CHELONIA
No order of reptiles of the past or present is more sharply and unequivocally distinguished from all others than the Chelonia or Testudinata. No order has had a more uniformly continuous and uneventful history. None now in existence has had a longer known history, and of none is the origin more obscure. The first known members of the order, in Triassic times, were turtles in all respects, as well or nearly as well adapted for their peculiar mode of life as are those now living, and were they now living they would attract no especial attention from the ordinary observer and but little from the naturalist. From time to time some have gone after better things, and have come to grief, but the main line has remained with fewer improvements, fewer evolutional changes, than any other group of higher vertebrates. The turtles seem very early to have adapted themselves so well to their peculiar mode of life, to have intrenched themselves so thoroughly in their own province, that no other creatures have been able to overcome them, or to drive them from it. The remains of no other air-breathing vertebrates are so omnipresent in the rocks as those of the turtles; they may be expected wherever fossils of air-breathing animals are found, though unfortunately often only in scattered and broken fragments. The loose union of their skeletal bones and their general habits of life in shallow waters left their bodies as food for scavengers, or for dismemberment by the tides and currents.
Relationships with other reptiles they really have none. Some have thought that the plesiosaurs were their first cousins, others the Placodontia, an indeterminate group of extinct reptiles usually placed with the Anomodontia. But their relationship with neither of these is closer than with the crocodiles, dinosaurs, or pterodactyls. They are the only reptiles that we know, besides the cotylosaurs, which have no holes in the temporal roof of the skull, and as the cotylosaurs were the most primitive and the oldest of reptiles, this fact incontestably proves that the turtles had a very ancient origin, though we know them no farther back than the later Triassic. They are the only order of reptiles of which not a single member is known to have teeth, or even vestiges of them. Until recently only a single specimen has been known from the Trias, and of that only the casts of the shell; but the shell was as fully developed and as complete as that of a modern alligator snapper, which it resembled much in form and in size. And doubtless the habits of this ancient Proganochelys were similar to those of the alligator snapper. The early cotylosaurian reptiles were all littoral-or marsh-loving animals, and more or less aquatic, and doubtless the early turtles continued in the same environments and with the same habits after acquiring a shell for protection and losing their teeth, which for some inexplicable reason they seemed no longer to need. Until near the close of the Jurassic period probably all turtles were amphibious animals of the marshes, spending much, perhaps the larger part, of the time in the water, good swimmers, and yet good crawlers. With the beginning of the Cretaceous, however, some of them became ambitious for new and untried modes of life. Various ones went down into the sea and became marine animals, reaching the zenith of their prosperity and the maximum of size before the close of the period, but continuing in diminished size and numbers to the present time, if we may consider the leather-back turtle as really their descendant. Others in the Cretaceous took to the rivers and ponds, and became almost as thoroughly aquatic in their thin shape and soft covering; and their lineal descendants still continue in the rivers of the Northern Hemisphere. Still others, in the Age of Mammals, took to the upland, and competed with the mammals in the open places and prairies, reaching their maximum in Miocene-Pliocene times, when for some unknown reason the giants among them were driven from the mainlands to continue a precarious existence to the present time in some of the larger islands.
Fig. 111
Fig. 112
Figs. 111 and 112.—Graptemys. (From Hay.)
Fig. 111.—Carapace: cp1, cp2, etc., costal plates; cs1, cs2, etc., costal scutes, horny; n1, n2, etc., neural bones; nup, nuchal bone; nus, nuchal scute; py, pygal bone; spy, suprapygal; spy 2, second suprapygal, or postneural; vs1, vs2, etc., vertebral scutes; 1, 2, 3-12 on right side, marginal scutes; 1, 2, 3-12 on left side, peripheral bones.
Fig. 112.—Plastron: ab, abdominal scutes; an, anal scutes; ent, entoplastron (interclavicle); epi, epiplastron (clavicle); fem, femoral scute; g, gular scute; hum, humeral scute; hyo, hypoplastron bone; hypo, hypoplastron; in, inguinal scute; py, pygal bone; xiph, xiphiplastron.
Were there no turtles living we should look upon the fossil forms as among the strangest of all vertebrate animals—animals which had developed the strange habit of concealing themselves inside of their ribs, for that is literally what the turtles do. The box or shell of an ordinary turtle is composed of the backbones and ribs, to which are soldered a shell of bony skin plates above, with the clavicles, interclavicle, and ventral ribs below. Except in the strange leather-back turtle described farther on, these plates form definite series. Ten of them cover the spines of the dorsal vertebrae, in the mid-line, one over each, of which the turtles have the smallest number of any known reptiles. There are eight on each side over the ribs, united by suture with each other and with the middle series; and, in addition, there are twenty-six bones surrounding them and attached to them. All these bones compose what is called the carapace, which forms a complete roof in the more terrestrial types, more or less imperfect, with vacuities between the bones in the marine forms. On the under side, in addition to the clavicles and the interclavicle, there are three pairs of enlarged ventral ribs that go to form the plastron, solid and complete in land turtles, with openings in the water forms. And in the land forms the plastron is more or less firmly united with the carapace.
Fig. 113.—Toxochelys;
coracoid and scapula.
In the skeleton contained within the box thus formed is the very peculiar pectoral girdle, composed of scapula and coracoid, the scapula so peculiar that the controversy as to its homologies is not yet quite settled. Most authors, until recently, have believed that its peculiar shape ([Fig. 113]) is due to the co-ossification of the procoracoid with the scapula instead of as usual its loss or union with the true coracoid, so called. We are now pretty sure that this is not true, since in reality there is no such bone as the procoracoid, the bone so called being the real or true coracoid; and because, in the second place, the long anterior projection called the procoracoid is really only an outgrowth of the scapula itself and not a fused, separate bone. Hence the bone is properly called the scapula-proscapula, and not the scapula procoracoid, as it usually has been. The coracoids are elongate and flattened and without the usual supracoracoid foramen, so generally present in reptiles. The only other reptiles having a similar structure of the scapula are the plesiosaurs, and it has been because of this apparent resemblance that some good paleontologists have thought the turtles and plesiosaurs were allied. The sacrum is composed of two vertebrae only, and the pelvis of the usual three bones, the ilium, the ischium, and the pubis, all covered over by the shell.
Fig. 114.—Pelvis of Chelone, from below:
pu, pubis: is, ischium; il, ilium (in acetabulum).
In every known turtle the neck is composed invariably of eight vertebrae, but they are peculiar in many respects. In the earliest known turtles the neck vertebrae were, as would be supposed, biconcave, but they soon became very variable in all; in each neck some are biconcave, some biconvex, some opisthocoelous, and some procoelous. And Dr. Hay tells us that the neck has increased in length in the later forms.
The skull also is very peculiar in that it has some very primitive characters and others very aberrant. The temporal roof, as has been said, has no holes through it, though it is often reduced by the emargination of the borders, whether from below or behind, until in some the whole temporal region is exposed, and not at all covered over. There is no parietal foramen, so constantly present in all the early reptiles and in the lizards and the tuatera of modern times. There are no teeth or vestiges of teeth, but the jaws have usually a horny cutting edge, which seems to be quite as serviceable; in the river turtle the lips are fleshy. There is no transverse or transpalatine bone. There is a single vomer only, not paired as in other reptiles, whence comes the doubtful theory that the vomers of other reptiles are not the real vomers originally so named in mammals, and hence often called prevomers. The vomer of the turtles under this theory is believed to be the real homologue of the mammalian bone. The palate is always slightly, sometimes nearly wholly, underfloored, as in mammals, carrying the internal nostrils far back in the mouth. In the occipital region of the skull there is a separate bone on each side called the paroccipital or opisthotic, which has been indistinguishably fused with the exoccipital in all other reptiles except the ichthyosaurs since Triassic times.
Fig. 115
Fig. 116
Figs. 115 and 116.—Trachemys. (From Hay.)
Fig. 115.—Skull from above: fr, frontal; ju, jugal; pa, parietal; paoc, paroccipital; pfr, prefrontal; pof, postfrontal; pro, proötic; qu, quadrate; sq, squamosal; soc, supraoccipital.
Fig. 116.—Skull from below: alv, alveolar surface of maxilla; boc, basioccipital; bap, basisphenoid; exoc, exoccipital; mx, maxilla; pal, palatine; paoc, paroccipital; pmx, premaxilla; pro, proötic; pt, pterygoid; qu, quadrate; qj, quadratojugal; sq, squamosal; vom, vomer.
In the feet the numbers of phalanges—that is, the bones of the free digits—are like those of mammals, that is, two in the first and three in each of the other four digits. The land tortoises have lost some of these, while the river turtles have either gained one or two in the fourth finger and fourth toe, or else have enjoyed an uninterrupted descent from the primitive reptiles which normally possessed that number. All other reptiles, save those phylogenetically allied to the primitive mammals, that is, the Theriodontia and their allies, have normally the phalangeal formula 2, 3, 4, 5, 4. It was partly because of this similarity of the numbers of toe bones that the turtles have been classed in the great group of reptiles that includes the ancestors of the mammals; that is, under this theory, the turtles would enjoy a nearer relationship to the mammals and to man himself than any other living reptiles! But this classification has been shown to be quite artificial.
Fig. 117.—Limbs of Colpochelys, a recent sea-turtle: H, humerus; R, radius; U, ulna; r, radiale; i, intermedium; u, ulnare; p, pisiform; c, centrale; T, tibia; F, fibula; a, astragalus; m, fifth metatarsal. (From Wieland.)
From what has been said, it will be surmised that the Chelonia represent in themselves one of the primary subdivisions of the class Reptilia, and that, unlike most others, the order has enjoyed a most remarkable longevity. And doubtless they are one of the primary branches of the reptilian stock, which has remained distinct since Permian times at least, if not since Carboniferous, isolated and remarkably homogeneous, giving off no branches which departed far from the main stock, and on the whole leading a singularly placid existence for ten or more million years.
In most textbooks the order Chelonia is divided into three suborders, the Pleurodira, the Cryptodira, and the Trionychoidea. In recent years, however, the earlier members of the older group of Pleurodira have been separated into a fourth suborder, the Amphichelydia, a group characterized by some not very important differences in the plastron and skull, and including those forms in which the cervical vertebrae are amphicoelous. This group continued to Eocene times before it became extinct, and consisted of archaic forms which persisted after all the other suborders had come into existence. The Cryptodira, especially characterized by the manner in which they withdraw the head and neck within the shell by an S-like vertical flexure, are known from the Lower Jurassic and are still the dominant group of today, with more than one hundred and forty living species. The Pleurodira in the narrower sense are first known from their remains in the Upper Cretaceous of North America and are still represented by about forty species, living in the Southern Hemisphere. They are distinguished from the other groups by the manner in which they withdraw the neck and head into the shell, by a horizontal, sidewise flexure. The third suborder, the Trionychoidea, also began in Cretaceous times, so far as we know, and are represented by about seventy living species, chiefly in the Northern Hemisphere. They are especially characterized by the absence of bony marginal plates and the soft epidermis.
With the exception of the land tortoises, all turtles from the beginning of their career as an order to the present time have been more or less at home in the water. In some, like the marine forms, the adaptation to aquatic life has produced marked changes in structure: in the loss of the horny dermal shields and in the loss of bone tissue; in the flattening of the shell, and in the development of the front legs into swimming flippers, with a loss of the claws. In the absence of a guiding tail, which is always small in the marine turtles, propulsion must of course be wholly by the aid of the limbs. As oar propellers the marine turtles show some of the peculiar characters of the plesiosaurs. With a like short and broad body, a more or less elongated and flexible neck, there could be no sinuosity of the body in swimming. As an oar-like organ the humerus became flattened, and its muscular attachments, as in the plesiosaurs, descended far down the shaft, giving greater mechanical advantage. Unlike all other aquatic vertebrates, the turtles never developed real hyperphalangy. Only in the river turtles is there a possibility of an increase in the bones of the fourth digit.
To discuss in general the structure and habits of the living chelonians would extend this chapter to an undue length, and would add nothing to the many excellent works on natural history accessible to the student. We have therefore contented ourselves with a brief outline of the geological history of the order, with especial reference to their aquatic habits.
SIDE-NECKED TURTLES.
PLEURODIRA
The suborder of Chelonia, generally known as the snake-necked or side-necked turtles or tortoises, comprises about forty living species, confined to South America, Africa save the northernmost part, Madagascar, New Guinea, and Australia. In Australia they are the only members of the order known—another instance of the peculiar isolation of the fauna of that region. In the past they lived in North America during Upper Cretaceous times, the earliest known forms of the group in its restricted sense, of which seven species are described by Hay. In Eocene times they are also known from Europe and Asia, from both of which regions they have long since disappeared.
The Pleurodira, as the term indicates, are easily distinguished from all other turtles by the way in which they withdraw the head within the shell. Instead of withdrawing it by an S-shaped flexure of the neck between the shoulder-blades, as do other turtles, these bend the neck laterally in a horizontal plane, bringing the head within the margins of the shell in front of one or the other foreleg; and the margins of the shell are produced here in an eave-like fashion for the greater protection of the head. In the structure of the shell, which is always fully developed into a box, these turtles do not differ very much from the Cryptodira, though there may be some extra bones in the plastron, as also in the skull. The nasal bones are always, the lacrimals sometimes, well developed; the latter never, the former rarely, found in other groups. The lower jaws articulate a little differently, and the external ear is always fully surrounded by bone. Very characteristic is the bony union of the pelvis with the plastron below, which never occurs in other turtles, unless it be the Amphichelydia.
The side-necked turtles are all of fresh-water habit, similar to that of the fresh-water tortoises spoken of farther on. The neck is often very long and snake-like, which accounts for one of the names given to these turtles; because it is withdrawn into the shell sidewise, it has more distinctively ball-and-socket joints between the vertebrae, with distinct transverse processes for the attachment of the necessary side-moving muscles. The feet in all are more or less webbed and armed with strong claws.
The largest and perhaps the best known of all living side-necked turtles is the giant Amazon turtle of South America, which sometimes has a shell nearly three feet in length. Its feet are broadly webbed, and the shell is rather flat in the adult; it is an excellent swimmer in the waters of the Orinoco and Amazon. Six or seven species of the genus to which it belongs are known, all of them South American except one that lives in Madagascar and one fossil found in the Eocene of India. This remarkable distribution is but one more of the many instances known in zoölogy and paleontology that seem to prove an early land connection between India and South America. Had the migration between the two continents occurred by way of Asia and Bering straits, as did that of hosts of mammals, one would certainly expect to find some evidence of it in the North American Tertiary rocks, which, so far, is lacking.