers of Buckwheat and Smart-weed; and especially the Pond Lilies, (Nymphœa and Nuphar). The latter grow in water four or five feet deep, their leaves and long stems are thick and fleshy, and their roots, which fill the oozy mud, are often several inches in diameter. Their decaying leaves and stems, and their huge roots, living or dead, accumulate below and gradually raise the bed of the pond. Their living foliage which often covers the water almost completely for acres, becomes a shelter or support for other more delicate aquatic plants and sphagnums, which, creeping out from the shore, may so develop as to form a floating carpet, whereon the leaves of the neighboring wood, and dust scattered by the wind collect, bearing down the mass, which again increases above, or is reproduced until the water is filled to its bottom with vegetable matter.

It is not rare to find in our bogs, patches of moss of considerable area concealing deep water with a treacherous appearance of solidity, as the hunter and botanist have often found to their cost. In countries of more humid atmosphere, they are more common and attain greater dimensions. In Zealand the surfaces of ponds are so frequently covered with floating beds of moss, often stout enough to bear a man, that they have there received a special name "Hangesak." In the Russian Ural, there occur lakes whose floating covers of moss often extend five or six feet above the water, and are so firm that roads are made across them, and forests of large fir-trees find support. These immense accumulations are in fact floating moors, consisting entirely of peat, save the living vegetation at the surface.

Sometimes these floating peat-beds, bearing trees, are separated by winds from their connection with the shore, and become swimming peat islands. In a small lake near Eisenach, in Central Germany, is a swimming island of this sort. Its diameter is 40 rods, and it consists of a felt-like mass of peat, three to five feet in depth, covered above by sphagnums and a great variety of aquatic plants. A few birches and dwarf firs grow in this peat, binding it together by their roots, and when the wind blows, they act as sails, so that the island is constantly moving about upon the lake.

On the Neusiedler lake, in Hungary, is said to float a peat island having an area of six square miles, and on lakes of the high Mexican Plateau are similar islands which, long ago, were converted in fruitful gardens.

3. The different kinds of Peat.

Very great differences in the characters of the deposits in our peat-beds are observable. These differences are partly of color, some peats being gray, others red, others again black; the majority, when dry, possess a dark brown-red or snuff color. They also vary remarkably in weight and consistency. Some are compact, destitute of fibres or other traces of the vegetation from which they have been derived, and on drying, shrink greatly and yield tough dense masses which burn readily, and make an excellent fuel. Others again are light and porous, and remain so on drying; these contain intermixed vegetable matter that is but little advanced in the peaty decomposition. Some peats are almost entirely free from mineral matters, and on burning, leave but a few per cent. of ash, others contain considerable quantities of lime or iron, in chemical combination, or of sand and clay that have been washed in from the hills adjoining the swamps. As has been observed, the peat of some swamps is mostly derived from mosses, that of others originates largely from grasses; some contain much decayed wood and leaves, others again are free from these.

In the same swamp we usually observe more or less of all these differences. We find the surface peat is light and full of partly decayed vegetation, while below, the deposits are more compact. We commonly can trace distinct strata or layers of peat, which are often very unlike each other in appearance and quality, and in some cases the light and compact layers alternate so that the former are found below the latter.

The light and porous kinds of peat appear in general to be formed in shallow swamps or on the surface of bogs, where there is considerable access of air to the decaying matters, while the compacter, older, riper peats are found at a depth, and seem to have been formed beneath the low water mark, in more complete exclusion of the atmosphere, and under a considerable degree of pressure.

The nature of the vegetation that flourishes in a bog, has much effect on the character of the peat. The peats chiefly derived from mosses that have grown in the full sunlight, have a yellowish-red color in their upper layers, which usually becomes darker as we go down, running through all shades of brown until at a considerable depth it is black. Peats produced principally from grasses are grayish in appearance at the surface, being full of silvery fibres—the skeletons of the blades of grasses and sedges, while below they are commonly black.

Moss peat is more often fibrous in structure, and when dried forms somewhat elastic masses. Grass peat, when taken a little below the surface, is commonly destitute of fibres; when wet, is earthy in its look, and dries to dense hard lumps.

Where mosses and grasses have grown together simultaneously in the same swamp, the peat is modified in its characters accordingly. Where, as may happen, grass succeeds moss, or moss succeeds grass, the different layers reveal their origin by their color and texture. At considerable depths, however, where the peat is very old, these differences nearly or entirely disappear.

The geological character of a country is not without influence on the kind of peat. It is only in regions where the rocks are granitic or silicious, where, at least, the surface waters are free or nearly free from lime, that mosses make the bulk of the peat.

In limestone districts, peat is chiefly formed from grasses and sedges.

This is due to the fact that mosses (sphagnums) need little lime for their growth, while the grasses require much; aquatic grasses cannot, therefore, thrive in pure waters, and in waters containing the requisite proportion of lime, grasses and sedges choke out the moss.

The accidental admixtures of soil often greatly affect the appearance and value of a peat, but on the whole it would appear that its quality is most influenced by the degree of decomposition it has been subjected to.

In meadows and marshes, overflowed by the ocean tides, we have salt-peat, formed from Sea-weeds (Algæ,) Salt-wort (Salicornia,) and a great variety of marine or strand-plants. In its upper portions, salt-peat is coarsely fibrous from the grass roots, and dark-brown in color. At sufficient depth it is black and destitute of fibres.

The fact that peat is fibrous in texture shows that it is of comparatively recent formation, or that the decomposition has been arrested before reaching its later stages. Fibrous peat is found near the surface, and as we dig down into a very deep bed we find almost invariably that the fibrous structure becomes less and less evident until at a certain depth it entirely disappears.

It is not depth simply, but age or advancement in decomposition, which determines these differences of texture.

The "ripest," most perfectly formed peat, that in which the peaty decomposition has reached its last stage,—which, in Germany, is termed pitchy-peat or fat peat, (Pechtorf, Specktorf)—is dark-brown or black in color, and comparatively heavy and dense. When moist, it is firm, sticky and coherent almost like clay, may be cut and moulded to any shape. Dried, it becomes hard, and on a cut or burnished surface takes a luster like wax or pitch.

In Holland, West Friesland, Holstein, Denmark and Pomerania, a so-called mud-peat (Schlammtorf, also Baggertorf and Streichtorf,) is "fished up" from the bottoms of ponds, as a black mud or paste, which, on drying, becomes hard and dense like the pitchy-peat.

The two varieties of peat last named are those which are most prized as fuel in Europe.

Vitriol peat is peat of any kind impregnated with sulphate of iron (copperas,) and sulphate of alumina, (the astringent ingredient of alum.)

Swamp Muck.—In New England, the vegetable remains occurring in swamps, etc., are commonly called Muck. In proper English usage, muck is a general term for manure of any sort, and has no special application to the contents of bogs. With us, however, this meaning appears to be quite obsolete, though in our agricultural literature—formerly, more than now, it must be admitted,—the word as applied to the subject of our treatise, has been qualified as Swamp Muck.

In Germany, peat of whatever character, is designated by the single word Torf; in France it is Tourbe, and of the same origin is the word Turf, applied to it in Great Britain. With us turf appears never to have had this signification.

Peat, no doubt, is a correct name for the substance which results from the decomposition of vegetable matters under or saturated with water, whatever its appearance or properties. There is, however, with us, an inclination to apply this word particularly to those purer and more compact sorts which are adapted for fuel, while to the lighter, less decomposed or more weathered kinds, and to those which are considerably intermixed with soil or silt, the term muck or swamp muck is given. These distinctions are not, indeed, always observed, and, in fact, so great is the range of variation in the quality of the substance, that it would be impossible to draw a line where muck leaves off and peat begins. Notwithstanding, a rough distinction is better than none, and we shall therefore employ the two terms when any greater clearness of meaning can be thereby conveyed.

It happens, that in New England, the number of small shallow swales, that contain unripe or impure peat, is much greater than that of large and deep bogs. Their contents are therefore more of the "mucky" than of the "peaty" order, and this may partly account for New England usage in regard to these old English words.

By the term muck, some farmers understand leaf-mold (decayed leaves), especially that which collects in low and wet places. When the deposit is deep and saturated with water, it may have all the essential characters of peat. Ripe peat, from such a source is, however, so far as the writer is informed, unknown to any extent in this country. We might distinguish as leaf-muck the leaves which have decomposed under or saturated with water, retaining the well established term leaf-mold to designate the dry or drier covering of the soil in a dense forest of deciduous trees.

Salt-mud.—In the marshes, bays, and estuaries along the sea-shore, accumulate large quantities of fine silt, brought down by rivers or deposited from the sea-water, which are more or less mixed with finely divided peat or partly decomposed vegetable matters, derived largely from Sea-weed, and in many cases also with animal remains (mussels and other shell-fish, crabs, and myriads of minute organisms.) This black mud has great value as a fertilizer.

4. The Chemical Characters and Composition of Peat.

The process of burning, demonstrates that peat consists of two kinds of substance; one of which, the larger portion, is combustible, and is organic or vegetable matter; the other, smaller portion, remaining indestructible by fire is inorganic matter or ash. We shall consider these separately.

a. The organic or combustible part of peat varies considerably in its proximate composition. It is in fact an indefinite mixture of several or perhaps of many compound bodies, whose precise nature is little known. These bodies have received the collective names Humus and Geine. We shall employ the term humus to designate this mixture, whether occurring in peat, swamp-muck, salt-mud, in composts, or in the arable soil. Its chemical characters are much the same, whatever its appearance or mode of occurrence; and this is to be expected since it is always formed from the same materials and under essentially similar conditions.

Resinous and Bituminous matters.—If dry pulverized peat be agitated and warmed for a short time with alcohol, there is usually extracted a small amount of resinous and sometimes of bituminous matters, which are of no account in the agricultural applications of peat, but have a bearing on its value as fuel.

Ulmic and Humic acids.—On boiling what remains from the treatment with alcohol, with a weak solution of carbonate of soda (sal-soda), we obtain a yellowish-brown or black liquid. This liquid contains certain acid ingredients of the peat which become soluble by entering into chemical combination with soda.

On adding to the solution strong vinegar, or any other strong acid, there separates a bulky brown or black substance, which, after a time, subsides to the bottom of the vessel as a precipitate, to use a chemical term, leaving the liquid of a more or less yellow tinge. This deposit, if obtained from light brown peat, is ulmic acid; if from black peat, it is humic acid. These acids, when in the precipitated state, are insoluble in vinegar; but when this is washed away, they are considerably soluble in water. They are, in fact, modified by the action of the soda, so as to acquire much greater solubility in water than they otherwise possess. On drying the bulky bodies thus obtained, brown or black lustrous masses result, which have much the appearance of coal.

Ulmin and Humin.—After extracting the peat with solution of carbonate of soda, it still contains ulmin or humin. These bodies cannot be obtained in the pure state from peat, since they are mixed with more or less partially decomposed vegetable matters from which they cannot be separated without suffering chemical change. They have been procured, however, by the action of muriatic acid on sugar. They are indifferent in their chemical characters, are insoluble in water and in solution of carbonate of soda; but upon heating with solution of hydrate of soda they give dark-colored liquids, being in fact converted by this treatment into ulmic and humic acids, respectively, with which they are identical in composition.

The terms ulmic and humic acids do not refer each to a single compound, but rather to a group of bodies of closely similar appearance and properties, which, however, do differ slightly in their characteristics, and differ also in composition by containing more or less of oxygen and hydrogen in equal equivalents.

After complete extraction with hydrate of soda, there remains more or less undecomposed vegetable matter, together with sand and soil, were these contained in the peat.

Crenic and apocrenic acids.—From the usually yellowish liquid out of which the ulmic and humic acids have been separated, may further be procured by appropriate chemical means, not needful to be detailed here, two other bodies which bear the names respectively of Crenic Acid and Apocrenic Acid. These acids were discovered by Berzelius, the great Swedish chemist, in the water and sediment of the Porla spring, in Sweden.

By the action upon peat of carbonate of ammonia, which is generated to some extent in the decay of vegetable matters and is also absorbed from the air, ulmic and humic acids are made soluble, and combine with the ammonia as well as with lime, oxide of iron, etc. In some cases the ulmates and humates thus produced may be extracted from the peat by water, and consequently occur dissolved in the water of the swamp from which the peat is taken, giving it a yellow or brown color.

Ulmates and Humates.—Of considerable interest to us here, are the properties of the compounds of these acids, that may be formed in peat when it is used as an ingredient of composts. The ulmates and humates of the alkalies, viz.: potash, soda, and ammonia, dissolve readily in water. They are formed when the alkalies or their carbonates act on ulmin and humin, or upon ulmates or humates of lime, iron, etc. Their dilute solutions are yellow, or brown.

The ulmates and humates of lime, magnesia, oxide of iron, oxide of manganese and alumina, are insoluble, or nearly so in water.

In ordinary soils, the earths and oxides just named, predominate over the alkalies, and although they may contain considerable ulmic and humic acids, water is able to extract but very minute quantities of the latter, on account of the insolubility of the compounds they have formed.

On the other hand, peat, highly manured garden soil, leaf-mold, rotted manure and composts, yield yellow or brown extracts with water, from the fact that alkalies are here present to form soluble compounds.

An important fact established by Mulder is, that when solutions of alkali-carbonates are put in contact with the insoluble ulmates and humates, the latter are decomposed; soluble alkali-ulmates and humates being formed, and in these, a portion of the otherwise insoluble ulmates and humates dissolve, so that thus, in a compost, lime, magnesia, oxide of iron, and even alumina may exist in soluble combinations, by the agency of these acids.

Crenates and Apocrenates.—The ulmic and humic acids when separated from their compounds, are nearly insoluble, and, so far as we know, comparatively inert bodies; by further change, (uniting with oxygen) they pass into or yield the crenic and apocrenic acids which, according to Mulder, have an acid taste, being freely soluble in water, and in all respects, decided acids. The compounds of both these acids with the alkalies are soluble. The crenates of lime, magnesia, and protoxide of iron are soluble, crenates of peroxide of iron and of oxide of manganese are but very slightly soluble; crenate of alumina is insoluble. The apocrenates of iron and manganese are slightly soluble; those of lime, magnesia, and alumina are insoluble. All the insoluble crenates and apocrenates, are soluble in solutions of the corresponding salts of the alkalies.

Application of these facts will be given in subsequent paragraphs. It may be here remarked, that the crenate of protoxide of iron is not unfrequently formed in considerable quantity in peat-bogs, and dissolving in the water of springs gives them a chalybeate character. Copious springs of this kind occur at the edge of a peat-bed at Woodstock, Conn., which are in no small repute for their medicinal qualities, having a tonic effect from the iron they contain. Such waters, on exposure to the air, shortly absorb oxygen, and the substance is thereby converted into crenate and afterwards into apocrenate of peroxide of iron, which, being but slightly soluble, or insoluble, separates as a yellow or brown ochreous deposit along the course of the water. By further exposure to air the organic acid is oxidized to carbonic acid, and hydrated oxide of iron remains. Bog-iron ore appears often to have originated in this way.

Gein and Geic acid.—Mulder formerly believed another substance to exist in peat which he called Gein, and from this by the action of alkalies he supposed geic acid to be formed. In his later writings, however, he expresses doubt as to the existence of such a substance, and we may omit further notice of it, especially since, if it really do occur, its properties are not distinct from those of humic acid.

We should not neglect to remark, however, that the word gein has been employed by some writers in the sense in which we use humus, viz.: to denote the brown or black products of the decomposition of vegetable matters.

It is scarcely to be doubted that other organic compounds exist in peat. As yet, however, we have no knowledge of any other ingredients, while it appears certain that those we have described are its chief constituents, and give it its peculiar properties. With regard to them it must nevertheless be admitted, that our chemical knowledge is not entirely satisfactory, and new investigations are urgently demanded to supply the deficiencies of the researches so ably made by Mulder, more than twenty years ago.

Elementary Composition of Peat.

After this brief notice of those organic compounds that have been recognized in or produced from peat, we may give attention to the elementary composition of peat itself.

Like that of the vegetation from which it originates, the organic part of peat consists of Carbon, Hydrogen, Oxygen and Nitrogen. In the subjoined table are given the proportions of these elements as found in the combustible part of sphagnum, of several kinds of wood, and in that of a number of peats in various stages of ripeness. They are arranged in the order of their content of carbon.

Analyst.Carbon.Hydrogen.Oxygen.Nitrogen.
1—Sphagnum, undecomposedWebsky49.886.5442.421.16
2—Peach wood, undecomposedChevandier49.906.1043.100.90
3—Poplar wood, undecomposedChevandier50.306.3042.401.00
4—Oak wood, undecomposedChevandier50.606.0042.101.30
5—Peat, porous, light-brown, sphagnousWebsky50.865.8042.570.77
6—Peat, porous, red-brownJæckel53.515.9040.59
7—Peat, heavy, brownJæckel56.435.3238.25
8—Peat, dark red-brown, well decomposedWebsky59.476.5231.512.51
9—Peat, black, very dense and hardWebsky59.705.7033.041.56
10—Peat, black, heavy, best quality for fuelWebsky59.715.2732.072.59
11—Peat, brown, heavy, best quality for fuelWebsky62.546.8129.241.41

From this table it is seen that sphagnum, and the wood of our forest trees are very similar in composition, though not identical. Further, it is seen from analyses 1 and 5, that in the first stages of the conversion of sphagnum into peat—which are marked by a change of color, but in which the form of the sphagnum is to a considerable extent preserved—but little alteration occurs in ultimate composition; about one per cent. of carbon being gained, and one of hydrogen lost. We notice in running down the columns that as the peat becomes heavier and darker in color, it also becomes richer in carbon and poorer in oxygen. Hydrogen varies but slightly.

As a general statement we may say that the ripest and heaviest peat contains 10 or 12 per cent. more carbon and 10 or 12 per cent. less oxygen than the vegetable matter from which it is produced; while between the unaltered vegetation and the last stage of humification, the peat runs through an indefinite number of intermediate stages.

Nitrogen is variable, but, in general, the older peats contain the most. To this topic we shall shortly recur, and now pass on to notice—

The ultimate composition of the compounds of which peat consists.

Below are tabulated analyses of the organic acids of peat:—

Carbon.Hydrogen.Oxygen.
Ulmic acid, artificial from sugar67.104.2028.70
Humic acid, from Frisian peat61.104.3034.60
Crenic acid56.472.7440.78
Apocrenic acid45.704.8049.50

It is seen that the amount of carbon diminishes from ulmic acid to apocrenic, that of oxygen increases in the same direction and to the same extent, viz.: about 21 per cent., while the hydrogen remains nearly the same in all.

b. The mineral part of peat, which remains as ashes when the organic matters are burned away, is variable in quantity and composition. Usually a portion of sand or soil is found in it, and this not unfrequently constitutes its larger portion. Some peats leave on burning much carbonate of lime; others chiefly sulphate of lime; the ash of others again is mostly oxyd of iron; silicic, and phosphoric acids, magnesia, potash, soda, alumina and chlorine, also occur in small quantities in the ash of all peats.

With one exception (alumina) all these bodies are important ingredients of agricultural plants.

In some rare instances, peats are found, which are so impregnated with soluble sulphates of iron and alumina, as to yield these salts to water in large quantity; and sulphate of iron (green vitriol,) has actually been manufactured from such peats, which in consequence have been characterized as vitriol peats.

Those bases (lime, oxide of iron, etc.,) which are found as carbonates or simple oxides in the ashes, exist in the peat itself in combination with the humic and other organic acids. When these compounds are destroyed by burning, the bases remain united to carbonic acid.

5.—Chemical Changes that occur in the formation of Peat. When a plant perishes, its conversion into humus usually begins at once. When exposed to the atmosphere, the oxygen of the air attacks it, uniting with its carbon producing carbonic acid gas, and with its hydrogen generating water. This action goes on, though slowly, even at some depth under water, because the latter dissolves oxygen from the air in small quantity,[2] and constantly resupplies itself as rapidly as the gas is consumed.

Whether exposed to the air or not, the organic matter suffers internal decomposition, and portions of its elements assume the gaseous or liquid form. We have seen that ripe peat is 10 to 12 per cent. richer in carbon and equally poorer in oxygen, than the vegetable matters from which it originates. Organic matters, in passing into peat, lose carbon and nitrogen; but they lose oxygen more rapidly than the other two elements, and hence the latter become relatively more abundant. The loss of hydrogen is such that its proportion to the other elements is but little altered.

The bodies that separate from the decomposing vegetable matter are carbonic acid gas, carburetted hydrogen (marsh gas), nitrogen gas, and water.

Carbonic acid is the most abundant gaseous product of the peaty decomposition. Since it contains nearly 73 per cent. of oxygen and but 27 per cent. of carbon, it is obvious that by its escape the proportion of carbon in the residual mass is increased. In the formation of water from the decaying matters, 1 part of hydrogen carries off 8 parts of oxygen, and this change increases the proportion of carbon and of hydrogen. Marsh gas consists of one part of hydrogen to three of carbon, but it is evolved in comparatively small quantity, and hence has no effect in diminishing the per cent. of carbon.

The gas that bubbles up through the water of a peat-bog, especially if the decomposing matters at the bottom be stirred, consists largely of marsh gas and nitrogen, often with but a small proportion of carbonic acid. Thus Websky found in gas from a peat-bed

Carbonic acid2.97
Marsh gas43.36
Nitrogen53.67
100.00

Carbonic acid, however, dissolves to a considerable extent in water, and is furthermore absorbed by the living vegetation, which is not true of marsh gas and nitrogen; hence the latter escape while the former does not. Nitrogen escapes in the uncombined state, as it always (or usually) does in the decay of vegetable and animal matters that contain it. Its loss is, in general, slower than that of the other elements, and it sometimes accumulates in the peat in considerable quantity. A small portion of nitrogen unites with hydrogen, forming ammonia, which remains combined with the humic and other acids.


[PART II.]

ON THE AGRICULTURAL USES OF PEAT AND SWAMP MUCK.

After the foregoing account of the composition of peat, we may proceed to notice:

1.—The characters that adapt it for agricultural uses.

These characters are conveniently discussed under two heads, viz.:

Those which render it useful in improving the texture and physical characters of the soil, and indirectly contribute to the nourishment of crops,—characters which constitute it an amendment to the soil (A); and

Those which make it a direct fertilizer (B).

A.—Considered as an amendment, the value of peat depends upon

Its remarkable power of absorbing and retaining water, both as a liquid and as a vapor (I):

Its power of absorbing ammonia (II):

Its effect in promoting the disintegration and solution of mineral ingredients, that is the stony matters of the soil (III): and

Its influence on the temperature of the soil (IV).

The agricultural importance of these properties of peat is best illustrated by considering the faults of a certain class of soils.

Throughout the State of Connecticut, for instance, are found abundant examples of light, leachy, hungry soils, which consist of coarse sand or fine gravel; are surface-dry in a few hours after the heaviest rains, and in the summer drouths, are as dry as an ash-heap to a depth of several or many feet.

These soils are easy to work, are ready for the plow early in the spring, and if well manured give fair crops in wet seasons. In a dry summer, however, they yield poorly, or fail of crops entirely; and, at the best, they require constant and very heavy manuring to keep them in heart.

Crops fail on these soils from two causes, viz.; want of moisture and want of food. Cultivated plants demand as an indispensable condition of their growth and perfection, to be supplied with water in certain quantities, which differ with different crops. Buckwheat will flourish best on dry soils, while cranberries and rice grow in swamps.

Our ordinary cereal, root, forage and garden crops require a medium degree of moisture, and with us it is in all cases desirable that the soil be equally protected from excess of water and from drouth. Soils must be thus situated either naturally, or as the result of improvement, before any steadily good results can be obtained in their cultivation. The remedy for excess of water in too heavy soils, is thorough drainage. It is expensive, but effectual. It makes the earth more porous, opens and maintains channels, through which the surplus water speedily runs off, and permits the roots of crops to go down to a considerable depth.

What, let us consider, is the means of obviating the defects of soils that are naturally too porous, from which the water runs off too readily, and whose crops "burn up" in dry seasons?

In wet summers, these light soils, as we have remarked, are quite productive if well manured. It is then plain that if we could add anything to them which would retain the moisture of dews and rains in spite of the summer-heats, our crops would be uniformly fair, provided the supply of manure were kept up.

But why is it that light soils, need more manure than loamy or heavy lands? We answer—because, in the first place the rains which quickly descend through the open soil, wash down out of the reach of vegetation the soluble fertilizing matters, especially the nitrates, for which the soil has no retentive power; and in the second place, from the porosity of the soil, the air has too great access, so that the vegetable and animal matters of manures decay too rapidly, their volatile portions, ammonia and carbonic acid, escape into the atmosphere, and are in measure lost to the crops. From these combined causes we find that a heavy dressing of well-rotted stable manure, almost if not entirely, disappears from such soils in one season, so that another year the field requires a renewed application; while on loamy soils the same amount of manure would have lasted several years, and produced each year a better effect.

We want then to amend light soils by incorporating with them something that prevents the rains from leaching through them too rapidly, and also that renders them less open to the air, or absorbs and retains for the use of crops the volatile products of the decay of manures.

For these purposes, vegetable matter of some sort is the best and almost the only amendment that can be economically employed. In many cases a good peat or muck is the best form of this material, that lies at the farmer's command.

I.—Its absorbent power for liquid water is well known to every farmer who has thrown it up in a pile to season for use. It holds the water like a sponge, and, according to its greater or less porosity, will retain from 50 to 100 or more per cent. of its weight of liquid, without dripping. Nor can this water escape from it rapidly. It dries almost as slowly as clay, and a heap of it that has been exposed to sun and wind for a whole summer, though it has of course lost much water, is still distinctly wet to the eye and the feel a little below the surface.

Its absorbent power for vapor of water is so great that more than once it has happened in Germany, that barns or close sheds filled with partially dried peat, such as is used for fuel, have been burst by the swelling of the peat in damp weather, occasioned by the absorption of moisture from the air. This power is further shown by the fact that when peat has been kept all summer long in a warm room, thinly spread out to the air, and has become like dry snuff to the feel, it still contains from 8 to 30 per cent. (average 15 per cent.) of water. To dry a peat thoroughly, it requires to be exposed for some time to the temperature of boiling water. It is thus plain, as experience has repeatedly demonstrated, that no ordinary summer heats can dry up a soil which has had a good dressing of this material, for on the one hand, it soaks up and holds the rains that fall upon it, and on the other, it absorbs the vapor of water out of the atmosphere whenever it is moist, as at night and in cloudy weather.

When peat has once become air-dry, it no longer manifests this avidity for water. In drying it shrinks, loses its porosity and requires long soaking to saturate it again. In the soil, however, it rarely becomes air-dry, unless indeed, this may happen during long drouth with a peaty soil, such as results from the draining of a bog.

II.—Absorbent power for ammonia.

All soils that deserve to be called fertile, have the property of absorbing and retaining ammonia and the volatile matters which escape from fermenting manures, but light and coarse soils may be deficient in this power. Here again in respect to its absorptive power for ammonia, peat comes to our aid.

It is easy to show by direct experiment that peat absorbs and combines with ammonia.

In 1858 I took a weighed quantity of air-dry peat from the New Haven Beaver Pond, (a specimen furnished me by Chauncey Goodyear, Esq.,) and poured upon it a known quantity of dilute solution of ammonia, and agitated the two together occasionally during 48 hours. I then distilled off at a boiling heat the unabsorbed ammonia and determined its quantity. This amount subtracted from that of the ammonia originally employed, gave the quantity of ammonia absorbed and retained by the peat at the temperature of boiling water.

The peat retained ammonia to the amount of 0.95 of one per cent.

I made another trial at the same time with carbonate of ammonia, adding excess of solution of this salt to a quantity of peat, and exposing it to the heat of boiling water, until no smell of ammonia was perceptible. The entire nitrogen in the peat was then determined, and it was found that the dry peat which originally contained nitrogen equivalent to 2.4 per cent. of ammonia, now yielded an amount corresponding to 3.7 per cent. The quantity of ammonia absorbed and retained at a temperature of 212°, was thus 1.3 per cent.

This last experiment most nearly represents the true power of absorption; because, in fermenting manures, ammonia mostly occurs in the form of carbonate, and this is more largely retained than free ammonia, on account of its power of decomposing the humate of lime, forming with it carbonate of lime and humate of ammonia.

The absorbent power of peat is well shown by the analyses of three specimens, sent me in 1858, by Edwin Hoyt, Esq., of New Canaan, Conn. The first of these was the swamp muck he employed. It contained in the air-dry state nitrogen equivalent to 0.58 per cent. of ammonia. The second sample was the same muck that had lain under the flooring of the horse stables, and had been, in this way, partially saturated with urine. It contained nitrogen equivalent to 1.15 per cent. of ammonia. The third sample was, finally, the same muck composted with white-fish. It contained nitrogen corresponding to 1.31 per cent. of ammonia.[3]

The quantities of ammonia thus absorbed, both in the laboratory and field experiments are small—from 0.7 to 1.3 per cent. The absorption is without doubt chiefly due to the organic matter of the peats, and in all the specimens on which these trials were made, the proportion of inorganic matter is large. The results therefore become a better expression of the power of peat, in general, to absorb ammonia, if we reckon them on the organic matter alone. Calculated in this way, the organic matter of the Beaver Pond peat (which constitutes but 68 per cent. of the dry peat) absorbs 1.4 per cent. of free ammonia, and 1.9 per cent. of ammonia out of the carbonate of ammonia.

Similar experiments, by Anderson, on a Scotch peat, showed it to possess, when wet, an absorptive power of 2 per cent., and, after drying in the air, it still retained 1.5 per cent.—[Trans. Highland and Ag'l Soc'y.]

When we consider how small an ingredient of most manures nitrogen is, viz.: from one-half to three-quarters of one per cent. in case of stable manure, and how little of it, in the shape of guano for instance, is usually applied to crops—not more than 40 to 60 lbs. to the acre, (the usual dressings with guano are from 250 to 400 lbs. per acre, and nitrogen averages but 15 per cent. of the guano), we at once perceive that an absorptive power of one or even one-half per cent. is greatly more than adequate for every agricultural purpose.

III.—Peat promotes the disintegration of the soil.

The soil is a storehouse of food for crops; the stores it contains are, however, only partly available for immediate use. In fact, by far the larger share is locked up, as it were, in insoluble combinations, and only by a slow and gradual change can it become accessible to the plant. This change is largely brought about by the united action of water and carbonic acid gas. Nearly all the rocks and minerals out of which fertile soils are formed,—which therefore contain those inorganic matters that are essential to vegetable growth,—though very slowly acted on by pure water, are decomposed and dissolved to a much greater extent by water, charged with carbonic acid gas.

It is by these solvents that the formation of soil from broken rocks is to a great extent due. Clay is invariably a result of their direct action upon rocks. The efficiency of the soil depends greatly upon their chemical influence.

The only abundant source of carbonic acid in the soil, is decaying vegetable matter.

Hungry, leachy soils, from their deficiency of vegetable matter and of moisture, do not adequately yield their own native resources to the support of crops, because the conditions for converting their fixed into floating capital are wanting. Such soils dressed with peat or green manured, at once acquire the power of retaining water, and keep that water ever charged with carbonic acid: thus not only the extraneous manures which the farmer applies are fully economized; but the soil becomes more productive from its own stores of fertility which now begin to be unlocked and available.

Dr. Peters, of Saxony, has made some instructive experiments that are here in point. He filled several large glass jars, (2-½ feet high and 5-½ inches wide) with a rather poor loamy sand, containing considerable humus, and planted in each one, June 14, 1857, an equal number of seeds of oats and peas. Jar No. 2 had daily passed into it through a tube, adapted to the bottom, about 3-¼ pints of common air. No. 3 received daily the same bulk of a mixture of air and carbonic acid gas, of which the latter amounted to one-fourth. No. 1 remained without any treatment of this kind, i. e.: in just the condition of the soil in an open field, having no air in its pores, save that penetrating it from the atmosphere. On October 3, the plants were removed from the soil, and after drying at the boiling point of water, were weighed. The crops from the pots into which air and carbonic acid were daily forced, were about twice as heavy as No. 1, which remained in the ordinary condition.

Examination of the soil further demonstrated, that in the last two soils, a considerably greater quantity of mineral and organic matters had become soluble in water, than in the soil that was not artificially aërated. The actual results are given in the table below in grammes, and refer to 6000 grammes of soil in each case:—

ACTION OF CARBONIC ACID ON THE SOIL.

Substances soluble in water, etc.No. 1,
WithoutNo. 2,No. 3,
ArtificialCommonAir and
Supply ofAirCarbonic
Air.Added.acid added.
Mineral matters2.04 3.71 4.99
Potash0.07 0.17 0.14
Soda0.17 0.23 0.28
Organic matters2.76 4.32 2.43
Weight of Crops5.8910.4912.35

It will be seen from the above that air alone exercised nearly as much solvent effect as the mixture of air with one-fourth its weight of carbonic acid; this is doubtless, in part due to the fact that the air, upon entering the soil rich in humus, caused the abundant formation of carbonic acid, as will be presently shown must have been the case. It is, however, probable that organic acids (crenic and apocrenic,) and nitric acid were also produced (by oxidation,) and shared with carbonic the work of solution.

It is almost certain, that the acids of peat exert a powerful decomposing, and ultimately solvent effect on the minerals of the soil; but on this point we have no precise information, and must therefore be content merely to present the probability. This is sustained by the fact that the crenic, apocrenic and humic acids, though often partly uncombined, are never wholly so, but usually occur united in part to various bases, viz.: lime, magnesia, ammonia, potash, alumina and oxide of iron.

The crenic and apocrenic acids (that are formed by the oxidation of ulmic and humic acids,) have such decided acid characters,—crenic acid especially, which has a strongly sour taste—that we cannot well doubt their dissolving action.

IV.—The influence of peat on the temperature of light soils dressed with it may often be of considerable practical importance. A light dry soil is subject to great variations of temperature, and rapidly follows the changes of the atmosphere from cold to hot, and from hot to cold. In the summer noon a sandy soil becomes so warm as to be hardly endurable to the feel, and again it is on such soils that the earliest frosts take effect. If a soil thus subject to extremes of temperature have a dressing of peat, it will on the one hand not become so warm in the hot day, and on the other hand it will not cool so rapidly, nor so much in the night; its temperature will be rendered more uniform, and on the whole, more conducive to the welfare of vegetation. This regulative effect on temperature is partly due to the stores of water held by peat. In a hot day this water is constantly evaporating, and this, as all know, is a cooling process. At night the peat absorbs vapor of water from the air, and condenses it within its pores, this condensation is again accompanied with the evolution of heat.

It appears to be a general, though not invariable fact, that dark colored soils, other things being equal, are constantly the warmest, or at any rate maintain the temperature most favorable to vegetation. It has been repeatedly observed that on light-colored soils plants mature more rapidly, if the earth be thinly covered with a coating of some black substance. Thus Lampadius, Professor in the School of Mines at Freiberg, a town situated in a mountainous part of Saxony, found that he could ripen melons, even in the coolest summers, by strewing a coating of coal-dust an inch deep over the surface of the soil. In some of the vineyards of the Rhine, the powder of a black slate is employed to hasten the ripening of the grape.

Girardin, an eminent French agriculturist, in a series of experiments on the cultivation of potatoes, found that the time of their ripening varied eight to fourteen days, according to the character of the soil. He found, on the 25th of August, in a very dark soil, made so by the presence of much humus or decaying vegetable matter, twenty-six varieties ripe; in sandy soil but twenty, in clay nineteen, and in a white lime soil only sixteen.

It cannot be doubted then, that the effect of dressing a light sandy or gravelly soil with peat, or otherwise enriching it in vegetable matter, is to render it warmer, in the sense in which that word is usually applied to soils. The upward range of the thermometer is not, indeed, increased, but the uniform warmth so salutary to our most valued crops is thereby secured.

In the light soils stable-manure wastes too rapidly because, for one reason, at the extremes of high temperature, oxidation and decay proceed with great rapidity, and the volatile portions of the fertilizer are used up faster than the plant can appropriate them, so that not only are they wasted during the early periods of growth, but they are wanting at a later period when their absence may prove the failure of a crop.

B. The ingredients and qualities which make peat a direct fertilizer next come under discussion. We shall notice:

The organic matters including nitrogen (ammonia and nitric acid) (I):

The inorganic or mineral ingredients (II):

Peculiarities in the decay of Peat (III), and

Institute a comparison between peat and stable manure (IV).

I.—Under this division we have to consider:

1. The organic matters as direct food to plants.

Thirty years ago, when Chemistry and Vegetable Physiology began to be applied to Agriculture, the opinion was firmly held among scientific men, that the organic parts of humus—by which we understand decayed vegetable matter, such as is found to a greater or less extent in all good soils, and abounds in many fertile ones, such as constitutes the leaf-mold of forests, such as is produced in the fermenting of stable manure, and that forms the principal part of swamp-muck and peat,—are the true nourishment of vegetation, at any rate of the higher orders of plants, those which supply food to man and to domestic animals.

In 1840, Liebig, in his celebrated treatise on the "Applications of Chemistry to Agriculture and Physiology," gave as his opinion that these organic bodies do not nourish vegetation except by the products of their decay. He asserted that they cannot enter the plant directly, but that the water, carbonic acid and ammonia resulting from their decay, are the substances actually imbibed by plants, and from these alone is built up the organic or combustible part of vegetation.

To this day there is a division of opinion among scientific men on this subject, some adopting the views of Liebig, others maintaining that certain soluble organic matters, viz., crenic and apocrenic acids are proper food of plants.

On the one hand it has been abundantly demonstrated that these organic matters are not at all essential to the growth of agricultural plants, and can constitute but a small part of the actual food of vegetation taken in the aggregate.

On the other hand, we are acquainted with no satisfactory evidence that the soluble organic matters of the soil and of peat, especially the crenates and apocrenates, are not actually appropriated by, and, so far as they go, are not directly serviceable as food to plants.

Be this as it may, practice has abundantly demonstrated the value of humus as an ingredient of the soil, and if not directly, yet indirectly, it furnishes the material out of which plants build up their parts.

2. The organic matters of peat as indirect food to plants. Very nearly one-half, by weight, of our common crops, when perfectly dry, consists of carbon. The substance which supplies this element to plants is the gas, carbonic acid. Plants derive this gas mostly from the atmosphere, absorbing it by means of their leaves. But the free atmosphere, at only a little space above the soil, contains on the average but 1/2500 of its bulk of this gas, whereas plants flourish in air containing a larger quantity, and, in fact, their other wants being supplied, they grow better as the quantity is increased to 1/12 the bulk of the air. These considerations make sufficiently obvious how important it is that the soil have in itself a constant and abundant source of carbonic acid gas. As before said, organic matter, in a state of decay, is the single material which the farmer can incorporate with his soil in order to make the latter a supply of this most indispensable form of plant-food.

When organic matters decay in the soil, their carbon ultimately assumes the form of Carbonic acid. This gas, constantly exhaling from the soil, is taken up by the foliage of the crops, and to some extent is absorbed likewise by their roots.

Boussingault & Lewy have examined the air inclosed in the interstices of various soils, and invariably found it much richer (10 to 400 times) than that of the atmosphere above. Here follow some of their results:

CARBONIC ACID IN SOILS.

Key:
A - Volumes of Carbonic acid in 100 of air in pores of Soil.
B - Cubic feet of air in acre to depth of 14 inches.
C - Cubic feet of Carbonic acid in acre to depth of 14 inches.
D - Volumes of Carbonic acid to 100 of air above the soil.
E - Cubic feet of air over one acre to height of 14 inches.
F - Cubic feet of Carbonic acid over one acre to a height of 14 inches.
Designation and Condition of Soil.ABC
Sandy subsoil of forest0.24 4,326 14
Loamy subsoil of forest0.82 3,458 28
Surface soil of forest0.86 5,768 56
Clayey soil of artichoke field0.6610,094 71
Soil of asparagus bed, unmanured for one year0.7910,948 86
Soil of asparagus bed, newly manured1.5410,948 172
Sandy soil, six days after manuring, and three days of rain2.2111,536 257
Sandy soil, ten days after manuring, and three days of rain9.7411,5361144
Compost of vegetable mold3.6420,608 772
Carbonic Acid in AtmosphereDEF
0.02550,820 14

From the above it is seen that in soils containing little decomposing organic matters—as the forest sub-soils—the quantity of carbonic acid is no greater than that contained in an equal bulk of the atmosphere. It is greater in loamy and clayey soils; but is still small. In the artichoke field (probably light soil not lately manured), and even in an asparagus bed unmanured for one year, the amount of carbonic acid is not greatly larger. In newly manured fields, and especially in a vegetable compost, the quantity is vastly greater.

The organic matters which come from manures, or from the roots and other residues of crops, are the source of the carbonic acid of the soil. These matters continually waste in yielding this gas, and must be supplied anew. Boussingault found that the rich soil of his kitchen garden (near Strasburg) which had been heavily manured from the barn-yard for many years, lost one-third of its carbon by exposure to the air for three months (July, August and September,) being daily watered. It originally contained 2.43 per cent. At the conclusion of the experiment it contained but 1.60 per cent., having lost 0.83 per cent.

Peat and swamp-muck, when properly prepared, furnish carbonic acid in large quantities during their slow oxidation in the soil.

3. The Nitrogen of Peat, including Ammonia and Nitric Acid.

The sources of the nitrogen of plants, and the real cause of the value of nitrogenous fertilizers, are topics that have excited more discussion than any other points in Agricultural Chemistry. This is the result of two circumstances. One is the obscurity in which some parts of the subject have rested; the other is the immense practical and commercial importance of this element, as a characteristic and essential ingredient of the most precious fertilizers. It is a rule that the most valuable manures, commercially considered, are those containing the most nitrogen. Peruvian guano, sulphate of ammonia, soda-saltpeter, fish and flesh manures, bones and urine, cost the farmer more money per ton than any other manures he buys or makes, superphosphate of lime excepted, and this does not find sale, for general purposes, unless it contains several per cent. of nitrogen. These are, in the highest sense, nitrogenous fertilizers, and, if deprived of their nitrogen, they would lose the greater share of their fertilizing power.

The importance of the nitrogen of manures depends upon the fact that those forms (compounds) of nitrogen which are capable of supplying it to vegetation are comparatively scarce.

It has long been known that peat contains a considerable quantity of nitrogen. The average amount in thirty specimens, analyzed under the author's direction, including peats and swamp mucks of all grades of quality, is equivalent to 1-½ per cent. of the air-dried substance, or more than thrice as much as exists in ordinary stable or yard manure. In several peats the amount is as high as 2.4 per cent., and in one case 2.9 per cent. were found.

Of these thirty samples, one-half were largely mixed with soil, and contained from 15 to 60 per cent. of mineral matters.

Reducing them to an average of 15 per cent. of water and 5 per cent. of ash, they contain 2.1 per cent. of nitrogen, while the organic part, considered free from water and mineral substances, contains on the average 2.6 per cent. See table, page 90.

The five peats, analyzed by Websky and Chevandier, as cited on page 24, considered free from water and ash, contain an average of 1.8 per cent. of nitrogen.

We should not neglect to notice that peat is often comparatively poor in nitrogen. Of the specimens, examined in the Yale Analytical Laboratory, several contained but half a per cent. or less. So in the analyses of Websky, one sample contained but 0.77 per cent. of the element in question.

As concerns the state of combination in which nitrogen exists in peat, there is a difference of opinion. Mulder regards it as chiefly occurring in the form of ammonia (a compound of nitrogen and hydrogen), united to the organic acids from which it is very difficult to separate it. Recent investigations indicate that in general, peat contains but a small proportion of ready-formed ammonia.

The great part of the nitrogen of peat exists in an insoluble and inert form: but, by the action of the atmosphere upon it, especially when mixed with and divided by the soil, it gradually becomes available to vegetation to as great an extent as the nitrogen of ordinary fertilizers.

It appears from late examinations that weathered peat may contain nitric acid (compound of nitrogen with oxygen) in a proportion which, though small, is yet of great importance, agriculturally speaking. What analytical data we possess are subjoined.

PROPORTIONS OF NITROGEN, ETC., IN PEAT.

Analyst.Total
Nitrogen.
Ammonia,
per cent.
Nitric Acid.
1—Brown PeatAir dry (?)Boussingault2.200.0180.000
2—Black PeatAir dry (?)BoussingaultUndetermined0.025Undetermined
3—PeatDried at 212°Reichardt[4]Undetermined0.1520.483
4—PeatDried at 212°ReichardtUndetermined0.1650.525
5—PeatDried at 212°ReichardtUndetermined0.3050.241
6—PeatDried at 212°ReichardtUndetermined0.3350.421

Specimens 3, 4 and 5, are swamp (or heath) mucks, and have been weathered for use in flower-culture. 3 and 4 are alike, save that 3 has been weathered a year longer than 4. They contain respectively 41, 56 and 67 per cent. of organic matter.

Sample 6, containing 86 per cent. of organic matter, is employed as a manure with great advantage, and probably was weathered before analysis. It contained 85 per cent. of organic substance.

More important to us than the circumstance that this peat contains but little or no ammonia or nitric acid, and the other contains such or such a fraction of one per cent. of these bodies, is the grand fact that all peats may yield a good share of their nitrogen to the support of crops, when properly treated and applied.

Under the influence of Liebig's teachings, which were logically based upon the best data at the disposal of this distinguished philosopher when he wrote 25 years ago, it has been believed that the nitrogen of a fertilizer, in order to be available, must be converted into ammonia and presented in that shape to the plant. It has been recently made clear that nitric acid, rather than ammonia, is the form of nitrogenous food which is most serviceable to vegetation, and the one which is most abundantly supplied by the air and soil. The value of ammonia is however positive, and not to be overlooked.

When peat, properly prepared by weathering or composting, is suitably incorporated with a poor or light soil, it slowly suffers decomposition and wastes away. If it be wet, and air have access in limited quantity, especially if lime be mixed with it, a portion of its nitrogen is gradually converted into ammonia. With full access of air nitric acid is produced. In either case, it appears that a considerable share of the nitrogen escapes in the free state as gas, thereby becoming useless to vegetation until it shall have become converted again into ammonia or nitric acid. It happens in a cultivated soil that the oxygen of the air is in excess at the surface, and less abundant as we go down until we get below organic matters: it happens that one day it is saturated with water more or less, and another day it is dry, so that at one time we have the conditions for the formation of ammonia, and at another, those favorable to producing nitric acid. In this way, so far as our present knowledge warrants us to affirm, organic matters, decaying in the soil, continuously yield portions of their nitrogen in the forms of ammonia and nitric acid for the nourishment of plants.

The farmer who skillfully employs as a fertilizer a peat containing a good proportion of nitrogen, may thus expect to get from it results similar to what would come from the corresponding quantity of nitrogen in guano or stable manure.

But the capacity of peat for feeding crops with, nitrogen appears not to stop here. Under certain conditions, the free nitrogen of the air which cannot be directly appropriated by vegetation, is oxidized in the pores of the soil to nitric acid, and thus, free of expense to the farmer, his crops are daily dressed with the most precious of all fertilizers.

This gathering of useless nitrogen from the air, and making it over into plant-food cannot go on in a soil destitute of organic matter, requires in fact that vegetable remains or humified substances of some sort be present there. The evidence of this statement, whose truth was maintained years ago as a matter of opinion by many of the older chemists, has recently become nearly a matter of demonstration by the investigations of Boussingault and Knop, while the explanation of it is furnished by the researches of Schœnbein and Zabelin. To attempt any elucidation of it here would require more space than is at our disposal.

It is plain from the contents of this paragraph that peat or swamp muck is, in general, an abundant source of nitrogen, and is often therefore an extremely cheap means of replacing the most rare and costly fertilizers.

II.—With regard to the inorganic matters of peat considered as food to plants, it is obvious, that, leaving out of the account for the present, some exceptional cases, they are useful as far as they go.

In the ashes of peats, we almost always find small quantities of sulphate of lime, magnesia and phosphoric acid. Potash and soda too, are often present, though rarely to any considerable amount. Carbonate and sulphate of lime are large ingredients of the ashes of about one-half, of the thirty-three peats and swamp mucks I have examined. The ashes of the other half are largely mixed with sand and soil, but in most cases also contain considerable sulphate of lime, and often carbonates of lime and magnesia.

In one swamp-muck, from Milford, Conn., there was found but two per cent. of ash, at least one-half of which was sand, and the remainder sulphate of lime, (gypsum.) In other samples 20, 30, 50 and even 60 per cent. remained after burning off the organic matter. In these cases the ash is chiefly sand. The amount of ash found in those peats which were most free from sand, ranges from five to nine per cent. Probably the average proportion of true ash, viz.: that derived from the organic matters themselves, not including sand and accidental ingredients, is not far from five per cent.

In twenty-two specimens of European peat, examined by Websky, Jæckel, Walz, Wiegmann, Einhof and Berthier, eleven contained from 0.6 to 3.5 per cent. of ash. The other eleven yielded from 5.3 to 22 per cent. The average of the former was 2.4, that of the latter 12.7 per cent. Most of these contained a considerable proportion of sand or soil.

Variation in the composition as well as in the quantity of ash is very great.

Three analyses of peat-ashes have been executed at the author's instance with the subjoined results:

ANALYSIS OF PEAT-ASHES.

A.B.C.
Potash 0.69 0.80 3.46
Soda 0.58- trace.
Lime40.52 35.59 6.60
Magnesia 6.06 4.92 1.05
Oxide of iron and alumina 5.17 9.08 15.59
Phosphoric acid 0.50 0.77 1.55
Sulphuric acid 5.52 10.41 4.04
Chlorine 0.15 0.43 0.70
Soluble silica 8.23 1.40 }
Carbonic acid19.60 22.28 } 67.01
Sand12.11 15.04 }
99.13100.74100.00

A was furnished by Mr. Daniel Buck, Jr., of Poquonock, Conn., and comes from a peat which he uses as fuel.

B was sent by Mr. J. H. Stanwood, of Colebrook, Conn.

C was sent from Guilford, Conn., by Mr. Andrew Foote.[5]

A and B, after excluding sand, are seen to consist chiefly of carbonates and sulphates of lime and magnesia. III. contains a very large proportion of sand and soluble silica, much iron and alumina, less lime and sulphuric acid. Potash and phosphoric acid are three times more abundant in C than in the others.

Instead of citing in full the results of Websky, Jæckel and others, it will serve our object better to present the maximum, minimum and average proportions of the important ingredients in twenty-six recent analyses, (including these three,) that have come under the author's notice.

VARIAIONS AND AVERAGES IN COMPOSITION OF PEAT-ASHES

Minimum. Maximum. Average.
Potash0.05to 3.640.89 per cent.
Sodanoneto 5.730.83 per cent.
Lime4.72to58.3824.00 per cent.
Magnesianoneto24.393.20 per cent.
Alumina0.90to20.505.78 per cent.
Oxide of ironnoneto73.3318.70 per cent.
Sulphuric acidnoneto37.407.50 per cent.
Chlorinenoneto 6.500.60 per cent.
Phosphoric acidnone to 6.292.56 per cent.
Sand0.99to56.9725.50 per cent.

It is seen from the above figures that the ash of peat varies in composition to an indefinite degree. Lime is the only ingredient that is never quite wanting, and with the exception of sand, it is on the average the largest. Of the other agriculturally valuable components, sulphuric acid has the highest average; then follows magnesia; then phosphoric acid, and lastly, potash and soda: all of these, however, may be nearly or quite lacking.

Websky, who has recently made a study of the composition of a number of German peats, believes himself warranted to conclude that peat is so modified in appearance by its mineral matters, that the quantity or character of the latter may be judged of in many cases by the eye. He remarks, (Journal fuer Praktische Chemie, Bd. 92, S. 87,) "that while for example the peats containing much sand and clay have a red-brown powdery appearance, and never assume a lustrous surface by pressure; those which are very rich in lime, are black, sticky when moist, hard and of a waxy luster on a pressed surface, when dry: a property which they share indeed with very dense peats that contain little ash. Peats impregnated with iron are easily recognized. Their peculiar odor, and their changed appearance distinguish them from all others."

From my own investigations on thirty specimens of Connecticut peats, I am forced to disagree with Websky entirely, and to assert that except as regards sand, which may often be detected by the eye, there is no connection whatever between the quantity or character of the ash and the color, consistency, density or any other external quality of the peat.

The causes of this variation in the ash-content of peat, deserve a moment's notice. The plants that produce peat contain considerable proportions of lime, magnesia, alkalies, sulphuric acid, chlorine and phosphoric acid, as seen from the following analysis by Websky.

COMPOSITION OF THE ASH OF SPHAGNUM.

Potash17.2
Soda8.3
Lime11.8
Magnesia6.7
Sulphuric acid6.5
Chlorine6.2
Phosphoric acid6.7
Per cent. of ash, 2.5.

The mineral matters of the sphagnum do not all become ingredients of the peat; but, as rapidly as the moss decays below, its soluble matters are to a great degree absorbed by the vegetation, which is still living and growing above. Again, when a stream flows through a peat-bed, soluble matters are carried away by the water, which is often dark-brown from the substances dissolved in it. Finally the soil of the adjacent land is washed or blown upon the swamp, in greater or less quantities.

III.—The decomposition of peat in the soil offers some peculiarities that are worthy of notice in this place. Peat is more gradual and regular in decay than the vegetable matters of stable dung, or than that furnished by turning under sod or green crops. It is thus a more steady and lasting benefit, especially in light soils, out of which ordinary vegetable manures disappear too rapidly. The decay of peat appears to proceed through a regular series of steps. In the soil, especially in contact with soluble alkaline bodies, as ammonia and lime, there is a progressive conversion of the insoluble or less soluble into soluble compounds. Thus the inert matters that resist the immediate solvent power of alkalies, absorb oxygen from the air, and form the humic or ulmic acids soluble in alkalies; the humic acids undergo conversion into crenic acid, and this body, by oxidation, passes into apocrenic acid. The two latter are soluble in water, and, in the porous soil, they are rapidly brought to the end-results of decay, viz.: water, carbonic acid, ammonia and free nitrogen.

Great differences must be observed, however, in the rapidity with which these changes take place. Doubtless they go on most slowly in case of the fibrous compact peats, and perhaps some of the lighter and more porous samples of swamp muck, would decay nearly as fast as rotted stable dung.

It might appear from the above statement, that the effect of exposing peat to the air, as is done when it is incorporated with the soil, would be to increase relatively the amount of soluble organic matters; but the truth is, that they are often actually diminished. In fact, the oxidation and consequent removal of these soluble matters (crenic and apocrenic acids,) is likely to proceed more rapidly than they can be produced from the less soluble humic acid of the peat.

IV.—Comparison of Peat with Stable Manure.

The fertilizing value of peat is best understood by comparing it with some standard manure. Stable manure is obviously that fertilizer whose effects are most universally observed and appreciated, and by setting analyses of the two side by side, we may see at a glance, what are the excellencies and what the deficiencies of peat. In order rightly to estimate the worth of those ingredients which occur in but small proportion in peat, we must remember that it, like stable manure, may be, and usually should be, applied in large doses, so that in fact the smallest ingredients come upon an acre in considerable quantity. In making our comparison, we will take the analysis of Peat from the farm of Mr. Daniel Buck, Jr., of Poquonock, Conn., and the average of several analyses of rotted stable dung of good quality.

No. I, is the analysis of Peat; No. II, that of well rotted stable manure:—

I. II.
Water expelled at 212 degrees79.000 79.00
Organic matter.{Soluble in dilute solution of carbonate of soda 7.312 }14.16
{Insoluble in solution of carbonate of soda12.210 }
Potash 0.010 0.65
Soda 0.009 -
Lime 0.608 0.57
Magnesia 0.091 0.19
Phosphoric acid 0.008 0.23
Sulphuric acid 0.082 0.27
Nitrogen 0.600 0.55
Matters, soluble in water 0.450 4.42

To make the comparison as just as possible, the peat is calculated with the same content of water, that stable dung usually has.

We observe then, that the peat contains in a given quantity, about one-third more organic matter, an equal amount of lime and nitrogen; but is deficient in potash, magnesia, phosphoric and sulphuric acids.

The deficiencies of this peat in the matter of composition may be corrected, as regards potash, by adding to 100 lbs. of it 1 lb. of potash of commerce, or 5 lbs. of unleached wood-ashes; as regards phosphoric and sulphuric acids, by adding 1 lb. of good superphosphate, or 1 lb. each of bone dust and plaster of Paris.

In fact, the additions just named, will convert any fresh peat, containing not more than 80 per cent. of water and not less than 20 per cent. of organic matter, into a mixture having as much fertilizing matters as stable dung, with the possible exception of nitrogen.

It is a fact, however, that two manures may reveal to the chemist the same composition, and yet be very unlike in their fertilizing effects, because their conditions are unlike, because they differ in their degrees of solubility or availability.

As before insisted upon, it is true in general, that peat is more slow of decomposition than yard-manure, and this fact, which is an advantage in an amendment, is a disadvantage in a fertilizer. Though there may be some peats, or rather swamp mucks, which are energetic and rapid in their action, it seems that they need to be applied in larger quantities than stable manure in order to produce corresponding fertilizing effects. In many cases peat requires some preparation by weathering, or by chemical action—"fermentation"—induced by decomposing animal matters or by alkalies. This topic will shortly be discussed.

We adopt, as a general fact, the conclusion that peat is inferior in fertilizing power to stable manure.

Experience asserts, however, with regard to some individual kinds, that they are equal to common yard manure without any preparation whatever.

Mr. Daniel Buck, of Poquonock, Conn., says, of the 'muck,' over-lying the peat, whose composition has just been compared with stable manure, that it "has been applied fresh to meadow with good results; the grass is not as tall but thicker and finer, and of a darker green in the spring, than when barn-yard manure is spread on."

A swamp muck, from Mr. A. M. Haling, Rockville, Conn., "has been used as a top-dressing, on grass, with excellent results. It is a good substitute for barn-yard manure."

A peat, from Mr. Russell U. Peck, of Berlin, Conn., "has been used fresh, on corn and meadow, with good effect."

Of the peat, from the 'Beaver Pond,' near New Haven, Mr. Chauncey Goodyear, says, "it has been largely used in a fresh state, and in this condition is as good as cow dung."

Mr. Henry Keeler, remarks, concerning a swamp muck occurring at South Salem, N. Y., that "it has been used in the fresh state, applied to corn and potatoes, and appears to be equal to good barn manure:" further:—"it has rarely been weathered more than two months, and then applied side by side with the best yard manure has given equally good results."

A few words as to the apparent contradiction between Chemistry, which says that peat is not equal to stable dung as a fertilizer, and Practice, which in these cases affirms that it is equal to our standard manure.

In the first place, the chemical conclusion is a general one, and does not apply to individual peats, which, in a few instances, may be superior to yard manure. The practical judgment also is, that, in general, yard manure is the best.

To go to the individual cases; second: A peat in which nitrogen exists in as large a proportion as is found in stable or yard manure, being used in larger quantity, or being more durable in its action, may for a few seasons produce better results than the latter, merely on account of the presence of this one ingredient, it may in fact, for the soil and crop to which it is applied, be a better fertilizer than yard manure, because nitrogen is most needed in that soil, and yet for the generality of soils, or in the long run, it may prove to be an inferior fertilizer.

Again; third—the melioration of the physical qualities of a soil, the amendment of its dryness and excessive porosity, by means of peat, may be more effective for agricultural purposes, than the application of tenfold as much fertilizing, i. e. plant-feeding materials; in the same way that the mere draining of an over-moist soil often makes it more productive than the heaviest manuring.

2.—On the characters of Peat that are detrimental, or that may sometimes need correction before it is agriculturally useful.

I.—Bad effects on wet heavy soils.

We have laid much stress on the amending qualities of peat, when applied to dry and leachy soils, which by its use are rendered more retentive of moisture and manure. These properties, which it would seem, are just adapted to renovate very light land, under certain circumstances, may become disadvantageous on heavier soils. On clays no application is needed to retain moisture. They are already too wet as a general thing.

Peat, when put into the soil, lasts much longer than stubble, or green crops plowed in, or than long manure. If buried too deeply, or put into a heavy soil, especially if in large quantity, it does not decay, but remains wet, and tends to make a bog of the field itself.

For soils that are rather heavy, it is therefore best to compost the peat with some rapidly fermenting manure. We thus get a compound which is quicker than muck, and slower than stable manure, etc., and is therefore better adapted to the wants of the soil than either of these would be alone.

Here it will be seen that much depends on the character of the peat itself. If light and spongy, and easily dried, it may be used alone with advantage on loamy soils, whereas if dense, and coherent, it would most likely be a poor amendment on a soil which has much tendency to become compact, and therefore does not readily free itself from excess of water.

But even a clay soil, if thorough-drained and deeply plowed, may be wonderfully improved by even a heavy dressing of muck, as then, the water being let off, the muck can exert no detrimental action; but operates as effectually to loosen a too heavy soil, as in case of sand, it makes an over-porous soil compact or retentive. A clay may be made friable, if well drained, by incorporating with it any substance as lime, sand, long manure or muck, which interposing between the clayey particles, prevents their adhering together.

II.—Noxious ingredients.

a. Vitriol peat. Occasionally a peat is met with which is injurious if applied in the fresh state to crops, from its containing some substance which exerts a poisonous action on vegetation. The principal detrimental ingredients that occur in peat, appear to be sulphate of protoxide of iron,—the same body that is popularly known under the names copperas and green-vitriol,—and sulphate of alumina, the astringent component of alum.

I have found these substances ready formed in large quantity in but one of the peats that I have examined, viz.: that sent me by Mr. Perrin Scarborough; of Brooklyn, Conn. This peat dissolved in water to the extent of 15 per cent., and the soluble portion, although containing some organic matter and sulphate of lime, consisted in great part of green-vitriol.

Portions of this muck, when thrown up to the air, become covered with "a white crust, having the taste of alum or saltpeter."

The bed containing this peat, though drained, yields but a little poor bog hay, and the peat itself, even after weathering for a year, when applied, mixed with one-fifth of stable manure to corn in the hill, gave no encouraging results, though a fair crop was obtained. It is probable that the sample analyzed was much richer in salts of iron and alumina, than the average of the muck.

Green-vitriol in minute doses is not hurtful, but rather beneficial to vegetation; but in larger quantity it is fatally destructive.

In a salt-marsh mud sent me by the Rev. Wm. Clift, of Stonington, Conn., there was found sulphate of iron in considerable quantity.

This noxious substance likewise occurred in small amount in swamp muck from E. Hoyt, Esq., New Canaan, Conn., and in hardly appreciable quantity in several others that I have examined. Besides green-vitriol, it is possible that certain organic salts of iron, may be deleterious.

The poisonous properties of vitriol-peats may be effectually corrected by composting with lime, or wood-ashes. By the action of these substances, sulphate of lime, (plaster of Paris) is formed, while the iron separates as peroxide, which, being insoluble, is without deleterious effect on vegetation. Where only soluble organic salts of iron (crenate of iron) are present, simple exposure to the air suffices to render them innocuous.

b. The acidity of Peats.—Many writers have asserted that peat and muck possess a hurtful "acidity" which must be corrected before they can be usefully employed. It is indeed a fact, that peat consists largely of acids, but, except perhaps in the vitriol-peats, (those containing copperas,) they are so insoluble, or if soluble, are so quickly modified by the absorption of oxygen, that they do not exhibit any "acidity" that can be deleterious to vegetation. It is advised to neutralize this supposed acidity by lime or an alkali before using peat as a fertilizer or amendment, and there is great use in such mixtures of peat with alkaline matters, as we shall presently notice under the head of composts.

By the word acidity is conveyed the idea of something hurtful to plants. This something is, doubtless, in many cases, the salts of iron we have just noticed. In others, it is simply the inertness, "coldness" of the peat, which is not positively injurious, but is, for a time at least, of no benefit to the soil.

c. Resinous matters are mentioned by various writers as injurious ingredients of peat, but I find no evidence that this notion is well-founded. The peat or muck formed from the decay of resinous wood and leaves does not appear to be injurious, and the amount of resin in peat is exceedingly small.

3.—The Preparation of Peat for Agricultural use.

a. Excavation.—As to the time and manner of getting out peat, the circumstances of each case must determine. I only venture here to offer a few hints on this subject, which belongs so exclusively to the farm. The month of August is generally the appropriate time for throwing up peat, as then the swamps are usually most free from water, and most accessible to men and teams; but peat is often dug to best advantage in the winter, not only on account of the cheapness of labor, and from there being less hurry with other matters on the farm at that season, but also, because the freezing and thawing of the peat that is thrown out, greatly aid to disintegrate it and prepare it for use.

A correspondent of The Homestead, signing himself "Commentator," has given directions for getting out peat that are well worth the attention of farmers. He says:—

"The composting of muck and peat, with our stable and barn-yard manures, is surely destined to become one of the most important items in farm management throughout all the older States at least. One of the difficulties which lie in the way, is the first removal of the muck from its low and generally watery bed; to facilitate this, in many locations, it is less expensive to dry it before carting, by beginning an excavation at the border of the marsh in autumn, sufficiently wide for a cart path, throwing the muck out upon the surface on each side, and on a floor of boards or planks, to prevent it from absorbing moisture from the wet ground beneath; this broad ditch to be carried a sufficient length and depth to obtain the requisite quantity of muck. Thus thrown out, the two piles are now in a convenient form to be covered with boards, and, if properly done, the muck kept covered till the succeeding autumn, will be found to be dry and light, and in some cases may be carted away on the surface, or it may be best to let it remain a few months longer until the bottom of the ditch has become sufficiently frozen to bear a team; it can then be more easily loaded upon a sled or sleigh, and drawn to the yards and barn. In other localities, and where large quantities are wanted, and it lies deep, a sort of wooden railroad and inclined plane can be constructed by means of a plank track for the wheels of the cart to run upon, the team walking between these planks, and if the vehicle is inclined to 'run off the track,' it may usually be prevented by scantlings, say four inches thick, nailed upon one of the tracks on each side of the place where the wheel should run. Two or more teams and carts may now be employed, returning into the excavation outside of this track. As the work progresses, the track can be extended at both ends, and by continuing or increasing the inclination at the upper end, a large and high pile may be made, and if kept dry, will answer for years for composting, and can be easily drawn to the barn at any time."

b. Exposure, weathering, or seasoning of peat.—In some cases, the chief or only use of exposing the thrown-up peat to the action of the air and weather during several months or a whole year, is to rid it of the great amount of water which adheres to it, and thus reduce its bulk and weight previous to cartage.

The general effect of exposure as indicated by my analyses, is to reduce the amount of matter soluble in water, and cause peats to approach in this respect a fertile soil, so that instead of containing 2, 4, or 6 per cent. of substances soluble in water, as at first, they are brought to contain but one-half these amounts, or even less. This change, however, goes on so rapidly after peat is mingled with the soil, that previous exposure on this account is rarely necessary, and most peats might be used perfectly fresh but for the difficulty often experienced, of reducing them to such a state of division as to admit of proper mixture with the soil.

The coherent peats which may be cut out in tough blocks, must be weathered, in order that the fibres of moss or grass-roots, which give them their consistency, may be decomposed or broken to an extent admitting of easy pulverization by the instruments of tillage.

The subjection of fresh and wet peat to frost, speedily destroys its coherence and reduces it to the proper state of pulverization. For this reason, fibrous peat should be exposed when wet to winter weather.

Another advantage of exposure is, to bring the peat into a state of more active chemical change. Peat, of the deeper denser sorts, is generally too inert ("sour," cold) to be directly useful to the plant. By exposure to the air it appears gradually to acquire the properties of the humus of the soil, or of stable manure, which are vegetable matters, altered by the same exposure. It appears to become more readily oxidable, more active, chemically, and thus more capable of exciting or rather aiding vegetable growth, which, so far as the soil is concerned, is the result of chemical activities.

Account has been already given of certain peats, which, used fresh, are accounted equal or nearly equal to stable manure. Others have come under the writer's notice, which have had little immediate effect when used before seasoning.

Mr. J. H. Stanwood says of a peat, from Colebrook, Conn., that it "has been used to some extent as a top-dressing for grass and other crops with satisfactory results, although no particular benefit was noticeable during the first year. After that, the effects might be seen for a number of years."

Rev. Wm. Clift observes, concerning a salt peat, from Stonington, Conn.:—"It has not been used fresh; is too acid; even potatoes do not yield well in it the first season, without manure."

The nature of the chemical changes induced by weathering, is to some extent understood so far as the nitrogen, the most important fertilizing element, is concerned. The nitrogen of peat, as we have seen, is mostly inert, a small portion of it only, existing in a soluble or available form. By weathering, portions of this nitrogen become converted into nitric acid. This action goes on at the surface of the heap, where it is most fully exposed to the air. Below, where the peat is more moist, ammonia is formed, perhaps simply by the reduction of nitric acid—not unlikely also, by the transformation of inert nitrogen. On referring to the analyses given on page 44, it is seen, that the first two samples contain but little ammonia and no nitric acid. Though it is not stated what was the condition of these peats, it is probable they had not been weathered. The other four samples were weathered, and the weathering had been the more effectual from the large admixture of sand with them. They yielded to the analyst very considerable quantities of ammonia and nitrates.

When a peat contains sulphate of protoxide of iron, or soluble organic salts of iron, to an injurious extent, these may be converted into other insoluble and innocuous bodies, by a sufficient exposure to the air. Sulphate of protoxide of iron is thus changed into sulphate of peroxide of iron, which is insoluble, and can therefore exert no hurtful effect on vegetation, while the soluble organic bodies of peat are oxydized and either converted into carbonic acid gas, carbonate of ammonia and water, or else made insoluble.

It is not probable, however, that merely throwing up a well characterized vitriol-peat into heaps, and exposing it thus imperfectly to the atmosphere, is sufficient to correct its bad qualities. Such peats need the addition of some alkaline body, as ammonia, lime, or potash, to render them salutary fertilizers.

c. This brings us to the subject of composting, which appears to be the best means of taking full advantage of all the good qualities of peat, and of obviating or neutralizing the ill results that might follow the use of some raw peats, either from a peculiarity in their composition, (soluble organic compounds of iron, sulphate of protoxide of iron,) or from too great indestructibility. The chemical changes (oxidation of iron and organic acids), which prepare the inert or even hurtful ingredients of peat to minister to the support of vegetation, take place most rapidly in presence of certain other substances.

The substances which rapidly induce chemical change in peats, are of two kinds, viz.: 1.—animal or vegetable matters that are highly susceptible to alteration and decay, and 2.—alkalies, either ammonia coming from the decomposition of animal matters, or lime, potash and soda.

A great variety of matters may of course be employed for making or mixing with peat composts; but there are comparatively few which allow of extensive and economical use, and our notice will be confined to these.

First of all, the composting of peat with animal manures deserves attention. Its advantages may be summed up in two statements.

1.—It is an easy and perfect method of economizing all such manures, even those kinds most liable to loss by fermentation, as night soil and horse dung; and,

2.—It develops most fully and speedily the inert fertilizing qualities of the peat itself.

Without attempting any explanation of the changes undergone by a peat and manure compost, further than to say that the fermentation which begins in the manure extends to and involves the peat, reducing the whole nearly, if not exactly, to the condition of well-rotted dung, and that in this process the peat effectually prevents the loss of nitrogen as ammonia,—I may appropriately give the practical experience of farmers who have proved in the most conclusive manner how profitable it is to devote a share of time and labor to the manufacture of this kind of compost.

Preparation of Composts with Stable Manure.—The best plan of composting is to have a water tight trench, four inches deep and twenty inches wide, constructed in the stable floor, immediately behind the cattle, and every morning put a bushel-basketful of muck behind each animal. In this way the urine is perfectly absorbed by the muck, while the warmth of the freshly voided excrements so facilitates the fermentative process, that, according to Mr. F. Holbrook, Brattleboro, Vt., who has described this method, much more muck can thus be well prepared for use in the spring, than by any of the ordinary modes of composting. When the dung and muck are removed from the stable, they should be well intermixed, and as fast as the compost is prepared, it should be put into a compact heap, and covered with a layer of muck several inches thick. It will then hardly require any shelter if used in the spring.

If the peat be sufficiently dry and powdery, or free from tough lumps, it may usefully serve as bedding, or litter for horses and cattle, as it absorbs the urine, and is sufficiently mixed with the dung in the operation of cleaning the stable. It is especially good in the pig-pen, where the animals themselves work over the compost in the most thorough manner, especially if a few kernels of corn be occasionally scattered upon it.

Mr. Edwin Hoyt, of New Canaan, Conn., writes:—"Our horse stables are constructed with a movable floor and pit beneath, which holds 20 loads of muck of 25 bushels per load. Spring and fall, this pit is filled with fresh muck, which receives all the urine of the horses, and being occasionally worked over and mixed, furnishes us annually with 40 loads of the most valuable manure."

"Our stables are sprinkled with muck every morning, at the rate of one bushel per stall, and the smell of ammonia, etc., so offensive in most stables, is never perceived in ours. Not only are the stables kept sweet, but the ammonia is saved by this procedure."

When it is preferred to make the compost out of doors, the plan generally followed is to lay down a bed of weathered peat, say eight to twelve inches thick; cover this with a layer of stable dung, of four to eight inches; put on another stratum of peat, and so, until a heap of three to four feet is built up. The heap may be six to eight feet wide, and indefinitely long. It should be finished with a thick coating of peat, and the manure should be covered as fast as brought out.

The proportions of manure and peat should vary somewhat according to their quality and characters. Strawy manure, or that from milch-cows, will "ferment" less peat than clear dung, especially when the latter is made by horses or highly fed animals. Some kinds of peat heat much easier than others. There are peats which will ferment of themselves in warm moist weather—even in the bog, giving off ammonia in perceptible though small amount. Experience is the only certain guide as to the relative quantities to be employed, various proportions from one to five of peat for one of manure, by bulk, being used.

When the land is light and needs amending, as regards its retentive power, it is best to make the quantity of peat as large as can be thoroughly fermented by the manure.

The making of a high heap, and the keeping it trim and in shape, is a matter requiring more labor than is generally necessary. Mr. J. H. Stanwood, of Colebrook, Conn., writes me:—

"My method of composting is as follows: I draw my muck to the barn-yard, placing the loads as near together as I can tip them from the cart. Upon this I spread whatever manure I have at hand, and mix with the feet of the cattle, and heap up with a scraper."

Peat may be advantageously used to save from waste the droppings of the yard.

Mr. Edwin Hoyt, of New Canaan, Conn., says:—"We use muck largely in our barn-yards, and after it becomes thoroughly saturated and intermixed with the droppings of the stock, it is piled up to ferment, and the yard is covered again with fresh muck."

Mr. N. Hart, Jr., of West Cornwall, Conn., writes:—"In the use of muck we proceed as follows: Soon after haying we throw up enough for a year's use, or several hundred loads. In the fall, the summer's accumulation in hog-pens and barn cellars is spread upon the mowing grounds, and a liberal supply of muck carted in and spread in the bottoms of the cellars, ready for the season for stabling cattle. When this is well saturated with the drippings of the stables, a new supply is added. The accumulation of the winter is usually applied to the land for the corn crop, except the finer portion, which is used to top-dress meadow land. A new supply is then drawn in for the swine to work up. This is added to from time to time, and as the swine are fed on whey, they will convert a large quantity into valuable manure for top-dressing mowing land."

A difference of opinion exists as to the treatment of the compost. Some hold it indifferent whether the peat and manure are mixed, or put in layers when the composting begins. Others assert, that the fermentation proceeds better when the ingredients are stratified. Some direct, that the compost should not be stirred. The general testimony is, that mixture, at the outset, is as effectual as putting up in layers; but, if the manure be strawy, it is, of course, difficult or impracticable to mix at first. Opinion also preponderates in favor of stirring, during or after the fermentation.

Mr. Hoyt remarks:—"We are convinced, that the oftener a compost pile of yard manure and muck is worked over after fermenting, the better. We work it over and add to it a little more muck and other material, and the air being thus allowed to penetrate it, a new fermentation or heating takes place, rendering it more decomposable and valuable."

Rev. Wm. Clift, writes:—"Three or four loads of muck to one of stable manure, put together in the fall or winter in alternate layers, forked over twice before spreading and plowing in, may represent the method of composting."

Mr. Adams White, of Brooklyn, Conn., proceeds in a different manner. He says:—"In composting, 20 loads are drawn on to upland in September, and thrown up in a long pile. Early in the spring 20 loads of stable manure are laid along side, and covered with the muck. As soon as it has heated moderately, the whole is forked over and well mixed."

Those who have practiced making peat composts with their yard, stable, and pen manure, almost invariably find them highly satisfactory in use, especially upon light soils.

A number of years ago, I saw a large pile of compost in the farm-yard of Mr. Pond, of Milford, Conn., and witnessed its effect as applied by that gentleman to a field of sixteen acres of fine gravelly or coarse sandy soil. The soil, from having a light color and excessive porosity, had become dark, unctuous, and retentive of moisture, so that during the drouth of 1856, the crops on this field were good and continued to flourish, while on the contiguous land they were dried up and nearly ruined. This compost was made from a light muck, that contained but three per cent. of ash (more than half of which was sand), and but 1.2 per cent. of nitrogen, in the air-dry state—(twenty per cent. of water). Three loads of this muck were used to one of stable manure.

Here follow some estimates of the value of this compost by practical men. They are given to show that older statements, to the same effect, cannot be regarded as exaggerated.

Mr. J. H. Stanwood, of Colebrook, Conn., says:—"Experiments made by myself, have confirmed me in the opinion that a compost of equal parts of muck and stable manure is equal to the same quantity of stable manure."

Mr. Daniel Buck, Jr., of Poquonock, Conn., remarks:—"8 loads of muck and 4 of manure in compost, when properly forked over, are equal to 12 loads of barn-yard manure on sandy soil."

Rev. Wm. Clift, of Stonington, Conn., writes:—"I consider a compost made of one load of stable manure and three of muck, equal in value to four loads of yard manure."

Mr. N. Hart, Jr., of West Cornwall, Conn., observes of a peat sent by him for analysis:—"We formerly composted it in the yard with stable manure, but have remodeled our stables, and now use it as an absorbent and to increase the bulk of manure to double its original quantity. We consider the mixture more valuable than the same quantity of stable manure." Again, "so successful has been the use of it, that we could hardly carry on our farming operations without it."

Mr. Adams White, of Brooklyn, Conn., states:—"The compost of equal bulks of muck and stable manure, has been used for corn (with plaster in the hill,) on dry sandy soil to great advantage. I consider the compost worth more per cord than the barn-yard manure."

Night Soil is a substance which possesses, when fresh, the most valuable fertilizing qualities, in a very concentrated form. It is also one which is liable to rapid and almost complete deterioration, as I have demonstrated by analyses. The only methods of getting the full effect of this material are, either to use it fresh, as is done by the Chinese and Japanese on a most extensive and offensive scale; or to compost it before it can decompose. The former method, will, it is to be hoped, never find acceptance among us. The latter plan has nearly all the advantages of the former, without its unpleasant features.

When the night soil falls into a vault, it may be composted, by simply sprinkling fine peat over its surface, once or twice weekly, as the case may require, i. e. as often as a bad odor prevails. The quantity thus added, may be from twice to ten times the bulk of the night soil,—the more within these limits, the better. When the vault is full, the mass should be removed, worked well over and after a few days standing, will be ready to use to manure corn, tobacco, etc., in the hill, or for any purpose to which guano or poudrette is applied. If it cannot be shortly used, it should be made into a compact heap, and covered with a thick stratum of peat. When signs of heating appear, it should be watched closely; and if the process attains too much violence, additional peat should be worked into it. Drenching with water is one of the readiest means of checking too much heating, but acts only temporarily. Dilution with peat to a proper point, which experience alone can teach, is the surest way of preventing loss. It should not be forgotten to put a thick layer of peat at the bottom of the vault to begin with.

Another excellent plan, when circumstances admit, is, to have the earth-floor where the night soil drops, level with the surface of the ground, or but slightly excavated, and a shed attached to the rear of the privy to shelter a good supply of peat as well as the compost itself. Operations are begun by putting down a layer of peat to receive the droppings; enough should be used to absorb all the urine. When this is nearly saturated, more should be sprinkled on, and the process is repeated until the accumulations must be removed to make room for more. Then, once a week or so, the whole is hauled out into the shed, well mixed, and formed into a compact heap, or placed as a layer upon a stratum of peat, some inches thick, and covered with the same. The quantity of first-class compost that may be made yearly upon any farm, if due care be taken, would astonish those who have not tried it. James Smith, of Deanston, Scotland, who originated our present system of Thorough Drainage, asserted, that the excrements of one man for a year, are sufficient to manure half an acre of land. In Belgium the manure from such a source has a commercial value of $9.00 gold.

It is certain, that the skillful farmer may make considerably more than that sum from it in New England, per annum. Mr. Hoyt, of New Canaan, Conn., says:—

"Our privies are deodorized by the use of muck, which is sprinkled over the surface of the pit once a week, and from them alone we thus prepare annually, enough "poudrette" to manure our corn in the hill."

Peruvian Guano, so serviceable in its first applications to light soils, may be composted with muck to the greatest advantage. Guano is an excellent material for bringing muck into good condition, and on the other hand the muck most effectually prevents any waste of the costly guano, and at the same time, by furnishing the soil with its own ingredients, to a greater or less degree prevents the exhaustion that often follows the use of guano alone. The quantity of muck should be pretty large compared to that of the guano,—a bushel of guano will compost six, eight, or ten of muck. Both should be quite fine, and should be well mixed, the mixture should be moist and kept covered with a layer of muck of several inches of thickness. This sort of compost would probably be sufficiently fermented in a week or two of warm weather, and should be made and kept under cover.

If no more than five or six parts of muck to one of guano are employed, the compost, according to the experience of Simon Brown, Esq., of the Boston Cultivator, (Patent Office Report for 1856), will prove injurious, if placed in the hill in contact with seed, but may be applied broadcast without danger.

The Menhaden or "White fish", so abundantly caught along our Sound coast during the summer months, or any variety of fish may be composted with muck, so as to make a powerful manure, with avoidance of the excessively disagreeable stench which is produced when these fish are put directly on the land. Messrs. Stephen Hoyt & Sons, of New Canaan, Conn., make this compost on a large scale. I cannot do better than to give entire Mr. Edwin Hoyt's account of their operations, communicated to me several years ago.

"During the present season, (1858,) we have composted about 200,000 white fish with about 700 loads (17,500 bushels) of muck. We vary the proportions somewhat according to the crop the compost is intended for. For rye we apply 20 to 25 loads per acre of a compost made with 4,500 fish, (one load) and with this manuring, no matter how poor the soil, the rye will be as large as a man can cradle. Much of ours we have to reap. For oats we use less fish, as this crop is apt to lodge. For corn, one part fish to ten or twelve muck is about right, while for grass or any top-dressing, the proportion of fish may be increased."

"We find it is best to mix the fish in the summer and not use the compost until the next spring and summer. Yet we are obliged to use in September for our winter rye a great deal of the compost made in July. We usually compost the first arrivals of fish in June for our winter grain; after this pile has stood three or four weeks, it is worked over thoroughly. In this space of time the fish become pretty well decomposed, though they still preserve their form and smell outrageously. As the pile is worked over, a sprinkling of muck or plaster is given to retain any escaping ammonia. At the time of use in September the fish have completely disappeared, bones and fins excepted."

"The effect on the muck is to blacken it and make it more loose and crumbly. As to the results of the use of this compost, we find them in the highest degree satisfactory. We have raised 30 to 35 bushels of rye per acre on land that without it could have yielded 6 or 8 bushels at the utmost. This year we have corn that will give 60 to 70 bushels per acre, that otherwise would yield but 20 to 25 bushels. It makes large potatoes, excellent turnips and carrots."

Fish compost thus prepared, is a uniform mass of fishy but not putrefactive odor, not disagreeable to handle. It retains perfectly all the fertilizing power of the fish. Lands, manured with this compost, will keep in heart and improve: while, as is well known to our coast farmers, the use of fish alone is ruinous in the end, on light soils.

It is obvious that any other easily decomposing animal matters, as slaughter-house offal, soap boiler's scraps, glue waste, horn shavings, shoddy, castor pummace, cotton seed-meal, etc., etc., may be composted in a similar manner, and that several or all these substances may be made together into one compost.

In case of the composts with yard manure, guano and other animal matters, the alkali, ammonia, formed in the fermentation, greatly promotes chemical change, and it would appear that this substance, on some accounts, excels all others in its efficacy. The other alkaline bodies, potash, soda and lime, are however scarcely less active in this respect, and being at the same time, of themselves, useful fertilizers, they also may be employed in preparing muck composts.

Potash-lye and soda-ash have been recommended for composting with muck; but, although they are no doubt highly efficacious, they are too costly for extended use.

The other alkaline materials that may be cheaply employed, and are recommended, are wood-ashes, leached and unleached, ashes of peat, shell marl, (consisting of carbonate of lime,) quick lime, gas lime, and what is called "salt and lime mixture."

With regard to the proportions to be used, no very definite rules can be laid down; but we may safely follow those who have had experience in the matter. Thus, to a cord of muck, which is about 100 bushels, may be added, of unleached wood ashes twelve bushels, or of leached wood ashes twenty bushels, or of peat ashes twenty bushels, or of marl, or of gas lime twenty bushels. Ten bushels of quick lime, slaked with water or salt-brine previous to use, is enough for a cord of muck.

Instead of using the above mentioned substances singly, any or all of them may be employed together.

The muck should be as fine and free from lumps as possible, and must be intimately mixed with the other ingredients by shoveling over. The mass is then thrown up into a compact heap, which may be four feet high. When the heap is formed, it is well to pour on as much water as the mass will absorb, (this may be omitted if the muck is already quite moist,) and finally the whole is covered over with a few inches of pure muck, so as to retain moisture and heat. If the heap is put up in the Spring, it may stand undisturbed for one or two months, when it is well to shovel it over and mix it thoroughly. It should then be built up again, covered with fresh muck, and allowed to stand as before until thoroughly decomposed. The time required for this purpose varies with the kind of muck, and the quality of the other material used. The weather and thoroughness of intermixture of the ingredients also materially affect the rapidity of decomposition. In all cases five or six months of summer weather is a sufficient time to fit these composts for application to the soil.

Mr. Stanwood of Colebrook, Conn., says: "I have found a compost made of two bushels of unleached ashes to twenty-five of muck, superior to stable manure as a top-dressing for grass, on a warm, dry soil."

N. Hart, Jr., of West Cornwall, Conn., states: "I have mixed 25 bushels of ashes with the same number of loads of muck, and applied it to ¾ of an acre. The result was far beyond that obtained by applying 300 lbs. best guano to the same piece."

The use of "salt and lime mixture" is so strongly recommended, that a few words may be devoted to its consideration.

When quick-lime is slaked with a brine of common salt (chloride of sodium), there are formed by double decomposition, small portions of caustic soda and chloride of calcium, which dissolve in the liquid. If the solution stand awhile, carbonic acid is absorbed from the air, forming carbonate of soda: but carbonate of soda and chloride of calcium instantly exchange their ingredients, forming insoluble carbonate of lime and reproducing common salt.

When the fresh mixture of quick-lime and salt is incorporated with any porous body, as soil or peat, then, as Graham has shown, unequal diffusion of the caustic soda and chloride of calcium occurs from the point where they are formed, through the moist porous mass, and the result is, that the small portion of caustic soda which diffuses most rapidly, or the carbonate of soda formed by its speedy union with carbonic acid, is removed from contact with the chloride of calcium.

Soda and carbonate of soda are more soluble in water and more strongly alkaline than lime. They, therefore, act on peat more energetically than the latter. It is on account of the formation of soda and carbonate of soda from the lime and salt mixture, that this mixture exerts a more powerful decomposing action than lime alone. Where salt is cheap and wood ashes scarce, the mixture may be employed accordingly to advantage. Of its usefulness we have the testimony of practical men.

Says Mr. F. Holbrook of Vermont, (Patent Office Report for 1856, page 193.) "I had a heap of seventy-five half cords of muck mixed with lime in the proportion of a half cord of muck to a bushel of lime. The muck was drawn to the field when wanted in August. A bushel of salt to six bushels of lime was dissolved in water enough to slake the lime down to a fine dry powder, the lime being slaked no faster than wanted, and spread immediately while warm, over the layers of muck, which were about six inches thick; then a coating of lime and so on, until the heap reached the height of five feet, a convenient width, and length enough to embrace the whole quantity of the muck. In about three weeks a powerful decomposition was apparent, and the heap was nicely overhauled, nothing more being done to it till it was loaded the next Spring for spreading. The compost was spread on the plowed surface of a dry sandy loam at the rate of about fifteen cords to the acre, and harrowed in. The land was planted with corn and the crop was more than sixty bushels to the acre."

Other writers assert that they "have decomposed with this mixture, spent tan, saw dust, corn stalks, swamp muck, leaves from the woods, indeed every variety of inert substance, and in much shorter time than it could be done by any other means." (Working Farmer, Vol. III. p. 280.)

Some experiments that have a bearing on the efficacy of this compost will be detailed presently.

There is no doubt that the soluble and more active (caustic) forms of alkaline bodies exert a powerful decomposing and solvent action on peat. It is asserted too that the nearly insoluble and less active matters of this kind, also have an effect, though a less complete and rapid one. Thus, carbonate of lime in the various forms of chalk, shell marl,[6] old mortar, leached ashes and peat ashes, (for in all these it is the chief and most "alkaline" ingredient,) is recommended to compost with peat. Let us inquire whether carbonate of lime can really exert any noticeable influence in improving the fertilizing quality of peat.

In the case of vitriol peats, carbonate of lime is the cheapest and most appropriate means of destroying the noxious sulphate of protoxide of iron, and correcting their deleterious quality. When carbonate of lime is brought in contact with sulphate of protoxide of iron, the two bodies mutually decompose, with formation of sulphate of lime (gypsum) and carbonate of protoxide of iron. The latter substance absorbs oxygen from the air with the utmost avidity, and passes into the peroxide of iron, which is entirely inert.

The admixture of any earthy matter with peat, will facilitate its decomposition, and make it more active chemically, in so far as it promotes the separation of the particles of the peat from each other, and the consequent access of air. This benefit may well amount to something when we add to peat one-fifth of its bulk of marl or leached ashes, but the question comes up: Do these insoluble mild alkalies exert any direct action? Would not as much soil of any kind be equally efficacious, by promoting to an equal degree the contact of oxygen from the atmosphere?

There are two ways in which carbonate of lime may exert a chemical action on the organic matters of peat. Carbonate of lime, itself, in the forms we have mentioned, is commonly called insoluble in water. It is, however, soluble to a very slight extent; it dissolves, namely, in about 30,000 times its weight of pure water. It is nearly thirty times more soluble in water saturated with carbonic acid; and this solution has distinct alkaline characters. Since the water contained in a heap of peat must be considerably impregnated with carbonic acid, it follows that when carbonate of lime is present, the latter must form a solution, very dilute indeed, but still capable of some direct effect on the organic matters of the peat, when it acts through a long space of time. Again, it is possible that the solution of carbonate of lime in carbonic acid, may act to liberate some ammonia from the soluble portions of the peat, and this ammonia may react on the remainder of the peat to produce the same effects as it does in the case of a compost made with animal matters.

Whether the effects thus theoretically possible, amount to anything practically important, is a question of great interest. It often happens that opinions entertained by practical men, not only by farmers, but by mechanics and artisans as well, are founded on so untrustworthy a basis, are supported by trials so destitute of precision, that their accuracy may well be doubted, and from all the accounts I have met with, it does not seem to have been well established, practically, that composts made with carbonate of lime, are better than the peat and carbonate used separately.

Carbonate of lime (leached ashes, shell marl, etc.), is very well to use in conjunction with peat, to furnish a substance or substances needful to the growth of plants, and supply the deficiencies of peat as regards composition. Although in the agricultural papers, numerous accounts of the efficacy of such mixtures are given, we do not learn from them whether these bodies exert any such good effect upon the peat itself, as to warrant the trouble of making a compost.

4.—Experiments by the author on the effect of alkaline bodies in developing the fertilizing power of Peat.

During the summer of 1862, the author undertook a series of experiments with a view of ascertaining the effect of various composting materials upon peat.

Two bushels of peat were obtained from a heap that had been weathering for some time on the "Beaver Meadow," near New Haven. This was thoroughly air-dried, then crushed by the hand, and finally rubbed through a moderately fine sieve. In this way, the peat was brought to a perfectly homogeneous condition.

Twelve-quart flower-pots, new from the warehouse, were filled as described below; the trials being made in duplicate:—

Pots 1 and 2 contained each 270 grammes of peat.

Pots 3 and 4 contained each 270 grammes of peat, mixed-with 10 grammes of ashes of young grass.

Pots 5 and 6 contained each 270 grammes of peat, 10 grammes of ashes, and 10 grammes of carbonate of lime.

Pots 7 and 8 contained each 270 grammes of peat, 10 grammes of ashes, and 10 grammes of slaked (hydrate of) lime.

Pots 9 and 10 contained each 270 grammes of peat, 10 grammes of ashes, and 5 grammes of lime, slaked with strong solution of common salt.

Pots 11 and 12 contained each 270 grammes of peat, 10 grammes of ashes, and 3 grammes of Peruvian guano.

In each case the materials were thoroughly mixed together, and so much water was cautiously added as served to wet them thoroughly. Five kernels of dwarf (pop) corn were planted in each pot, the weight of each planting being carefully ascertained.

The pots were disposed in a glazed case within a cold grapery,[7] and were watered when needful with pure water. The seeds sprouted duly, and developed into healthy plants. The plants served thus as tests of the chemical effect of carbonate of lime, of slaked lime, and of salt and lime mixture, on the peat. The guano pots enabled making a comparison with a well-known fertilizer. The plants were allowed to grow until those best developed, enlarged above, not at the expense of the peat, etc., but of their own lower leaves, as shown by the withering of the latter. They were then cut, and, after drying in the air, were weighed with the subjoined results.

VEGETATION EXPERIMENTS IN PEAT COMPOSTS.

KEY
A -Weight of crops in grammes.
B -Comparative weight of crops, the sum of 1. and 2. taken as unity.
C -Ratio of weight of crops to weight of seeds, the latter assumed as unity.
Nos.Medium of Growth.ABC
1 }Peat alone. 1.61 } 4.20 1 2-½
2 } 2.59 }
3 }Peat, and ashes of grass,14.19 }32.44 820-½
4 }18.25 }
5 }Peat, ashes, and carbonate of lime,18.19 }38.44 925-½
6 }20.25 }
7 }Peat, ashes, and carbonate of lime,21.49 }42.221028-½
8 }20.73 }
9 }Peat, ashes, slaked lime, and salt,23.08 }46.421130-½
10 }23.34 }
11 }Peat, ashes, and Peruvian Guano,26.79 }53.781335-½
12 }26.99 }

Let us now examine the above results. The experiments 1 and 2, demonstrate that the peat itself is deficient in something needful to the plant. In both pots, but 4.2 grammes of crop were produced, a quantity two and a half times greater than that of the seeds, which weighed 1.59 grammes. The plants were pale in color, slender, and reached a height of but about six inches.

Nos. 3 and 4 make evident what are some of the deficiencies of the peat. A supply of mineral matters, such as are contained in all plants, being made by the addition of ashes, consisting chiefly of phosphates, carbonates and sulphates of lime, magnesia and potash, a crop is realized nearly eight times greater than in the previous cases; the yield being 32.44 grammes, or 20-½ times the weight of the seed. The quantity of ashes added, viz.:—10 grammes, was capable of supplying every mineral element, greatly in excess of the wants of any crop that could be grown in a quart of soil. The plants in pots 3 and 4 were much stouter than those in 1 and 2, and had a healthy color.

The experiments 5 and 6 appear to demonstrate that carbonate of lime considerably aided in converting the peat itself into plant-food. The ashes alone contained enough carbonate of lime to supply the wants of the plant in respect to that substance. More carbonate of lime could only operate by acting on the organic matters of the peat. The amount of the crop is raised by the effect of carbonate of lime from 32.44 to 38.44 grammes, or from 20-½ to 25-½ times that of the seed.

Experiments 7 and 8 show, that slaked lime has more effect than the carbonate, as we should anticipate. Its influence does not, however, exceed that of the carbonate very greatly, the yield rising from 38.44 to 42.22 grammes, or from 25-½ to 28-½ times the weight of the seed. In fact, quick-lime can only act as such for a very short space of time, since it rapidly combines with the carbonic acid, which is supplied abundantly by the peat. In experiments 7 and 8, a good share of the influence exerted must therefore be actually ascribed to the carbonate, rather than to the quick-lime itself.

In experiments 9 and 10, we have proof that the "lime and salt mixture" has a greater efficacy than lime alone, the crop being increased thereby from 42.22, to 46.42 grammes, or from 28-½ to 30-½ times that of the seed.

Finally, we see from experiments 11 and 12 that in all the foregoing cases it was a limited supply of nitrogen that limited the crop; for, on adding Peruvian guano, which could only act by this element (its other ingredients, phosphates of lime and potash, being abundantly supplied in the ashes), the yield was carried up to 53.78 grammes, or 35-½ times the weight of the seed, and 13 times the weight of the crop obtained from the unmixed peat.

5.—The Examination of Peat (muck and marsh-mud) with reference to its Agricultural Value.

Since, as we are forced to conclude, the variations in the composition of peat stand in no recognizable relations to differences of appearance, it is only possible to ascertain the value of any given specimen by actual trial or by chemical investigation.

The method by practical trial is usually the cheaper and more satisfactory of the two, though a half year or more is needful to gain the desired information.

It is sufficient to apply to small measured plots of ground, each say two rods square, known quantities of the fresh, the weathered, and the composted peat in order, by comparison of the growth and weight of the crop, to decide the question of their value.

Peat and its composts are usually applied at rates ranging from 20 to 40 wagon or cart loads per acre. There being 160 square rods in the acre, the quantity proper to a plot of two rods square (= four square rods,) would be one half to one load.

The composts with stable manure and lime, or salt and lime mixture, are those which, in general, it would be best to experiment with. From the effects of the stable manure compost, could be inferred with safety the value of any compost, of which animal manure is an essential ingredient.

One great advantage of the practical trial on the small scale is, that the adaptation of the peat or of the compost to the peculiarities of the soil, is decided beyond a question.

It must be borne in mind, however, that the results of experiments can only be relied upon, when the plots are accurately measured, when the peat, etc., are applied in known quantities, and when the crops are separately harvested and carefully weighed.

If experiments are made upon grass or clover, the gravest errors may arise by drawing conclusions from the appearance of the standing crop. Experience has shown that two clover crops, gathered from contiguous plots differently manured, may strikingly differ in appearance, but yield the same amounts of hay.

The chemical examination of a peat may serve to inform us, without loss of time, upon a number of important points.

To test a peat for soluble iron salts which might render it deleterious, we soak and agitate a handful for some hours, with four or five times its bulk of warm soft water. From a good fresh-water peat we obtain, by this treatment, a yellow liquid, more or less deep in tint, the taste of which is very slight and scarcely definable.

From a vitriol peat we get a dark-brown or black solution, which has a bitter, astringent, metallic or inky taste, like that of copperas.

Salt peat will yield a solution having the taste of salt-brine, unless it contains iron, when the taste of the latter will prevail.

On evaporating the water-solution to dryness and heating strongly in a China cup, a vitriol peat gives off white choking fumes of sulphuric acid, and there remains, after burning, brown-red oxide of iron in the dish.

The above testings are easily conducted by any one, with the ordinary conveniences of the kitchen.

Those that follow, require, for the most part, the chemical laboratory, and the skill of the practised chemist, for satisfactory execution.

Besides testing for soluble iron compounds, as already indicated, the points to be regarded in the chemical examination, are:—

1st. Water or moisture.—This must be estimated, because it is so variable, and a knowledge of its quantity is needful, if we will compare together different samples. A weighed amount of the peat is dried for this purpose at 212° F., as long as it suffers loss.

2d. The proportions of organic matter and ash are ascertained by carefully burning a weighed sample of the peat. By this trial we distinguish between peat with 2 to 10 per cent. of ash and peaty soil, or mud, containing but a few per cent. of organic matter.

This experiment may be made in a rough way, but with sufficient accuracy for common purposes, by burning a few lbs. or ozs. of peat upon a piece of sheet iron, or in a sauce pan, and noting the loss, which includes both water and organic matter.

3d. As further regards the organic matters, we ascertain the extent to which the peaty decomposition has taken place by boiling with dilute solution of carbonate of soda. This solvent separates the humic and ulmic acids from the undecomposed vegetable fibers.

For practical purposes this treatment with carbonate of soda may be dispensed with, since the amount of undecomposed fiber is gathered with sufficient accuracy from careful inspection of the peat.

Special examination of the organic acids is of no consequence in the present state of our knowledge.

4th. The proportion of nitrogen is of the first importance to be ascertained. In examinations of 30 samples of peat, I have found the content of nitrogen to range from 0.4 to 2.9 per cent., the richest containing seven times as much as the poorest. It is practically a matter of great moment whether, for example, a Peruvian guano contains 16 per cent. of nitrogen as it should, or but one-seventh that amount, as it may when grossly adulterated. In the same sense, it is important before making a heavy outlay in excavating and composting peat, to know whether (as regards nitrogen) it belongs to the poorer or richer sorts. This can only be done by the complicated methods known to the chemist.

5th. The estimation of ammonia (actual or ready-formed,) is a matter of scientific interest, but subordinate in a practical point of view.

6th. Nitric acid and nitrates can scarcely exist in peat except where it is well exposed to the air, in a merely moist but not wet state. Their estimation in composts is of great interest, though troublesome to execute.

7th. As regards the ash, its red color indicates iron. Pouring hydrochloric acid upon it, causes effervescence in the presence of carbonate of lime. This compound, in most cases, has been formed in the burning, from humate and other organic salts of lime. Sand, or clay, being insoluble in the acid, remains, and may be readily estimated.

Phosphoric acid and alkalies, especially potash, are, next to lime, the important ingredients of the ash. Magnesia and sulphuric acid, rank next in value. Their estimation requires a number of tedious operations, and can scarcely be required for practical purposes, until more ready methods of analyses shall have been discovered.

8th. The quantity of matters soluble in water has considerable interest, but is not ordinarily requisite to be ascertained.

6.—Composition of Connecticut Peats.

In the years 1857 and 1858, the author was charged by the Connecticut State Agricultural Society[8] with the chemical investigation of 33 samples of peat and swamp muck, sent to him in compliance with official request.

In the foregoing pages, the facts revealed by the laborious analyses executed on these samples, have been for the most part communicated, together with many valuable practical results derived from the experience of the gentlemen who sent in the specimens. The analytical data themselves appear to me to be worthy of printing again, for the information of those who may hereafter make investigations in the same direction.—See Tables I, II, and III, p.p. 89, 90, and 91.

The specimens came in all stages of dryness. Some were freshly dug and wet, others had suffered long exposure, so that they were air-dry; some that were sent in the moist state, became dry before being subjected to examination; others were prepared for analysis while still moist.

A sufficient quantity of each specimen was carefully pulverized, intermixed, and put into a stoppered bottle and thus preserved for experiment.

The analyses were begun in the winter of 1857 by my assistant, Edward H. Twining, Esq. The samples 1 to 17 of the subjoined tables were then analyzed. In the following year the work was continued on the remaining specimens 18—33 by Dr. Robert A. Fisher. The method of analysis was the same in both cases, except in two particulars.

In the earlier analyses, 1 to 17 inclusive, the treatment with carbonate of soda was not carried far enough to dissolve the whole of the soluble organic acids. It was merely attempted to make comparative determinations by treating all alike for the same time, and with the same quantity of alkali. I have little doubt that in some cases not more than one-half of the portion really soluble in carbonate of soda is given as such. In the later analyses, 18 to 33, however, the treatment was continued until complete separation of the soluble organic acids was effected.

By acting on a peat for a long time with a hot solution of carbonate of soda, there is taken up not merely a quantity of organic matter, but inorganic matters likewise enter solution. Silica, oxyd of iron and alumina are thus dissolved. In this process too, sulphate of lime is converted into carbonate of lime.

The total amount of these soluble inorganic matters has been determined with approximate accuracy in analyses 18 to 33.

In the analyses 1 to 17 the collective amount of matters soluble in water was determined. In the later analyses the proportions of organic and inorganic matters in the water-solution were separately estimated.

The process of analysis as elaborated and employed by Dr. Fisher and the author, is as follows:

I. To prepare a sample for analysis, half a pound, more or less, of the substance is pulverized and passed through a wire sieve of 24 meshes to the inch. It is then thoroughly mixed and bottled.

II. 2 grammes of the above are dried (in tared watch-glasses) at the temperature of 212 degrees, until they no longer decrease in weight. The loss sustained represents the amount of water, (according to Marsilly, Annales des Mines, 1857, XII., 404, peat loses carbon if dried at a temperature higher than 212 degrees.)

III. The capsule containing the residue from I. is slowly heated to incipient redness, and maintained at that temperature until the organic matter is entirely consumed. The loss gives the total amount of organic, the residue the total amount of inorganic matter.

Note.—In peats containing sulphate of the protoxide of iron, the loss that occurs during ignition is partly due to the escape of sulphuric acid, which is set free by the decomposition of the above mentioned salt of iron. But the quantity is usually so small in comparison with the organic matter, that it may be disregarded. The same may be said of the combined water in the clay that is mixed with some mucks, which is only expelled at a high temperature.

IV. 3 grammes of the sample are digested for half an hour, with 200 cubic centimeters (66.6 times their weight,) of boiling water, then removed from the sand bath, and at the end of twenty-four hours, the clear liquid is decanted. This operation is twice repeated upon the residue; the three solutions are mixed, filtered, concentrated, and finally evaporated to dryness (in a tared platinum capsule,) over a water bath. The residue, which must be dried at 212 degrees, until it ceases to lose weight, gives the total amount soluble in water. The dried residue is then heated to low redness, and maintained at that temperature until the organic matter is burned off. The loss represents the amount of organic matter soluble in water, the ash gives the quantity of soluble inorganic matter.

V. 1 gramme is digested for two hours, at a temperature just below the boiling point, with 100 cubic centimeters of a solution containing 5 per cent. of crystallized carbonate of soda. It is then removed from the sand bath and allowed to settle. When the supernatant liquid has become perfectly transparent, it is carefully decanted. This operation is repeated until all the organic matter soluble in this menstruum is removed; which is accomplished as soon as the carbonate of soda solution comes off colorless. The residue, which is to be washed with boiling water until the washings no longer affect test papers, is thrown upon a tared filter, and dried at 212 degrees. It is the total amount of organic and inorganic matter insoluble in carbonate of soda. The loss that it suffers upon ignition, indicates the amount of organic matter, the ash gives the inorganic matter.

Note.—The time required to insure perfect settling after digesting with carbonate of soda solution, varies, with different peats, from 24 hours to several days. With proper care, the results obtained are very satisfactory. Two analyses of No. 6, executed at different times, gave total insoluble in carbonate of soda—1st analysis 23.20 per cent.; 2d analysis 23.45 per cent. These residues yielded respectively 14.30 and 14.15 per cent. of ash.

VI. The quantity of organic matter insoluble in water but soluble in solution of carbonate of soda, is ascertained by deducting the joint weight of the amounts soluble in water, and insoluble in carbonate of soda, from the total amount of organic matter present. The inorganic matter insoluble in water, but soluble in carbonate of soda, is determined by deducting the joint weight of the amounts of inorganic matter soluble in water, and insoluble in carbonate of soda, from the total inorganic matter.

VII. The amount of nitrogen is estimated by the combustion of 1 gramme with soda-lime in an iron tube, collection of the ammonia in a standard solution of sulphuric acid, and determination of the residual free acid by an equivalent solution of caustic potash and a few drops of tincture of cochineal as an indicator.

The results of the analyses are given in the following Tables. Table I. gives the direct results of analysis. In Table II. the analyses are calculated on dry matter, and the nitrogen upon the organic matters. Table III. gives a condensed statement of the external characters and agricultural value[9] of the samples in their different localities, and the names of the parties supplying them.

TABLE I.—COMPOSITION OF CONNECTICUT PEATS AND MUCKS.

KEY
A - Soluble in water.
B - Insol. in water, but soluble in carbonate of soda.
C - Insol. in water and carbonate of soda.
D - Total.
E - Water.
F - Nitrogen.
G - Total matters soluble in water.
From Whom and Whence Received.ORGANIC MATTER.INORGANIC MATTER.
ABCDABCDEFG
1. Lewis M. Norton17.6334.7952.42 35.2112.37 1.28 1.54
Goshen, Conn.
2. Lewis M. Norton60.0211.6571.67 8.0020.33 1.85
Goshen, Conn.
3. Lewis M. Norton50.6029.7580.35 4.5215.13 1.90 2.51
Goshen, Conn.
4. Messrs. Pond & Miles65.1511.9577.10 3.2319.67 1.20 1.63
Milford, Conn.
5. Messrs. Pond & Miles67.7516.6584.40 2.0013.60 .95 3.42
Milford, Conn.
6. Samuel Camp43.20 8.9052.1014.9014.3029.2018.70 2.10 2.50
Plainville, Conn.
7. Russell U. Peck38.4930.5169.00 13.5917.41 1.62 2.61
Berlin, Conn.
8. Rev. B. F. Northrop42.3010.1552.45 34.7012.85 1.31 1.64
Griswold, Conn.
9. J. H. Stanwood49.65 7.4057.05 4.5738.38 1.23 1.83
Colebrook, Conn.
10. N. Hart, Jr.55.1110.2965.40 14.8919.71 2.10 6.20
West Cornwall, Conn.
11. A. L. Loveland38.27 2.8941.16 47.2411.60 1.00 .75
North Granby, Conn.
12. Daniel Buck, Jr.27.1948.8476.03 5.9218.05 2.40 2.94
Poquonock, Conn.
13. Daniel Buck, Jr.33.6640.5174.17 8.6317.20 2.40 1.80
Poquonock, Conn.
14. Philip Scarborough51.4525.0076.45 7.6715.88 1.20 1.43
Brooklyn, Conn.
15. Adams White54.3823.1477.52 9.0313.45 2.89 5.90
Brooklyn, Conn.
16. Paris Dyer18.86 5.0223.88 67.77 8.35 1.03 2.63
Brooklyn, Conn.
17. Perrin Scarborough43.2716.8360.10 25.7814.12 0.8615.13
Brooklyn, Conn.
18. Geo. K. Virgin 2.2120.57 8.2531.03 0.32 9.4148.0557.7811.19 0.64 2.53
Collinsville, Conn.
19. Geo. K. Virgin 1.12 9.19 5.1015.41 0.28 1.0848.6550.0134.58 0.34 1.40
Collinsville, Conn.
20. Geo. K. Virgin 0.72 9.31 3.6513.68 0.25 0.7628.2029.2157.11 0.28 .97
Collinsville, Conn.
21. S. Mead 3.3040.52 8.2052.02 2.6010.0223.9036.5211.46 1.51 5.90
New Haven, Conn.
22. Edwin Hoyt 2.8413.42 7.5523.81 2.7219.8846.3068.90 7.29 0.45 5.56
New Canaan, Conn.
23. Edwin Hoyt 2.3413.49 8.0523.88 1.5412.4256.2070.16 5.96 0.90 3.88
New Canaan, Conn.
24. Edwin Hoyt 1.1517.29 8.0026.44 1.6714.1351.1066.90 6.66 1.01 2.82
New Canaan, Conn.
25. A. M. Haling 3.4352.15 8.6564.23 0.35 0.16 4.90 5.4130.36 1.62 3.78
Rockville, Conn.
26. A. M. Haling 3.8771.57 8.4483.88 0.23 1.98 2.2113.91 1.32 4.10
Rockville, Conn.
27. A. M. Haling 3.8744.04 4.2552.16 0.51 4.07 5.05 9.6338.21 1.88 4.38
Rockville, Conn.
28. Albert Day 2.4546.25 6.3555.05 0.32 0.65 5.40 6.3738.58 0.84 2.77
Brooklyn, Conn.
29. C. Goodyear 1.8045.4210.3557.57 0.35 7.9818.8027.1315.30 1.68 2.15
New Haven, Conn.
30. Rev. Wm. Clift 3.3351.68 9.8064.81 2.82 5.86 8.6826.51 0.95 6.15
Stonington, Conn.
31. Henry Keeler 2.1345.1212.0559.30 0.78 3.7916.7021.2719.43 1.57 2.91
South Salem, N. Y.
32. John Adams 1.7142.8710.6555.23 1.02 1.3314.3516.7028.07 1.76 2.73
Salisbury, Conn.
33. Rev. Wm. Clift 5.4016.72 7.2529.37 7.40 6.4048.0561.858.78 1.32 2.80
Stonington, Conn.
Average 2.06 1.44 1.37 3.72

TABLE II.—COMPOSITION OF CONNECTICUT PEATS AND MUCKS.

Calculated in the dry state: the percentage of nitrogen calculated also on organic matters.

KEY
A - In this table the matters soluble in water and the nitrogen are calculated to two places of decimals; the other ingredients are expressed in round numbers.
B - Soluble in water.
C - Insol. in water, but soluble in carbonate of soda.
D - Insol. in water and carbonate of soda.
E - Total.
F - Total matters soluble in water.
G - Nitrogen.
H - Nitrogen in per cent. of the organic matter.
ORGANIC MATTER.INORGANIC MATTER.
ABCDEBCDEFGH
1. Lewis M. Norton204060 40 1.751.462.25
Goshen, Conn.
2. Lewis M. Norton751590 10 2.322.58
Goshen, Conn.
3. Lewis M. Norton603595 5 2.952.232.36
Goshen, Conn.
4. Messrs. Pond & Miles811596 4 2.031.491.55
Milford, Conn.
5. Messrs. Pond & Miles791998 2 3.971.091.12
Milford, Conn.
6. Samuel Camp531164181836 3.082.584.03
Plainville, Conn.
7. Russell U. Peck463783 17 3.271.962.34
Berlin, Conn.
8. Rev. B. F. Northrop481159 41 1.881.502.49
Griswold, Conn.
9. J. H. Stanwood751186 14 2.771.992.15
Colebrook, Conn.
10. N. Hart, Jr.691382 18 7.752.613.21
West Cornwall, Conn.
11. A. L. Loveland43 447 53 .851.132.43
North Granby, Conn.
12. Daniel Buck, Jr.336093 7 3.582.923.15
Poquonock, Conn.
13. Daniel Buck, Jr.414990 10 2.162.892.23
Poquonock, Conn.
14. Philip Scarborough613091 9 1.701.421.57
Brooklyn, Conn.
15. Adams White632790 10 6.783.333.72
Brooklyn, Conn.
16. Paris Dyer21 526 74 2.851.124.31
Brooklyn, Conn.
17. Perrin Scarborough62 870 3017.591.001.43
Brooklyn, Conn.
18. Geo. K. Virgin2.4823 9350.35115465 2.830.722.06
Collinsville, Conn.
19. Geo K. Virgin1.7214 823 .43 27577 2.150.512.20
Collinsville, Conn.
20. Geo. K. Virgin1.6722 832 .58 26668 2.250.652.04
Collinsville, Conn.
21. Solomon Mead3.7048 9602.92112740 6.621.702.90
New Haven, Conn.
22. Edwin Hoyt3.0514 8262.92215074 6.070.481.88
New Canaan, Conn.
23. Edwin Hoyt2.4714 8251.63136075 4.100.953.76
New Canaan, Conn.
24. Edwin Hoyt1.2318 9281.79155572 3.021.083.82
New Canaan, Conn.
25. A. M. Haling4.90751292 .50 7 8 5.402.322.52
Rockville, Conn.
26. A. M. Haling4.50831097 .27 2 3 4.771.531.57
Rockville, Conn.
27. A. M. Haling6.2471 784 .82 7 816 7.063.043.64
Rockville, Conn.
28. Albert Day4.01761090 .52 1 810 4.531.361.52
Brooklyn, Conn.
29. C. Goodyear2.11541268 .40 92232 2.511.982.91
New Haven, Conn.
30. Rev. Wm. Clift4.567113883.86 812 8.421.291.46
Stonington, Conn.
31. Henry Keeler2.66561573 .97 52127 3.631.982.64
South Salem, N. Y.
32. John Adams2.375915761.40 22024 3.772.443.18
Salisbury, Conn.
33. Rev. Wm. Clift5.9318 8328.13 7536814.061.444.49
Stonington, Conn.

TABLE III.—DESCRIPTION, ETC., OF PEATS AND MUCKS.

No.Color.Condition at Time of Analysis, Reputed Value, etc.
1. Lewis M. Nortonchocolate-brown,air-dry, tough, compact, heavy; from bottom; 3 to 4 feet deep; very good in compost.
2. Lewis M. Nortonchocolate-brown,air-dry, tough, compact, heavier than 1, from near surface; very good in compost.
3. Lewis M. Nortonlight-brown,air-dry, coherent but light, from between 1 and 2, very good in compost.
4. Messrs. Pond & Mileschocolate-brown,air-dry, coherent but light, surface peat, considered better than No. 5; good in compost.
5. Messrs. Pond & Milesbrownish-red,air-dry, very light and loose in texture, from depth of 3 feet, good in compost.
6. Samuel Campblack,air-dry, hard lumps, half as good as yard manure, in compost equal to yard manure.
7. Russell U. Peckchocolate-brown,air-dry, is good fresh, long exposed, half as good as barn-yard\ manure.
8. Rev. B. F. Northropgrayish-brown,air-dry, light, easily crushed masses containing sand, has not been used alone, good in compost.
9. J. H. Stanwoodchocolate-brown,moist, hard lumps, used fresh good after first year; excellent in compost.
10. N. Hart, Jr.brownish-black,air-dry, hard lumps, excellent in compost.
11. A. L. Lovelandblack,air-dry, hard lumps, contains grains of coarse sand.
12. Daniel Buck, Jr.chocolate-brown,air-dry, coherent cakes, good as top dressing on grass when fresh; excellent in compost.
13. Daniel Buck, Jr.chocolate-brown,air-dry, light surface layers of No. 12.
14. Philip Scarborough air-dry, after exposure over winter, has one-third value of yard-manure.
15. Adams Whitechocolate-brown,air-dry, hard lumps, good in compost, causes great growth of straw.
16. Paris Dyergrayish-black,air-dry, easily crushed lumps, largely admixed with soil.
17. Perrin Scarboroughchocolate-brown,air-dry,well-characterized "vitriol peat;" in compost, after 1 year's exposure, gives indifferent results.
18. Geo. K. Virginlight brownish-grayair-dry light, coherent, surface peat; sample long exposed; astonishing results on sandy soil.
19. Geo. K. Virginchocolate-brown,moist, crumbly, contains much sand, four feet from surface.
20. Geo. K. Virginblack,wet.
21. Solomon Meadgrayish-brown,air-dry, light, porous, coherent from grass roots; long weathered, good; fresh, better in compost.
22. Edwin Hoytbrownish-gray,air-dry, loose, light, much mixed with soil, good in compost.
23. Edwin Hoytbrownish-gray,air-dry, No. 22 saturated with horse urine, darker than No. 22.
24. Edwin Hoytbrownish-gray,air-dry, No. 22 composted with white fish, darker than No. 23; fish-bones evident.
25. A. M. Halingchocolate-brown,moist, fresh dug.
26. A. M. Halingchocolate-brown,air-dry, No. 25 after two year's weathering.
27. A. M. Halingchocolate-brown,moist, fresh dug, good substitute for yard manure as top-dressing on grass.
28. Albert Daydark-brown,moist, coherent and hard; fresh dug, but from surface where weathered; injurious to crops; vitriol peat. (?)
29. C. Goodyearblack,air-dry, very hard tough cakes; when fresh dug, "as good as cow dung."
30. Rev. Wm. Cliftchocolate-brown,moist, from an originally fresh water bog, broken into 100 years ago by tide, now salt marsh; good after weathering.
31. Henry Keelerlight-brown,air-dry, leaf-muck, friable; when fresh, appears equal to good yard manure.
32. John Adamslight-brown,moist, overlies shell marl, fresh or weathered does not compare with ordinary manure.
33. Rev. Wm. Cliftdark ash-gray,air-dry, from bottom of salt ditch, where tide flows daily; contains sulphate of iron.