CHAPTER XX.
OOLITE AND LIAS.
Subdivisions of the Oolitic or Jurassic group — Physical geography of the Oolite in England and France — Upper Oolite — Portland stone and fossils — Lithographic stone of Solenhofen — Middle Oolite, coral rag — Zoophytes — Nerinæan limestone — Diceras limestone — Oxford clay, Ammonites and Belemnites — Lower Oolite, Crinoideans — Great Oolite and Bradford clay — Stonesfield slate — Fossil mammalia, placental and marsupial — Resemblance to an Australian fauna — Doctrine of progressive development — Collyweston slates — Yorkshire Oolitic coal-field — Brora coal — Inferior Oolite and fossils.
Oolitic or Jurassic Group.—Below the freshwater group called the Wealden, or, where this is wanting, immediately beneath the Cretaceous formation, a great series of marine strata, commonly called "the Oolite," occurs in England and many other parts of Europe. This group has been so named, because, in the countries where it was first examined, the limestones belonging to it had an oolitic structure (see [p. 12.]). These rocks occupy in England a zone which is nearly 30 miles in average breadth, and extends across the island, from Yorkshire in the north-east, to Dorsetshire in the south-west. Their mineral characters are not uniform throughout this region; but the following are the names of the principal subdivisions observed in the central and south-eastern parts of England:—
| OOLITE. | |||
| Upper | { | a. Portland stone and sand. b. Kimmeridge clay. | |
| Middle | { | c. Coral rag. d. Oxford clay. | |
| Lower | { | e. Cornbrash and Forest marble. f. Great Oolite and Stonesfield slate. g. Fuller's earth. h. Inferior Oolite. | |
| The Lias then succeeds to the Inferior Oolite. | |||
The Upper oolitic system of the above table has usually the Kimmeridge clay for its base; the Middle oolitic system, the Oxford clay. The Lower system reposes on the Lias, an argillo-calcareous formation, which some include in the Lower Oolite, but which will be treated of separately in the next chapter. Many of these subdivisions are distinguished by peculiar organic remains; and though varying in thickness, may be traced in certain directions for great distances, especially if we compare the part of England to which the above-mentioned type refers with the north-east of France, and the Jura mountains adjoining. In that country, distant above 400 geographical miles, the analogy to the English type, notwithstanding the thinness, or occasional absence of the clays, is more perfect than in Yorkshire or Normandy.
Physical geography.—The alternation, on a grand scale, of distinct formations of clay and limestone, has caused the oolitic and liassic series to give rise to some marked features in the physical outline of parts of England and France. Wide valleys can usually be traced throughout the long bounds of country where the argillaceous strata crop out; and between these valleys the limestones are observed, composing ranges of hills, or more elevated grounds. These ranges terminate abruptly on the side on which the several clays rise up from beneath the calcareous strata.
Fig. 266.
The annexed diagram will give the reader an idea of the configuration of the surface now alluded to, such as may be seen in passing from London to Cheltenham, or in other parallel lines, from east to west, in the southern part of England. It has been necessary, however, in this drawing, greatly to exaggerate the inclination of the beds, and the height of the several formations, as compared to their horizontal extent. It will be remarked, that the lines of cliff, or escarpment, face towards the west in the great calcareous eminences formed by the Chalk and the Upper, Middle, and Lower Oolites; and at the base of which we have respectively the Gault, Kimmeridge clay, Oxford clay, and Lias. This last forms, generally, a broad vale at the foot of the escarpment of inferior oolite, but where it acquires considerable thickness, and contains solid beds of marlstone, it occupies the lower part of the escarpment.
The external outline of the country which the geologist observes in travelling eastward from Paris to Metz is precisely analogous, and is caused by a similar succession of rocks intervening between the tertiary strata and the Lias; with this difference, however, that the escarpments of Chalk, Upper, Middle, and Lower Oolites, face towards the east instead of the west.
The Chalk crops out from beneath the tertiary sands and clays of the Paris basin, near Epernay, and the Gault from beneath the Chalk and Upper Greensand at Clermont-en-Argonne; and passing from this place by Verdun and Etain to Metz, we find two limestone ranges, with intervening vales of clay, precisely resembling those of southern and central England, until we reach the great plain of Lias at the base of the Inferior Oolite at Metz.
It is evident, therefore, that the denuding causes have acted similarly over an area several hundred miles in diameter, sweeping away the softer clays more extensively than the limestones, and undermining these last so as to cause them to form steep cliffs wherever the harder calcareous rock was based upon a more yielding and destructible clay. This denudation probably occurred while the land was slowly rising out of the sea.[259-A]
Upper Oolite.
The Portland stone has already been mentioned as forming in Dorsetshire the foundation on which the freshwater limestone of the Lower Purbeck reposes (see [p. 232.]). It supplies the well-known building stone of which St. Paul's and so many of the principal edifices of London are constructed. This upper member, characterized by peculiar marine fossils, rests on a dense bed of sand, called the Portland sand, below which is the Kimmeridge clay. In England these Upper Oolite formations are almost wholly confined to the southern counties. Corals are rare in them, although one species is found plentifully at Tisbury, in Wiltshire, in the Portland sand converted into flint and chert, the original calcareous matter being replaced by silex ([fig. 267.]).
Fig. 267.
Columnaria oblonga, Blainv.
As seen on a polished slab of chert from the sand of the Upper Oolite, Tisbury.
Among the characteristic fossils of the Upper Oolite, may be mentioned the Ostrea deltoidea ([fig. 269.]), found in the Kimmeridge clay throughout England and the north of France, and also in Scotland, near Brora. The Gryphæa virgula ([fig. 268.]), also met with in the same clay near Oxford, is so abundant in the Upper Oolite of parts of France as to have caused the deposit to be termed "marnes à gryphées virgules." Near Clermont, in Argonne, a few leagues from St. Menehould, where these indurated marls crop out from beneath the gault, I have seen them, on decomposing, leave the surface of every ploughed field literally strewed over with this fossil oyster.
Upper Oolite: Kimmeridge clay. 1/4 nat. size.
Fig. 268. Gryphæa virgula.
Fig. 269. Ostrea deltoidea.
Fig. 270.
Trigonia gibbosa. 1/2 nat. size. a. the hinge.
Portland Oolite, Tisbury.
The Kimmeridge clay consists, in great part, of a bituminous shale, sometimes forming an impure coal several hundred feet in thickness. In some places in Wiltshire it much resembles peat; and the bituminous matter may have been, in part at least, derived from the decomposition of vegetables. But as impressions of plants are rare in these shales, which contain ammonites, oysters, and other marine shells, the bitumen may perhaps be of animal origin.
The celebrated lithographic stone of Solenhofen, in Bavaria, belongs to one of the upper divisions of the oolite, and affords a remarkable example of the variety of fossils which may be preserved under favourable circumstances, and what delicate impressions of the tender parts of certain animals and plants may be retained where the sediment is of extreme fineness. Although the number of testacea in this slate is small, and the plants few, and those all marine, Count Munster had determined no less than 237 species of fossils when I saw his collection in 1833; and among them no less than seven species of flying lizards, or pterodactyls, six saurians, three tortoises, sixty species of fish, forty-six of crustacea, and twenty-six of insects. These insects, among which is a libellula, or dragon-fly, must have been blown out to sea, probably from the same land to which the flying lizards, and other contemporaneous reptiles, resorted.
Middle Oolite.
Coral Rag.—One of the limestones of the Middle Oolite has been called the "Coral Rag," because it consists, in part, of continuous beds of petrified corals, for the most part retaining the position in which they grew at the bottom of the sea. They belong chiefly to the genera Caryophyllia ([fig. 271.]), Agaricia, and Astrea, and sometimes form masses of coral 15 feet thick. In the annexed figure of an Astrea, from this formation, it will be seen that the cup-shaped cavities are deepest on the right-hand side, and that they grow more and more shallow, till those on the left side are nearly filled up. The last-named stars are supposed to be Polyparia of advanced age. These coralline strata extend through the calcareous hills of the N.W. of Berkshire, and north of Wilts, and again recur in Yorkshire, near Scarborough.
Fig. 271.
Caryophyllia annularis, Parkin. Coral rag, Steeple Ashton.
Fig 272.
Astrea. Coral rag.
One of the limestones of the Jura, referred to the age of the English coral rag, has been called "Nerinæan limestone" (Calcaire à Nérinées) by M. Thirria; Nerinæa being an extinct genus of univalve shells, much resembling the Cerithium in external form. The annexed section ([fig. 273.]) shows the curious form of the hollow part of each whorl, and also the perforation which passes up the middle of the columella. N. Goodhallii ([fig. 274.]) is another English species of the same genus, from a formation which seems to form a passage from the Kimmeridge clay to the coral rag.[261-A]
Fig. 273.
Nerinæa hieroglyphica. Coral rag.
Fig. 274.
Nerinæa Goodhallii, Fitton. Coral rag, Weymouth. 1/4 nat. size.
A division of the oolite in the Alps, regarded by most geologists as coeval with the English coral rag, has been often named "Calcaire à Dicerates," or "Diceras limestone," from its containing abundantly a bivalve shell (see [fig. 275.]) of a genus allied to the Chama.
Fig. 275.
Cast of Diceras arietina. Coral rag, France.
Fig. 276.
Cidaris coronata. Coral rag.
Oxford Clay.—The coralline limestone, or "coral rag," above described, and the accompanying sandy beds, called "calcareous grits" of the Middle Oolite, rests on a thick bed of clay, called the Oxford clay, sometimes not less than 500 feet thick. In this there are no corals, but great abundance of cephalopoda of the genera Ammonite and Belemnite. (See [fig. 277.]) In some of the clay of very fine texture ammonites are very perfect, although somewhat compressed, and are seen to be furnished on each side of the aperture with a single horn-like projection (see [fig. 278.]). These were discovered in the cuttings of the Great Western Railway, near Chippenham, in 1841, and have been described by Mr. Pratt.[262-A]
Fig. 277.
Belemnites hastatus. Oxford Clay.
Fig. 278.
Ammonites Jason, Reinecke. Syn. A. Elizabethæ, Pratt. Oxford clay, Christian Malford, Wiltshire.
Fig. 279.
Belemnites Puzosianus, D'Orb. Oxford Clay, Christian Malford.
- a, a. projecting processes of the shell or phragmocone.
- b, c. broken exterior of a conical shell called the phragmocone, which is chambered within, or composed of a series of shallow concave cells pierced by a siphuncle.
- c, d. The guard or osselet, which is commonly called the belemnite.
Similar elongated processes have been also observed to extend from the shells of some belemnites discovered by Dr. Mantell in the same clay (see [fig. 279.]), who, by the aid of this and other specimens, has been able to throw much light on the structure of this singular extinct form of cuttle-fish.[263-A]
Lower Oolite.
The upper division of this series, which is more extensive than the preceding or Middle Oolite, is called in England the Cornbrash. It consists of clays and calcareous sandstones, which pass downwards into the Forest marble, an argillaceous limestone, abounding in marine fossils. In some places, as at Bradford, this limestone is replaced by a mass of clay. The sandstones of the Forest Marble of Wiltshire are often ripple-marked and filled with fragments of broken shells and pieces of drift-wood, having evidently been formed on a coast. Rippled slabs of fissile oolite are used for roofing, and have been traced over a broad band of country from Bradford, in Wilts, to Tetbury, in Gloucestershire. These calcareous tile-stones are separated from each other by thin seams of clay, which have been deposited upon them, and have taken their form, preserving the undulating ridges and furrows of the sand in such complete integrity, that the impressions of small footsteps, apparently of crabs, which walked over the soft wet sands, are still visible. In the same stone the claws of crabs, fragments of echini, and other signs of a neighbouring beach are observed.[263-B]
Great Oolite.—Although the name of coral-rag has been appropriated, as we have seen, to a member of the Upper Oolite before described, some portions of the Lower Oolite are equally intitled in many places to be called coralline limestones. Thus the Great Oolite near Bath contains various corals, among which the Eunomia radiata ([fig. 280.]) is very conspicuous, single individuals forming masses several feet in diameter; and having probably required, like the large existing brain-coral (Meandrina) of the tropics, many centuries before their growth was completed.
Fig. 280.
Eunomia radiata, Lamouroux.
- a. section transverse to the tubes.
- b. vertical section, showing the radiation of the tubes.
- c. portion of interior of tubes magnified, showing striated surface.
Fig. 281.
Apiocrinites rotundus, or Pear Encrinite; Miller. Fossil at Bradford, Wilts.
- a. Stem of Apiocrinites, and one of the articulations, natural size.
- b. Section at Bradford of great oolite and overlying clay, containing the fossil encrinites. See text.
- c. Three perfect individuals of Apiocrinites, represented as they grew on the surface of the Great Oolite.
- d. Body of the Apiocrinites rotundus.
Different species of Crinoideans, or stone-lilies, are also common in the same rocks with corals; and, like them, must have enjoyed a firm bottom, where their root, or base of attachment, remained undisturbed for years (c, [fig. 281.]). Such fossils, therefore, are almost confined to the limestones; but an exception occurs at Bradford, near Bath, where they are enveloped in clay. In this case, however, it appears that the solid upper surface of the "Great Oolite" had supported, for a time, a thick submarine forest of these beautiful zoophytes, until the clear and still water was invaded by a current charged with mud, which threw down the stone-lilies, and broke most of their stems short off near the point of attachment. The stumps still remain in their original position; but the numerous articulations once composing the stem, arms, and body of the zoophyte, were scattered at random through the argillaceous deposit in which some now lie prostrate. These appearances are represented in the section b, [fig. 281.], where the darker strata represent the Bradford clay, which some geologists class with the Forest marble, others with the Great Oolite. The upper surface of the calcareous stone below is completely incrusted over with a continuous pavement, formed by the stony roots or attachments of the Crinoidea; and besides this evidence of the length of time they had lived on the spot, we find great numbers of single joints, or circular plates of the stem and body of the encrinite, covered over with serpulæ. Now these serpulæ could only have begun to grow after the death of some of the stone-lilies, parts of whose skeletons had been strewed over the floor of the ocean before the irruption of argillaceous mud. In some instances we find that, after the parasitic serpulæ were full grown, they had become incrusted over with a coral, called Berenicea diluviana; and many generations of these polyps had succeeded each other in the pure water before they became fossil.
Fig. 282.
- a. Single plate or articulation of an Encrinite overgrown with serpulæ and corals. Natural size Bradford clay.
- b. Portion of the same magnified, showing the coral Berenicea diluviana covering one of the serpulæ.
We may, therefore, perceive distinctly that, as the pines and cycadeous plants of the ancient "dirt bed," or fossil forest, of the Lower Purbeck were killed by submergence under fresh water, and soon buried beneath muddy sediment, so an invasion of argillaceous matter put a sudden stop to the growth of the Bradford Encrinites, and led to their preservation in marine strata.[265-A]
Such differences in the fossils as distinguish the calcareous and argillaceous deposits from each other, would be described by naturalists as arising out of a difference in the stations of species; but besides these, there are variations in the fossils of the higher, middle, and lower part of the oolitic series, which must be ascribed to that great law of change in organic life by which distinct assemblages of species have been adapted, at successive geological periods, to the varying conditions of the habitable surface. In a single district it is difficult to decide how far the limitation of species to certain minor formations has been due to the local influence of stations, or how far it has been caused by time or the creative and destroying law above alluded to. But we recognize the reality of the last-mentioned influence, when we contrast the whole oolitic series of England with that of parts of the Jura, Alps, and other distant regions, where there is scarcely any lithological resemblance; and yet some of the same fossils remain peculiar in each country to the Upper, Middle, and Lower Oolite formations respectively. Mr. Thurmann has shown how remarkably this fact holds true in the Bernese Jura, although the argillaceous divisions, so conspicuous in England, are feebly represented there, and some entirely wanting.
Fig. 283.
Terebratula digona. Bradford clay. Nat. size.
The Bradford clay above alluded to is sometimes 60 feet thick, but, in many places, it is wanting; and, in others, where there are no limestones, it cannot easily be separated from the clays of the overlying "forest marble" and underlying "fuller's earth."
The calcareous portion of the Great Oolite consists of several shelly limestones, one of which, called the Bath Oolite, is much celebrated as a building stone. In parts of Gloucestershire, especially near Minchinhampton, the Great Oolite, says Mr. Lycett, "must have been deposited in a shallow sea, where strong currents prevailed, for there are frequent changes in the mineral character of the deposit, and some beds exhibit false stratification. In others, heaps of broken shells are mingled with pebbles of rocks foreign to the neighbourhood, and with fragments of abraded madrepores, dicotyledonous wood, and crabs' claws. The shelly strata, also, have occasionally suffered denudation, and the removed portions have been replaced by clay."[266-A] In such shallow-water beds cephalopoda are rare, and, instead of ammonites and belemnites, numerous genera of carnivorous trachelipods appear. Out of one hundred and forty-two species of univalves obtained from the Minchinhampton beds, Mr. Lycett found no less than forty-one to be carnivorous. They belong principally to the genera Buccinum, Pleurotoma, Rostellaria, Murex, and Fusus, and exhibit a proportion of zoophagous species not very different from that which obtains in warm seas of the recent period. These conchological results are curious and unexpected, since it was imagined that we might look in vain for the carnivorous trachelipods in rocks of such high antiquity as the Great Oolite, and it was a received doctrine that they did not begin to appear in considerable numbers till the Eocene period when those two great families of cephalopoda, the ammonites and belemnites, had become extinct.
Stonesfield slate.—The slate of Stonesfield has been shown by Mr. Lonsdale to lie at the base of the Great Oolite.[266-B] It is a slightly oolitic shelly limestone, forming large spheroidal masses imbedded in sand, only 6 feet thick, but very rich in organic remains. It contains some pebbles of a rock very similar to itself, and which may be portions of the deposit, broken up on a shore at low water or during storms, and redeposited. The remains of belemnites, trigoniæ, and other marine shells, with fragments of wood, are common, and impressions of ferns, cycadeæ, and other plants. Several insects, also, and, among the rest, the wing-covers of beetles, are perfectly preserved (see [fig. 284.]), some of them approaching nearly to the genus Buprestis.[267-A] The remains, also, of many genera of reptiles, such as Plesiosaur, Crocodile, and Pterodactyl, have been discovered in the same limestone.
Fig. 284.
Elytron of Buprestis? Stonesfield.
Fig. 285.
Bone of a reptile, formerly supposed to be the ulna of a Cetacean; from the Great Oolite of Enstone, near Woodstock.
But the remarkable fossils for which the Stonesfield slate is most celebrated, are those referred to the mammiferous class. The student should be reminded that in all the rocks described in the preceding chapters as older than the Eocene, no bones of any land quadruped, or of any cetacean, have been discovered. Yet we have seen that terrestrial plants were not rare in the lower cretaceous formation, and that in the Wealden there was evidence of freshwater sediment on a large scale, containing various plants, and even ancient vegetable soils with the roots and erect stumps of trees. We had also in the same Wealden many land-reptiles and winged-insects, which renders the absence of terrestrial quadrupeds the more striking. The want, however, of any bones of whales, seals, dolphins, and other aquatic mammalia, whether in the chalk or in the upper or middle oolite, is certainly still more remarkable. Formerly, indeed, a bone from the great oolite of Enstone, near Woodstock, in Oxfordshire, was cited, on the authority of Cuvier, as referable to this class. Dr. Buckland, who stated this in his Bridgewater Treatise[267-B], had the kindness to send me the supposed ulna of a whale, that Mr. Owen might examine into its claims to be considered as cetaceous. It is the opinion of that eminent comparative anatomist that it cannot have belonged to the cetacea, because the fore-arm in these marine mammalia is invariably much flatter, and devoid of all muscular depressions and ridges, one of which is so prominent in the middle of this bone, represented in the above cut ([fig. 285.]). In saurians, on the contrary, such ridges exist for the attachment of muscles; and to some animal of that class the bone is probably referable.
Fig. 286.
Amphitherium Prevostii. Stonesfield Slate.
- a. coronoid process.
- b. condyle.
- c. angle of jaw.
- d. double-fanged molars.
These observations are made to prepare the reader to appreciate more justly the interest felt by every geologist in the discovery in the Stonesfield slate of no less than seven specimens of lower jaws of mammiferous quadrupeds, belonging to three different species and to two distinct genera, for which the names of Amphitherium and Phascolotherium have been adopted. When Cuvier was first shown one of these fossils in 1818, he pronounced it to belong to a small ferine mammal, with a jaw much resembling that of an opossum, but differing from all known ferine genera, in the great number of the molar teeth, of which it had at least ten in a row. Since that period, a much more perfect specimen of the same fossil, obtained by Dr. Buckland (see [fig. 286.]), has been examined by Mr. Owen, who finds that the jaw contained on the whole twelve molar teeth, with the socket of a small canine, and three small incisors, which are in situ, altogether amounting to sixteen teeth on each side of the lower jaw.
Fig. 287.
Amphitherium Broderipii. Natural size. Stonesfield Slate.
The only question which could be raised respecting the nature of these fossils was, whether they belonged to a mammifer, a reptile, or a fish. Now on this head the osteologist observes that each of the seven half jaws is composed of but one single piece, and not of two or more separate bones, as in fishes and most reptiles, or of two bones, united by a suture, as in some few species belonging to those classes. The condyle, moreover (b, [fig. 286.]), or articular surface, by which the lower jaw unites with the upper, is convex in the Stonesfield specimens, and not concave as in fishes and reptiles. The coronoid process (a, [fig. 286.]) is well developed, whereas it is wanting or very small, in the inferior classes of vertebrata. Lastly, the molar teeth in the Amphitherium and Phascolotherium have complicated crowns, and two roots (see d, [fig. 286.]), instead of being simple and with single fangs.[269-A]
Fig. 288.
Tupaia Tana. Right ramus of lower jaw, natural size. A recent insectivorous mammal from Sumatra.
Part of lower jaw of Tupaia Tana; twice natural size.
Fig. 289. End view seen from behind, showing the very slight inflection of the angle at c.
Fig. 290. Side view of same.
Part of lower jaw of Didelphis Azaræ; recent, Brazil. Natural size.
Fig. 291. End view seen from behind, showing the inflection of the angle of the jaw, c. d.
Fig. 292. Side view of same.
The only question, therefore, which could fairly admit of controversy was limited to this point, whether the fossil mammalia found in the lower oolite of Oxfordshire ought to be referred to the marsupial quadrupeds, or to the ordinary placental series. Cuvier had long ago pointed out a peculiarity in the form of the angular process (c, [figs. 291.] and [292.]) of the lower jaw, as a character of the genus Didelphys; and Mr. Owen has since established its generality in the entire marsupial series. In all these pouched quadrupeds, this process is turned inwards, as at c d, [fig. 291.] in the Brazilian opossum, whereas in the placental series, as at c, [figs. 290.] and [289.] there is an almost entire absence of such inflection. The Tupaia Tana of Sumatra has been selected by my friend Mr. Waterhouse, for this illustration, because that small insectivorous quadruped bears a great resemblance to those of the Stonesfield Amphitherium. By clearing away the matrix from the specimen of Amphitherium Prevostii above represented ([fig. 286.]), Mr. Owen ascertained that the angular process (c) bent inwards in a slighter degree than in any of the known marsupialia; in short, the inflection does not exceed that of the mole or hedgehog. This fact turns the scale in favour of its affinities to the placental insectivora. Nevertheless, the Amphitherium offers some points of approximation in its osteology to the marsupials, especially to the Myrmecobius, a small insectivorous quadruped of Australia, which has nine molars on each side of the lower jaw, besides a canine and three incisors.[269-B]
Another species of Amphitherium has been found at Stonesfield ([fig. 287.] [p. 268.]), which differs from the former ([fig. 286.]) principally in being larger.
Fig. 293.
Phascolotherium Bucklandi, Owen.
- a. natural size.
- b. molar of same magnified.
The second mammiferous genus discovered in the same slates was named originally by Mr. Broderip Didelphys Bucklandi (see [fig. 293.]), and has since been called Phascolotherium by Owen. It manifests a much stronger likeness to the marsupials in the general form of the jaw, and in the extent and position of its inflected angle, while the agreement with the living genus Didelphys in the number of the premolar and molar teeth, is complete.[270-A]
On reviewing, therefore, the whole of the osteological evidence, it will be seen that we have every reason to presume that the Amphitherium and Phascolotherium of Stonesfield represent both the placental and marsupial classes of mammalia; and if so, they warn us in a most emphatic manner, not to found rash generalizations respecting the non-existence of certain classes of animals at particular periods of the past, on mere negative evidence. The singular accident of our having as yet found nothing but the lower jaws of seven individuals, and no other bones of their skeletons, is alone sufficient to demonstrate the fragmentary manner in which the memorials of an ancient terrestrial fauna are handed down to us. We can scarcely avoid suspecting that the two genera above described, may have borne a like insignificant proportion to the entire assemblage of warm-blooded quadrupeds which flourished in the islands of the oolitic sea.
Mr. Owen has remarked that as the marsupial genera, to which the Phascolotherium is most nearly allied, are now confined to New South Wales and Van Diemen's Land, so also is it in the Australian seas, that we find the Cestracion, a cartilaginous fish which has a bony palate, allied to those called Acrodus and Psammodus (see [figs. 307], [308.] [p. 275.]), so common in the oolite and lias. In the same Australian seas, also, near the shore, we find the living Trigonia, a genus of mollusca so frequently met with in the Stonesfield slate. So, also, the Araucarian pines are now abundant, together with ferns, in Australia and its islands, as they were in Europe in the oolitic period. Many botanists incline to the opinion, that the Thuja, Pine, Cycas, Zamia, in short, all the gymnogens, belong to a less highly developed type of flowering plants than do the exogens; but even if this be admitted, no naturalist can ascribe a low standard of organization to the oolitic flora, since we meet with endogens of the most perfect structure in oolitic rocks, both above and below the Stonesfield slate, as, for example, the Podocarya of Buckland, a fruit allied to the Pandanus, found in the Inferior Oolite (see [fig. 294.]), and the Carpolithes conica of the Coral rag. The doctrine, therefore, of a regular series of progressive development at successive eras in the animal and vegetable kingdoms, from beings of a more simple to those of a more complex organization, receives a check, if not a refutation, from the facts revealed to us by the study of the Lower Oolites.
Fig. 294.
Portion of a fossil fruit of Podocarya magnified. (Buckland's Bridgew. Treat. Pl. 63.) Inferior Oolite, Charmouth, Dorset.
The Stonesfield slate, in its range from Oxfordshire to the north-east, is represented by flaggy and fissile sandstones, as at Collyweston in Northamptonshire, where, according to the researches of Messrs. Ibbetson and Morris, it contains many shells, such as Trigonia angulata, also found at Stonesfield. But the Northamptonshire strata of this age assume a more marine character, or appear at least to have been formed farther from land. They inclose, however, some fossil ferns, such as Pecopteris polypodioides, of species common to the oolites of the Yorkshire coast[271-A], where rocks of this age put on all the aspect of a true coal-field; thin seams of coal having actually been worked in them for more than a century.
Fig. 295.
Pterophyllum comptum. (Syn. Cycadites comptus.) Upper sandstone and shale, Gristhorpe, near Scarborough.
In the north-west of Yorkshire, the formation alluded to consists of an upper and a lower carbonaceous shale, abounding in impressions of plants, divided by a limestone considered by many geologists as the representative of the Great Oolite; but the scarcity of marine fossils makes all comparisons with the subdivisions adopted in the south extremely difficult. A rich harvest of fossil ferns has been obtained from the upper carbonaceous shales and sandstones at Gristhorpe, near Scarborough (see [figs. 295], [296.]). The lower shales are well exposed in the sea-cliffs at Whitby, and are chiefly characterized by ferns and cycadeæ. They contain, also, a species of calamite, and a fossil called Equisetum columnare, which maintains an upright position in sandstone strata over a wide area. Shells of the genus Cypris and Unio, collected by Mr. Bean from these Yorkshire coal-bearing beds, point to the estuary or fluviatile origin of the deposit.
Fig. 296.
Hemitelites Brownii, Goepp. Syn. Phlebopteris contigua, Lind. & Hutt. Upper carbonaceous strata, Lower Oolite, Gristhorpe, Yorkshire.
At Brora, in Sutherlandshire, a coal formation, probably coeval with the above, or belonging to some of the lower divisions of the Oolitic period, has been mined extensively for a century or more. It affords the thickest stratum of pure vegetable matter hitherto detected in any secondary rock in England. One seam of coal of good quality has been worked 31/2 feet thick, and there are several feet more of pyritous coal resting upon it.
Inferior Oolite.—Between the Great and Inferior Oolite, near Bath, an argillaceous deposit called "the fuller's earth," occurs, but is wanting in the north of England. The Inferior Oolite is a calcareous freestone, usually of small thickness, which sometimes rests upon, or is replaced by, yellow sands, called the sands of the Inferior Oolite. These last, in their turn, repose upon the lias in the south and west of England.
Among the characteristic shells of the Inferior Oolite, I may instance Terebratula spinosa ([fig. 297.]), and Pholadomya fidicula ([fig. 298.]). The extinct genus Pleurotomaria is also a form very common in this division as well as in the Oolitic system generally. It resembles the Trochus in form, but is marked by a singular cleft (a, [fig. 299.]) on the right side of the mouth.
Fig. 297.
Terebratula spinosa. Inferior Oolite.
Fig. 298.
- a. Pholadomya fidicula, 1/3 nat. size. Inf. Ool.
- b. Heart-shaped anterior termination of the same.
Fig. 299.
Pleurotomaria ornata. Ferruginous Oolite, Normandy. Inferior Oolite, England.
As illustrations of shells having a great vertical range, I may allude to Trigonia clavellata, found in the Upper and Inferior Oolite, and T. costata, common to the Upper, Middle, and Lower Oolite; also Ostrea Marshii ([fig. 300.]), common to the Cornbrash of Wilts and the Inferior Oolite of Yorkshire; and Ammonites striatulus ([fig. 301.]) common to the Inferior Oolite and Lias.
Fig. 300.
Ostrea Marshii. 1/2 nat. size. Middle and Lower Oolite.
Fig. 301.
Ammonites striatulus, Sow. 1/3 nat. size. Inferior Oolite and Lias.
Such facts by no means invalidate the general rule, that certain fossils are good chronological tests of geological periods; but they serve to caution us against attaching too much importance to single species, some of which may have a wider, others a more confined vertical range. We have before seen that, in the successive tertiary formations, there are species common to older and newer groups, yet these groups are distinguishable from one another by a comparison of the whole assemblage of fossil shells proper to each.
[CHAPTER XXI].
OOLITE AND LIAS—continued.
Mineral character of Lias — Name of Gryphite limestone — Fossil shells and fish — Ichthyodorulites — Reptiles of the Lias — Ichthyosaur and Plesiosaur — Marine Reptile of the Galapagos Islands — Sudden destruction and burial of fossil animals in Lias — Fluvio-marine beds in Gloucestershire and insect limestone — Origin of the Oolite and Lias, and of alternating calcareous and argillaceous formations — Oolitic coal-field of Virginia, in the United States.
Lias.—The English provincial name of Lias has been very generally adopted for a formation of argillaceous limestone, marl, and clay, which forms the base of the Oolite, and is classed by many geologists as part of that group. They pass, indeed, into each other in some places, as near Bath, a sandy marl called the marlstone of the Lias being interposed, and partaking of the mineral characters of the upper lias and inferior oolite. These last-mentioned divisions have also some fossils in common, such as the Avicula inæquivalvis ([fig. 302.]). Nevertheless the Lias may be traced throughout a great part of Europe as a separate and independent group, of considerable thickness, varying from 500 to 1000 feet, containing many peculiar fossils, and having a very uniform lithological aspect. Although usually conformable to the oolite, it is sometimes, as in the Jura, unconformable. In the environs of Lons-le-Saulnier, for instance, in the department of Jura, the strata of lias are inclined at an angle of about 45°, while the incumbent oolitic marls are horizontal.
Fig. 302.
Avicula inæquivalvis, Sow.
The peculiar aspect which is most characteristic of the Lias in England, France, and Germany, is an alternation of thin beds of blue or grey limestone with a surface becoming light-brown when weathered, these beds being separated by dark-coloured narrow argillaceous partings, so that the quarries of this rock, at a distance, assume a striped and riband-like appearance.[274-A]
Although the prevailing colour of the limestone of this formation is blue, yet some beds of the lower lias are of a yellowish white colour, and have been called white lias. In some parts of France, near the Vosges mountains, and in Luxembourg, M. E. de Beaumont has shown that the lias containing Gryphæa arcuata, Plagiostoma giganteum (see [fig. 303.]), and other characteristic fossils, becomes arenaceous; and around the Hartz, in Westphalia and Bavaria, the inferior parts of the lias are sandy, and sometimes afford a building stone.
Fig. 303.
Plagiostoma giganteum. Lias.
Fig. 304.
Gryphæa incurva, Sow. (G. arcuata, Lam.)
Fig. 305.
Nautilus truncatus. Lias.
The name of Gryphite limestone has sometimes been applied to the lias, in consequence of the great number of shells which it contains of a species of oyster, or Gryphæa ([fig. 304.], see also [fig. 30.] [p. 29.]). Many cephalopoda, also, such as Ammonite, Belemnite, and Nautilus ([fig. 305.]), prove the marine origin of the formation.
Fig. 306.
Scales of Lepidotus gigas, Agas.
a. two of the scales detached.
The fossil fish resemble generically those of the oolite, belonging all, according to M. Agassiz, to extinct genera, and differing remarkably from the ichthyolites of the Cretaceous period. Among them is a species of Lepidotus (L. gigas, Agas.) ([fig. 306.]), which is found in the lias of England, France, and Germany.[275-A] This genus was before mentioned ([p. 229.]) as occurring in the Wealden, and is supposed to have frequented both rivers and coasts. The teeth of a species of Acrodus, also, are very abundant in the lias ([fig. 307.]).
Fig. 307.
Acrodus nobilis, Agas. (tooth); commonly called fossil leach. Lias, Lyme Regis, and Germany.
Fig. 308.
Hybodus reticulatus, Agas. Lias, Lyme Regis.
- a. Part of fin, commonly called Ichthyodorulite.
- b. Tooth.
But the remains of fish which have excited more attention than any others, are those large bony spines called ichthyodorulites (a, [fig. 308.]), which were once supposed by some naturalists to be jaws, and by others weapons, resembling those of the living Balistes and Silurus; but which M. Agassiz has shown to be neither the one nor the other. The spines, in the genera last mentioned, articulate with the backbone, whereas there are no signs of any such articulation in the ichthyodorulites. These last appear to have been bony spines which formed the anterior part of the dorsal fin, like that of the living genera Cestracion and Chimæra (see a, [fig. 309.]). In both of these genera, the posterior concave face is armed with small spines like that of the fossil Hybodus [(fig. 308.]), one of the shark family found fossil at Lyme Regis. Such spines are simply imbedded in the flesh, and attached to strong muscles. "They serve," says Dr. Buckland, "as in the Chimæra ([fig. 309.]), to raise and depress the fin, their action resembling that of a moveable mast, raising and lowering backwards the sail of a barge."[276-A]
Fig. 309.
Chimæra monstrosa.[276-B]
a. Spine forming anterior part of the dorsal fin.
Reptiles of the Lias.—It is not, however, the fossil fish which form the most striking feature in the organic remains of the Lias; but the reptiles, which are extraordinary for their number, size, and structure. Among the most singular of these are several species of Ichthyosaurus and Plesiosaurus. The genus Ichthyosaurus, or fish-lizard, is not confined to this formation, but has been found in strata as high as the chalk-marl and gault of England, and as low as the muschelkalk of Germany, a formation which immediately succeeds the lias in the descending order.[276-C] It is evident from their fish-like vertebræ, their paddles, resembling those of a porpoise or whale, the length of their tail, and other parts of their structure, that the habits of the Ichthyosaurs were aquatic. Their jaws and teeth show that they were carnivorous; and the half-digested remains of fishes and reptiles, found within their skeletons, indicate the precise nature of their food.[276-D]
A specimen of the hinder fin or paddle of Ichthyosaurus communis was discovered in 1840 at Barrow-on-Soar, by Sir P. Egerton, which distinctly exhibits on its posterior margin the remains of cartilaginous rays that bifurcate as they approach the edge, like those in the fin of a fish (see a, [fig. 312.]). It had previously been supposed, says Mr. Owen, that the locomotive organs of the Ichthyosaurus were enveloped, while living, in a smooth integument, like that of the turtle and porpoise, which has no other support than is afforded by the bones and ligaments within; but it now appears that the fin was much larger, expanding far beyond its osseous framework, and deviating widely in its fish-like rays from the ordinary reptilian type. In [fig. 312.] the posterior bones, or digital ossicles of the paddle, are seen near b; and beyond these is the dark carbonized integument of the terminal half of the fin, the outline of which is beautifully defined.[277-A] Mr. Owen believes that, besides the fore-paddles, these short-and stiff-necked saurians were furnished with a tail-fin without bones and purely tegumentary, expanding in a vertical direction; an organ of motion which enabled them to turn their heads rapidly.[277-B]
Fig. 310.
Ichthyosaurus communis, restored by Conybeare and Cuvier.
a. costal vertebræ.
Fig. 311.
Plesiosaurus dolichodeirus, restored by Rev. W. D. Conybeare.
a. cervical vertebra.
Fig. 312.
Posterior part of hind fin or paddle of Ichthyosaurus communis.
Mr. Conybeare was enabled, in 1824, after examining many skeletons nearly perfect, to give an ideal restoration of the osteology of this genus, and of that of the Plesiosaurus.[278-A] (See [figs. 310], [311.]) The latter animal had an extremely long neck and small head, with teeth like those of the crocodile, and paddles analogous to those of the Ichthyosaurus, but larger. It is supposed to have lived in shallow seas and estuaries, and to have breathed air like the Ichthyosaur, and our modern cetacea.[278-B] Some of the reptiles above mentioned were of formidable dimensions. One specimen of Ichthyosaurus platyodon, from the lias at Lyme, now in the British Museum, must have belonged to an animal more than 24 feet in length; and another of the Plesiosaurus, in the same collection, is 11 feet long. The form of the Ichthyosaurus may have fitted it to cut through the waves like the porpoise; but it is supposed that the Plesiosaurus, at least the long-necked species ([fig. 311.]), was better suited to fish in shallow creeks and bays defended from heavy breakers.
In many specimens both of Ichthyosaur and Plesiosaur the bones of the head, neck, and tail, are in their natural position, while those of the rest of the skeleton are detached and in confusion. Mr. Stutchburg has suggested that their bodies after death became inflated with gases, and, while the abdominal viscera were decomposing, the bones, though disunited, were retained within the tough dermal covering as in a bag, until the whole, becoming water-logged, sank to the bottom.[278-C] As they belonged to individuals of all ages they are supposed, by Dr. Buckland, to have experienced a violent death; and the same conclusion might also be drawn from their having escaped the attacks of their own predaceous race, or of fishes, found fossil in the same beds.
Fig 313.
Amblyrhynchus cristatus, Bell. Length varying from 3 to 4 feet. The only existing marine lizard now known.
a. Tooth, natural size and magnified.
For the last twenty years, anatomists have agreed that these extinct saurians must have inhabited the sea; and it was argued that, as there are now chelonians, like the tortoise, living in fresh water, and others, as the turtle, frequenting the ocean, so there may have been formerly some saurians proper to salt, others to fresh water. The common crocodile of the Ganges is well known to frequent equally that river and the brackish and salt water near its mouth; and crocodiles are said in like manner to be abundant both in the rivers of the Isla de Pinos (or Isle of Pines), south of Cuba, and in the open sea round the coast. More recently a saurian has been discovered of aquatic habits and exclusively marine. This creature was found in the Galapagos Islands, during the visit of H. M. S. Beagle to that archipelago, in 1835, and its habits were then observed by Mr. Darwin. The islands alluded to are situated under the equator, nearly 600 miles to the westward of the coast of South America. They are volcanic, some of them being 3000 or 4000 feet high; and one of them, Albemarle Island, 75 miles long. The climate is mild; very little rain falls; and, in the whole archipelago, there is only one rill of fresh water that reaches the coast. The soil is for the most part dry and harsh, and the vegetation scanty. The birds, reptiles, plants, and insects are, with very few exceptions, of species found no where else in the world, although all partake, in their general form, of a South American type. Of the mammalia, says Mr. Darwin, one species alone appears to be indigenous, namely, a large and peculiar kind of mouse; but the number of lizards, tortoises, and snakes is so great, that it may be called a land of reptiles. The variety, indeed, of species is small; but the individuals of each are in wonderful abundance. There is a turtle, a large tortoise (Testudo Indicus), four lizards, and about the same number of snakes, but no frogs or toads. Two of the lizards belong to the family Iguanidæ of Bell, and to a peculiar genus (Amblyrhynchus) established by that naturalist, and so named from their obtusely truncated head and short snout.[279-A] Of these lizards one is terrestrial in its habits, and burrows in the ground, swarming everywhere on the land, having a round tail, and a mouth somewhat resembling in form that of the tortoise. The other is aquatic, and has its tail flattened laterally for swimming (see [fig. 313.]). "This marine saurian," says Mr. Darwin, "is extremely common on all the islands throughout the archipelago. It lives exclusively on the rocky sea-beaches, and I never saw one even ten yards inshore. The usual length is about a yard, but there are some even 4 feet long. It is of a dirty black colour, sluggish in its movements on the land; but, when in the water, it swims with perfect ease and quickness by a serpentine movement of its body and flattened tail, the legs during this time being motionless, and closely collapsed on its sides. Their limbs and strong claws are admirably adapted for crawling over the rugged and fissured masses of lava which everywhere form the coast. In such situations, a group of six or seven of these hideous reptiles may oftentimes be seen on the black rocks, a few feet above the surf, basking in the sun with outstretched legs. Their stomachs, on being opened, were found to be largely distended with minced sea-weed, of a kind which grows at the bottom of the sea at some little distance from the coast. To obtain this, the lizards go out to sea in shoals. One of these animals was sunk in salt water, from the ship, with a heavy weight attached to it, and on being drawn up again after an hour it was quite active and unharmed. It is not yet known by the inhabitants where this animal lays its eggs; a singular fact, considering its abundance, and that the natives are well acquainted with the eggs of the terrestrial Amblyrhynchus, which is also herbivorous."[280-A]
In those deposits now forming by the sediment washed away from the wasting shores of the Galapagos Islands the remains of saurians, both of the land and sea, as well as of chelonians and fish, may be mingled with marine shells, without any bones of land quadrupeds or batrachian reptiles; yet even here we should expect the remains of marine mammalia to be imbedded in the new strata, for there are seals, besides several kinds of cetacea, on the Galapagian shores; and, in this respect, the parallel between the modern fauna, above described, and the ancient one of the lias, would not hold good.
Sudden destruction of saurians.—It has been remarked, and truly, that many of the fish and saurians, found fossil in the lias, must have met with sudden death and immediate burial; and that the destructive operation, whatever may have been its nature, was often repeated.
"Sometimes," says Dr. Buckland, "scarcely a single bone or scale has been removed from the place it occupied during life; which could not have happened had the uncovered bodies of these saurians been left, even for a few hours, exposed to putrefaction, and to the attacks of fishes, and other smaller animals at the bottom of the sea."[280-B] Not only are the skeletons of the Ichthyosaurs entire, but sometimes the contents of their stomachs still remain between their ribs, as before remarked, so that we can discover the particular species of fish on which they lived, and the form of their excrements. Not unfrequently there are layers of these coprolites, at different depths in the lias, at a distance from any entire skeletons of the marine lizards from which they were derived; "as if," says Sir H. De la Beche, "the muddy bottom of the sea received small sudden accessions of matter from time to time, covering up the coprolites and other exuviæ which had accumulated during the intervals."[281-A] It is farther stated that, at Lyme Regis, those surfaces only of the coprolites which lay uppermost at the bottom of the sea have suffered partial decay, from the action of water before they were covered and protected by the muddy sediment that has afterwards permanently enveloped them.[281-B]
Numerous specimens of the pen-and-ink fish (Sepia loligo, Lin.; Loligo vulgaris, Lam.) have also been met with in the lias at Lyme, with the ink-bags still distended, containing the ink in a dried state, chiefly composed of carbon, and but slightly impregnated with carbonate of lime. These cephalopoda, therefore, must, like the saurians, have been soon buried in sediment; for, if long exposed after death, the membrane containing the ink would have decayed.[281-C]
As we know that river fish are sometimes stifled, even in their own element, by muddy water during floods, it cannot be doubted that the periodical discharge of large bodies of turbid fresh water into the sea may be still more fatal to marine tribes. In the Principles of Geology I have shown that large quantities of mud and drowned animals have been swept down into the sea by rivers during earthquakes, as in Java, in 1699; and that undescribable multitudes of dead fishes have been seen floating on the sea after a discharge of noxious vapours during similar convulsions.[281-D] But, in the intervals between such catastrophes, strata may have accumulated slowly in the sea of the lias, some being formed chiefly of one description of shell, such as ammonites, others of gryphites.
From the above remarks the reader will infer that the lias is for the most part a marine deposit. Some members, however, of the series, especially in the lowest part of it, have an estuary character, and must have been formed within the influence of rivers. In Gloucestershire, where there is a good type of the lias of the West of England, it may be divided into an upper mass of shale with a base of marlstone, and a lower series of shales with underlying limestones and shales. We learn from the researches of the Rev. P. B. Brodie[281-E], that in the superior of these two divisions numerous remains of insects and plants have been detected in several places, mingled with marine shells; but in the inferior division similar fossils are still more plentiful. One band, rarely exceeding a foot in thickness, has been named the "insect limestone." It passes upwards into a shale containing Cypris and Estheria, and is charged with the wing-cases of several genera of coleoptera, and with some nearly entire beetles, of which the eyes are preserved. The nervures of the wings of neuropterous insects ([fig. 314.]) are beautifully perfect in this bed. Ferns, with leaves of monocotyledonous plants, and freshwater shells, such as Cyclas and Unio, accompany the insects in some places, while in others marine shells predominate, the fossils varying apparently as we examine the bed nearer or farther from the ancient land, or the source whence the fresh water was derived. There are two, or even three, bands of "insect limestone" in several sections, and they have been ascertained by Mr. Brodie to retain the same lithological and zoological characters when traced from the centre of Warwickshire to the borders of the southern part of Wales. After studying 300 specimens of these insects from the lias, Mr. Westwood declares that they comprise both wood-eating and herb-devouring beetles of the Linnean genera Elater, Carabus, &c., besides grasshoppers (Gryllus), and detached wings of dragon-flies and may-flies, or insects referable to the Linnean genera Libellula, Ephemera, Hemerobius, and Panorpa, in all belonging to no less than twenty-four families. The size of the species is usually small, and such as taken alone would imply a temperate climate; but many of the associated organic remains of other classes must lead to a different conclusion.
Fig. 314.
Wing of a neuropterous insect, from the Lower Lias, Gloucestershire. (Rev. B. Brodie.)
Fossil plants.—Among the vegetable remains of the Lias, several species of Zamia have been found at Lyme Regis, and the remains of coniferous plants at Whitby. Fragments of wood are common, and often converted into limestone. That some of this wood, though now petrified, was soft when it first lay at the bottom of the sea, is shown by a specimen now in the museum of the Geological Society (see [fig. 315.]), which has the form of an ammonite indented on its surface.
Fig. 315.
M. Ad. Brongniart enumerates forty-seven liassic acrogens, most of them ferns; and fifty gymnogens, of which thirty-nine are cycads, and eleven conifers. Among the cycads the predominance of Zamites and Nilsonia, and among the ferns the numerous genera with leaves having reticulated veins (as in [fig. 296.] [p. 272.]), are mentioned as botanical characteristics of this era.[282-A]
Origin of the Oolite and Lias.—If we now endeavour to restore, in imagination, the ancient condition of the European area at the period of the Oolite and Lias, we must conceive a sea in which the growth of coral reefs and shelly limestones, after proceeding without interruption for ages, was liable to be stopped suddenly by the deposition of clayey sediment. Then, again, the argillaceous matter, devoid of corals, was deposited for ages, and attained a thickness of hundreds of feet, until another period arrived when the same space was again occupied by calcareous sand, or solid rocks of shell and coral, to be again succeeded by the recurrence of another period of argillaceous deposition. Mr. Conybeare has remarked of the entire group of Oolite and Lias, that it consists of repeated alternations of clay, sandstone, and limestone, following each other in the same order. Thus the clays of the lias are followed by the sands of the inferior oolite, and these again by shelly and coralline limestone (Bath oolite, &c.); so, in the middle oolite, the Oxford clay is followed by calcareous grit and "coral rag;" lastly, in the upper oolite, the Kimmeridge clay is followed by the Portland sand and limestone.[283-A] The clay beds, however, as Sir H. De la Beche remarks, can be followed over larger areas than the sands or sandstones.[283-B] It should also be remembered that while the oolitic system becomes arenaceous, and resembles a coal-field in Yorkshire, it assumes, in the Alps, an almost purely calcareous form, the sands and clays being omitted; and even in the intervening tracts, it is more complicated and variable than appears in ordinary descriptions. Nevertheless, some of the clays and intervening limestones do, in reality, retain a pretty uniform character, for distances of from 400 to 600 miles from east to west and north to south.
According to M. Thirria, the entire oolitic group in the department of the Haute-Saône, in France, may be equal in thickness to that of England; but the importance of the argillaceous divisions is in the inverse ratio to that which they exhibit in England, where they are about equal to twice the thickness of the limestones, whereas, in the part of France alluded to, they reach only about a third of that thickness.[283-C] In the Jura the clays are still thinner; and in the Alps they thin out and almost vanish.
In order to account for such a succession of events, we may imagine, first, the bed of the ocean to be the receptacle for ages of fine argillaceous sediment, brought by oceanic currents, which may have communicated with rivers, or with part of the sea near a wasting coast. This mud ceases, at length, to be conveyed to the same region, either because the land which had previously suffered denudation is depressed and submerged, or because the current is deflected in another direction by the altered shape of the bed of the ocean and neighbouring dry land. By such changes the water becomes once more clear and fit for the growth of stony zoophytes. Calcareous sand is then formed from comminuted shell and coral, or, in some cases, arenaceous matter replaces the clay; because it commonly happens that the finer sediment, being first drifted farthest from coasts, is subsequently overspread by coarse sand, after the sea has grown shallower, or when the land, increasing in extent, whether by upheaval or by sediment filling up parts of the sea, has approached nearer to the spots first occupied by fine mud.
In order to account for another great formation, like the Oxford clay, again covering one of coral limestone, we must suppose a sinking down like that which is now taking place in some existing regions of coral between Australia and South America. The occurrence of subsidences, on so vast a scale, may have caused the bed of the ocean and the adjoining land, throughout great parts of the European area, to assume a shape favourable to the deposition of another set of clayey strata; and this change may have been succeeded by a series of events analogous to that already explained, and these again by a third series in similar order. Both the ascending and descending movements may have been extremely slow, like those now going on in the Pacific; and the growth of every stratum of coral, a few feet of thickness, may have required centuries for its completion, during which certain species of organic beings disappeared from the earth, and others were introduced in their place; so that, in each set of strata, from the Upper Oolite to the Lias, some peculiar and characteristic fossils were embedded.
Oolite and Lias of the United States.
Fig. 316.
Section showing the geological position of the James River, or East Virginian Coal-field.
- A. Granite, gneiss, &c.
- B. Coal-measures.
- C. Tertiary strata.
- D. Drift or ancient alluvium.
There are large tracts on the globe, as in Russia and the United States, where all the members of the oolitic series are unrepresented. In the state of Virginia, however, at the distance of about 13 miles eastward of Richmond, the capital of that State, there is a regular coal-field occurring in a depression of the granite rocks (see section, [fig. 316.]), which Professor W. B. Rogers first correctly referred to the age of the lower part of the Jurassic group. This opinion I was enabled to confirm after collecting a large number of fossil plants, fish, and shells, and examining the coal-field throughout its whole area. It extends 26 miles from north to south, and from 4 to 12, from east to west. The plants consist chiefly of zamites, calamites, and equisetums, and these last are very commonly met with in a vertical position more or less compressed perpendicularly. It is clear that they grew in the places where they now lie buried in strata of hardened sand and mud. I found them maintaining their erect attitude, at points many miles distant from others, in beds both above and between the seams of coal. In order to explain this fact we must suppose such shales and sandstones to have been gradually accumulated during the slow and repeated subsidence of the whole region.
It is worthy of remark that the Equisetum columnare of these Virginian rocks appears to be undistinguishable from the species found in the oolitic sandstones near Whitby in Yorkshire, where it also is met with in an upright position. One of the American ferns, Pecopteris Whitbyensis, is also a species common to the Yorkshire oolites.[285-A] These Virginian coal-measures are composed of grits, sandstones, and shales, exactly resembling those of older or primary date in America and Europe, and they rival or even surpass the latter in the richness and thickness of the seams. One of these, the main seam, is in some places from 30 to 40 feet thick, composed of pure bituminous coal. On descending a shaft 800 feet deep, in the Blackheath mines in Chesterfield county, I found myself in a chamber more than 40 feet high, caused by the removal of this coal. Timber props of great strength supported the roof, but they were seen to bend under the incumbent weight. The coal is like the finest kinds shipped at Newcastle, and when analysed yields the same proportions of carbon and hydrogen, a fact worthy of notice when we consider that this fuel has been derived from an assemblage of plants very distinct specifically, and in part generically, from those which have contributed to the formation of the ancient or paleozoic coal.
The fossil fish of these Richmond strata belong to the liassic genus Tetragonolepis, and to a new genus which I have called Dictyopyge. Shells are very rare, as usually in all coal-bearing deposits, but a species of Posidonomya is in such profusion in some shaley beds as to divide them like the plates of mica in micaceous shales (see [fig. 317.]).
Fig. 317.
- a. Posidonomya.
- b. young of same.
Oolitic coal-shale, Richmond, Virginia.
In India, especially in Cutch, a formation occurs clearly referable to the oolitic and liassic type, as shown by the shells, corals, and plants; and there also coal has been procured from one member of the group.
CHAPTER XXII.
TRIAS OR NEW RED SANDSTONE GROUP.
Distinction between New and Old Red Sandstone — Between Upper and Lower New Red — The Trias and its three divisions — Most largely developed in Germany — Keuper and its fossils — Muschelkalk — Fossil plants of Bunter — Triassic group in England — Bone-bed of Axmouth and Aust — Red Sandstone of Warwickshire and Cheshire — Footsteps of Chirotherium in England and Germany — Osteology of the Labyrinthodon — Identification of this Batrachian with the Chirotherium — Origin of Red Sandstone and Rock-salt — Hypothesis of saline volcanic exhalations — Theory of the precipitation of salt from inland lakes or lagoons — Saltness of the Red Sea — New Red Sandstone in the United States — Fossil footprints of birds and reptiles in the Valley of the Connecticut — Antiquity of the Red Sandstone containing them.
Between the Lias and the Coal, or Carboniferous group, there is interposed, in the midland and western counties of England, a great series of red loams, shales, and sandstones, to which the name of the New Red Sandstone formation was first given, to distinguish it from other shales and sandstones called the "Old Red" (c, [fig. 318.]), often identical in mineral character, which lie immediately beneath the coal (b).
Fig. 318.
- a. New red sandstone.
- b. Coal.
- c. Old red.
The name of "Red Marl" has been incorrectly applied to the red clays of this formation, as before explained ([p. 13.]), for they are remarkably free from calcareous matter. The absence, indeed, of carbonate of lime, as well as the scarcity of organic remains, together with the bright red colour of most of the rocks of this group, causes a strong contrast between it and the Jurassic formations before described.
Before the distinctness of the fossil remains characterizing the upper and lower part of the English New Red had been clearly recognized, it was found convenient to have a common name for all the strata intermediate in position between the Lias and Coal; and the term "Poikilitic" was proposed by Messrs. Conybeare and Buckland[286-A], from ποικιλος, poikilos, variegated, some of the most characteristic strata of this group having been called variegated by Werner, from their exhibiting spots and streaks of light-blue, green, and buff colour, in a red base.
A single term, thus comprehending both Upper and Lower New Red, or the Triassic and Permian groups of modern classifications, may still be useful in describing districts where we have to speak of masses of red sandstone and shale, referable, in part, to both these eras, but which, in the absence of fossils, it is impossible to divide.
Trias or Upper New Red Sandstone Group.
The accompanying table will explain the subdivisions generally adopted for the uppermost of the two systems above alluded to, and the names given to them in England and on the Continent.
| Synonyms. | |||||||||||||
| German. | French. | ||||||||||||
| Trias or Upper New Red Sandstone | a. Saliferous and gypseous shales and sandstone | Keuper | Marnes irisées. | ||||||||||
| b. (wanting in England) | Muschelkalk | Muschelkalk, ou calcaire coquillier. | |||||||||||
| c. Sandstone and quartzose conglomerate | Bunter-sandstein | Grès bigarré. | |||||||||||
I shall first describe this group as it occurs in South Western and North Western Germany, for it is far more fully developed there than in England or France. It has been called the Trias by German writers, or the Triple Group, because it is separable into three distinct formations, called the "Keuper," the "Muschelkalk," and the "Bunter-sandstein."
Fig. 319.
Equisetites columnaris. (Syn. Equisetum columnare.) Fragment of stem, and small portion of same magnified. Keuper.
The Keuper, the first or newest of these, is 1000 feet thick in Würtemberg, and is divided by Alberti into sandstone, gypsum, and carbonaceous slate-clay.[287-A] Remains of Reptiles, called Nothosaurus and Phytosaurus, have been found in it with Labyrinthodon; the detached teeth, also, of placoid fish and of rays, and of the genera Saurichthys and Gyrolepis ([figs. 325], [326], [p. 289.]). The plants of the Keuper are generically very analogous to those of the lias and oolite, consisting of ferns, equisetaceous plants, cycads, and conifers, with a few doubtful monocotyledons. A few species, such as Equisetites columnaris, are common to this group, and the oolite.
The Muschelkalk consists chiefly of a compact, greyish limestone, but includes beds of dolomite in many places, together with gypsum and rock-salt. This limestone, a rock wholly unrepresented in England, abounds in fossil shells, as the name implies. Among the cephalopoda there are no belemnites, and no ammonites with foliated sutures, as in the incumbent lias and oolite, but a genus allied to the Ammonite, called Ceratite by De Haan, in which the descending lobes (see a, b, c, [fig. 320.]) terminate in a few small denticulations pointing inwards. Among the bivalve shells, the Posidonia minuta, Goldf. (Posidonomya minuta, Bronn) (see [fig. 321.]), is abundant, ranging through the Keuper, Muschelkalk, and Bunter-sandstein; and Avicula socialis, [fig. 322.], having a similar range, is very characteristic of the Muschelkalk in Germany, France, and Poland.
Fig. 320.
Ceratites nodosus. Muschelkalk.
- a. Side view.
- b. Front view.
- c. Partially denticulated outline of the septa dividing the chambers.
Fig. 321.
Posidonia minuta, Goldf. (Posidonomya minuta, Bronn.)
Fig. 322.
- a. Avicula socialis.
- b. Side view of same.
Characteristic of the Muschelkalk.
The abundance of the heads and stems of lily encrinites, Encrinus liliiformis (or Encrinites moniliformis), show the slow manner in which some beds of this limestone have been formed in clear sea-water.
Fig. 323.
- a. Voltzia heterophylla. (Syn. Voltzia brevifolia.)
- b. portion of same magnified to show fructification. Sulzbad.
Bunter-sandstein.
The Bunter-sandstein consists of various coloured sandstones, dolomites, and red-clays, with some beds, especially in the Hartz, of calcareous pisolite or roe-stone, the whole sometimes attaining a thickness of more than 1000 feet. The sandstone of the Vosges, according to Von Meyer, is proved, by the presence of Labyrinthodon, to belong to this lowest member of the Triassic group. At Sulzbad (or Soultz-les-bains), near Strasburg, on the flanks of the Vosges, many plants have been obtained from the "bunter," especially conifers of the extinct genus Voltzia, peculiar to this period, in which even the fructification has been preserved. (See [fig. 323.])
Out of thirty species of ferns, cycads, conifers, and other plants, enumerated by M. Ad. Brongniart, in 1849, as coming from the "grès bigarré," or Bunter, not one is common to the Keuper.[288-A]
The footprints of a reptile (Labyrinthodon) have been observed on the clays of this member of the Trias, near Hildburghausen, in Saxony, impressed on the upper surface of the beds, and standing out as casts in relief from the under sides of incumbent slabs of sandstone. To these I shall again allude in the sequel; they attest, as well as the accompanying ripple-marks, and the cracks which traverse the clays, the gradual formation in shallow water, and sometimes between high and low water, of the beds of this formation.
Triassic group in England.
In England the Lias is succeeded by conformable strata of red and green marl, or clay. There intervenes, however, both in the neighbourhood of Axmouth, in Devonshire, and in the cliffs of Westbury and Aust, in Gloucestershire, on the banks of the Severn, a dark-coloured stratum, well known by the name of the "bone-bed." It abounds in the remains of saurians and fish, and was formerly classed as the lowest bed of the Lias; but Sir P. Egerton has shown that it should be referred to the Upper New Red Sandstone, for it contains an assemblage of fossil fish which are either peculiar to this stratum, or belong to species well known in the Muschelkalk of Germany. These fish belong to the genera Acrodus, Hybodus, Gyrolepis, and Saurichthys.
Among those common to the English bone-bed and the Muschelkalk of Germany are Hybodus plicatilis ([fig. 324.]), Saurichthys apicalis ([fig. 325.]), Gyrolepis tenuistriatus ([fig. 326.]), and G. Albertii. Remains of saurians have also been found in the bone-bed, and plates of an Encrinus.
Fig. 324.
Hybodus plicatilis. Teeth. Bone-bed, Aust and Axmouth.
Fig. 325.
Saurichthys apicalis. Tooth; nat. size, and magnified. Axmouth.
Fig. 326.
Gyrolepis tenuistriatus. Scale; nat. size, and magnified. Axmouth.
The strata of red and green marl, which follow the bone-bed in the descending order at Axmouth and Aust, are destitute of organic remains; as is the case, for the most part, in the corresponding beds in almost every part of England. But fossils have lately been found at a few localities in sandstones of this formation, in Worcestershire and Warwickshire, and among them the bivalve shell called Posidonia minuta, Goldf., before mentioned ([fig. 321.] [p. 288.]).
The upper member of the English "New Red" containing this shell, in those parts of England, is, according to Messrs. Murchison and Strickland, 600 feet thick, and consists chiefly of red marl or slate, with a band of sandstone. Spines of Hybodus, called ichthyodorulites, teeth of fishes, and footprints of reptiles, with remains of a saurian called Rhyncosaurus, were observed by the same geologists in these strata.[290-A]
In Cheshire and Lancashire the gypseous and saliferous red shales and loams of the Trias are between 1000 and 1500 feet thick. In some places lenticular masses of rock-salt are interpolated between the argillaceous beds, the origin of which will be spoken of in the sequel.
Fig. 327.
Single footstep of Chirotherium. Bunter Sandstein, Saxony; one eighth of nat. size.
Fig. 328.
Line of footsteps on slab of sandstone. Hildburghausen, in Saxony.
The lower division or English representative of the "Bunter" attains a thickness of 600 feet in the counties last mentioned. Besides red and green shales and red sandstones, it comprises much soft white quartzose sandstone, in which the trunks of silicified trees have been met with at Allesley Hill, near Coventry. Several of them were a foot and a half in diameter, and some yards in length, decidedly of coniferous wood, and showing rings of annual growth.[290-B] Impressions, also, of the footsteps of animals have been detected in Lancashire and Cheshire in this formation. Some of the most remarkable occur a few miles from Liverpool, in the whitish quartzose sandstone of Storton Hill, on the west side of the Mersey. They bear a close resemblance to tracks first observed in a member of the Upper New Red Sandstone, at the village of Hesseberg, near Hildburghausen, in Saxony, to which I have already alluded. For many years these footprints have been referred to a large unknown quadruped, provisionally named Chirotherium by Professor Kaup, because the marks both of the fore and hind feet resembled impressions made by a human hand. (See [fig. 327.]) The footmarks at Hesseberg are partly concave and partly in relief; the former, or the depressions, are seen upon the upper surface of the sandstone slabs, but those in relief are only upon the lower surfaces, being in fact natural casts, formed in the subjacent footprints as in moulds. The larger impressions, which seem to be those of the hind foot, are generally 8 inches in length, and 5 in width, and one was 12 inches long. Near each large footstep, and at a regular distance (about an inch and a half), before it, a smaller print of a fore foot, 4 inches long and 3 inches wide, occurs. The footsteps follow each other in pairs, each pair in the same line, at intervals of 14 inches from pair to pair. The large as well as the small steps show the great toes alternately on the right and left side; each step makes the print of five toes, the first or great toe being bent inwards like a thumb. Though the fore and hind foot differ so much in size, they are nearly similar in form.
The similar footmarks afterwards observed in a rock of corresponding age at Storton Hill, were imprinted on five thin beds of clay, superimposed one upon the other in the same quarry, and separated by beds of sandstone. On the lower surface of the sandstone strata, the solid casts of each impression are salient, in high relief, and afford models of the feet, toes, and claws of the animals which trod on the clay.
As neither in Germany nor in England any bones or teeth had been met with in the same identical strata as the footsteps, anatomists indulged, for several years, in various conjectures respecting the mysterious animals from which they might have been derived. Professor Kaup suggested that the unknown quadruped might have been allied to the Marsupialia; for in the kangaroo the first toe of the fore foot is in a similar manner set obliquely to the others, like a thumb, and the disproportion between the fore and hind feet is also very great. But M. Link conceived that some of the four species of animals of which the tracks had been found in Saxony might have been gigantic Batrachians; and Dr. Buckland designated some of the footsteps as those of a small web-footed animal, probably crocodilean.
In the course of these discussions several naturalists of Liverpool, in their report on the Storton quarries, declared their opinion that each of the thin seams of clay in which the sandstone casts were moulded had formed successively a surface above water, over which the Chirotherium and other animals walked, leaving impressions of their footsteps, and that each layer had been afterwards submerged by a sinking down of the surface, so that a new beach was formed at low water above the former, on which other tracks were then made. The repeated occurrence of ripple-marks at various heights and depths in the red sandstone of Cheshire had been explained in the same manner. It was also remarked that impressions of such depth and clearness could only have been made by animals walking on the land, as their weight would have been insufficient to make them sink so deeply in yielding clay under water. They must therefore have been air-breathers.
When the inquiry had been brought to this point, the reptilian remains discovered in the Trias, both of Germany and England, were carefully examined by Mr. Owen. He found, after a microscopic investigation of the teeth from the German sandstone called Keuper, and from the sandstone of Warwick and Leamington, that neither of them could be referred to true saurians, although they had been named Mastodonsaurus and Phytosaurus by Jäger ([fig. 329.]). It appeared that they were of the Batrachian order, and attested the former existence of frogs of gigantic dimensions in comparison with any now living. Both the Continental and English fossil teeth exhibited a most complicated texture, differing from that previously observed in any reptile, whether recent or extinct, but most nearly analogous to the Ichthyosaurus. A section of one of these teeth exhibits a series of irregular folds, resembling the labyrinthic windings of the surface of the brain; and from this character Mr. Owen has proposed the name Labyrinthodon for the new genus. By his permission, the annexed representation ([fig. 330.]) of part of one is given from his "Odontography," plate 64. A. The entire length of this tooth is supposed to have been about three inches and a half, and the breadth at the base one inch and a half.
Fig. 329.
Tooth of Labyrinthodon; nat. size. Warwick sandstone.
Fig. 330.
Transverse section of tooth of Labyrinthodon Jaegeri, Owen (Mastodonsaurus Jaegeri, Meyer); nat. size, and a segment magnified.
a. Pulp cavity, from which the processes of pulp and dentine radiate.
When Mr. Owen had satisfied himself, from an inspection of the cranium, jaws, and teeth, that a gigantic Batrachian had existed at the period of the Trias or Upper New Red Sandstone, he soon found, from the examination of various bones derived from the same formation, that he could define three species of Labyrinthodon, and that in this genus the hind extremities were much larger than the anterior ones. This circumstance, coupled with the fact of the Labyrinthodon having existed at the period when the Chirotherian footsteps were made, was the first step towards the identification of those tracks with the newly discovered Batrachian. It was at the same time observed that the footmarks of Chirotherium were more like those of toads than of any other living animal; and, lastly, that the size of the three species of Labyrinthodon corresponded with the size of three different kinds of footprints which had already been supposed to belong to three distinct Chirotheria. It was moreover inferred, with confidence, that the Labyrinthodon was an air-breathing reptile from the structure of the nasal cavity, in which the posterior outlets were at the back part of the mouth, instead of being directly under the anterior or external nostrils. It must have respired air after the manner of saurians, and may therefore have imprinted on the shore those footsteps, which, as we have seen, could not have originated from an animal walking under water.
It is true that the structure of the foot is still wanting, and that a more connected and complete skeleton is required for demonstration; but the circumstantial evidence above stated is strong enough to produce the conviction that the Chirotherium and Labyrinthodon are one and the same.
In order to show the manner in which one of these formidable Batrachians may have impressed the mark of its feet upon the shore, Mr. Owen has attempted a restoration, of which a reduced copy is annexed.
Fig. 331.
Labyrinthodon pachygnathus, Owen.
The only bones of this species at present known are those of the head, the pelvis, and part of the scapula, which are shown by stronger lines in the above figure. There is reason for believing that the head was not smooth externally, but protected by bony scutella.
Origin of Red Sandstone and Rock Salt.
We have seen that, in various parts of the world, red and mottled clays, and sandstones, of several distinct geological epochs, are found associated with salt, gypsum, magnesian limestone, or with one or all of these substances. There is, therefore, in all likelihood, a general cause for such a coincidence. Nevertheless, we must not forget that there are dense masses of red and variegated sandstones and clays, thousands of feet in thickness, and of vast horizontal extent, wholly devoid of saliferous or gypseous matter. There are also deposits of gypsum and of muriate of soda, as in the blue clay formation of Sicily, without any accompanying red sandstone or red clay.
To account for deposits of red mud and red sand, we have simply to suppose the disintegration of ordinary crystalline or metamorphic schists. Thus, in the eastern Grampians of Scotland, as, for example, in the north of Forfarshire, the mountains of gneiss, mica-schist, and clay-slate, are overspread with alluvium, derived from the disintegration of those rocks; and the mass of detritus is stained by oxide of iron, of precisely the same colour as the Old Red Sandstone of the adjoining Lowlands. Now this alluvium merely requires to be swept down to the sea, or into a lake, to form strata of red sandstone and red marl, precisely like the mass of the "Old Red" or New Red systems of England, or those tertiary deposits of Auvergne (see [p. 182.]), before described, which are in lithological characters quite undistinguishable. The pebbles of gneiss in the Eocene red sandstone of Auvergne point clearly to the rocks from which it has been derived. The red colouring matter may, as in the Grampians, have been furnished by the decomposition of hornblende, or mica, which contain oxide of iron in large quantity.
It is a general fact, and one not yet accounted for, that scarcely any fossil remains are preserved in stratified rocks in which this oxide of iron abounds; and when we find fossils in the New or Old Red Sandstone in England, it is in the grey, and usually calcareous beds, that they occur.
The gypsum and saline matter, occasionally interstratified with such red clays and sandstones of various ages, primary, secondary, and tertiary, have been thought by some geologists to be of volcanic origin. Submarine and subaerial exhalations often occur in regions of earthquakes and volcanos far from points of actual eruption, and charged with sulphur, sulphuric salts, and with common salt or muriate of soda. In a word, they are vents by which all the products which issue in a state of sublimation from the craters of active volcanos, obtain a passage from the interior of the earth to the surface. That such gaseous emanations and mineral springs, impregnated with the ingredients before enumerated, and often intensely heated, continue to flow out unaltered in composition and temperature for ages, is well known. But before we can decide on their real instrumentality in producing in the course of ages beds of gypsum, salt, and dolomite, we require to know what are the chemical changes actually in progress in seas where this volcanic agency is at work.
Yet the origin of rock-salt is a problem of so much interest in theoretical geology as to demand a full discussion of another hypothesis advanced on the subject; namely, that which attributes the precipitation of the salt to evaporation, whether of inland lakes or of lagoons communicating with the ocean.
At Northwich, in Cheshire, two beds of salt, in great part unmixed with earthy matter, attain the extraordinary thickness of 90 and even 100 feet. The upper surface of the highest bed is very uneven, forming cones and irregular figures. Between the two masses there intervenes a bed of indurated clay, traversed with veins of salt. The highest bed thins off towards the south-west, losing 15 feet in thickness in the course of a mile.[295-A] The horizontal extent of these particular masses in Cheshire and Lancashire is not exactly known; but the area, containing saliferous clays and sandstones, is supposed to exceed 150 miles in diameter, while the total thickness of the trias in the same region is estimated by Mr. Ormerod at more than 1700 feet. Ripple-marked sandstones, and the footprints of animals, before described, are observed at so many levels that we may safely assume the whole area to have undergone a slow and gradual depression during the formation of the Red Sandstone. The evidence of such a movement, wholly independent of the presence of salt itself, is very important in reference to the theory under consideration.
In the "Principles of Geology" (chap. 28.), I published a map, furnished to me by the late Sir Alexander Burnes, of that singular flat region called the Runn of Cutch, near the delta of the Indus, which is 7000 square miles in area, or equal in extent to about one-fourth of Ireland. It is neither land nor sea, but is dry during a part of every year, and again covered by salt water during the monsoons. Some parts of it are liable, after long intervals, to be overflowed by river-water. Its surface supports no grass, but is encrusted over, here and there, by a layer of salt, about an inch in depth, caused by the evaporation of sea-water. Certain tracts have been converted into dry land by upheaval during earthquakes since the commencement of the present century, and, in other directions, the boundaries of the Runn have been enlarged by subsidence. That successive layers of salt might be thrown down, one upon the other, over thousands of square miles, in such a region, is undeniable. The supply of brine from the ocean would be as inexhaustible as the supply of heat from the sun to cause evaporation. The only assumption required to enable us to explain a great thickness of salt in such as area is, the continuance, for an indefinite period, of a subsiding movement, the country preserving all the time a general approach to horizontality. Pure salt could only be formed in the central parts of basins, where no sand could be drifted by the wind, or sediment be brought by currents. Should the sinking of the ground be accelerated, so as to let in the sea freely, and deepen the water, a temporary suspension of the precipitation of salt would be the only result. On the other hand, if the area should dry up, ripple-marked sands and the footprints of animals might be formed, where salt had previously accumulated. According to this view the thickness of the salt, as well as of the accompanying beds of mud and sand, becomes a mere question of time, or requires simply a repetition of similar operations.
Mr. Hugh Miller, in an able discussion of this question, refers to Dr. Frederick Parrot's account, in his journey to Ararat (1836), of the salt lakes of Asia. In several of these lakes west of the river Manech, "the water, during the hottest season of the year, is covered on its surface with a crust of salt nearly an inch thick, which is collected with shovels into boats. The crystallization of the salt is effected by rapid evaporation from the sun's heat and the supersaturation of the water with muriate of soda; the lake being so shallow that the little boats trail on the bottom and leave a furrow behind them, so that the lake must be regarded as a wide pan of enormous superficial extent, in which the brine can easily reach the degree of concentration required."
Another traveller, Major Harris, in his "Highlands of Ethiopia," describes a salt lake, called the Bahr Assal, near the Abyssinian frontier, which once formed the prolongation of the Gulf of Tadjara, but was afterwards cut off from the gulf by a broad bar of lava or of land upraised by an earthquake. "Fed by no rivers, and exposed in a burning climate to the unmitigated rays of the sun, it has shrunk into an elliptical basin, seven miles in its transverse axis, half filled with smooth water of the deepest cærulian hue, and half with a solid sheet of glittering snow-white salt, the offspring of evaporation." "If," says Mr. Hugh Miller, "we suppose, instead of a barrier of lava, that sand-bars were raised by the surf on a flat arenaceous coast during a slow and equable sinking of the surface, the waters of the outer gulf might occasionally topple over the bar, and supply fresh brine when the first stock had been exhausted by evaporation.[296-A]
We may add that the permanent impregnation of the waters of a large shallow basin with salt, beyond the proportion which is usual in the ocean, would cause it to be uninhabitable by mollusca or fish, as is the case in the Dead Sea, and the muriate of soda might remain in excess, even though it were occasionally replenished by irruptions of the sea. Should the saline deposit be eventually submerged, it might, as we have seen from the example of the Runn of Cutch, be covered by a freshwater formation containing fluviatile organic remains; and in this way the apparent anomaly of beds of sea-salt and clays devoid of marine fossils, alternating with others of freshwater origin, may be explained.
Dr. G. Buist, in a recent communication to the Bombay Geographical Society (vol. ix.), has asked how it happens that the Red Sea should not exceed the open ocean in saltness, by more than 1/10th per cent. The Red Sea receives no supply of water from any quarter save through the Straits of Babelmandeb; and there is not a single river or rivulet flowing into it from a circuit of 4000 miles of shore. The countries around are all excessively sterile and arid, and composed, for the most part, of burning deserts. From the ascertained evaporation in the sea itself, Dr. Buist computes that nearly 8 feet of pure water must be carried off from the whole of its surface annually, this being probably equivalent to 1/100th part of its whole volume. The Red Sea, therefore, ought to have 1 per cent. added annually to its saline contents; and as these constitute 4 per cent. by weight, or 21/2 per cent. in volume of its entire mass, it ought, assuming the average depth to be 800 feet, which is supposed to be far beyond the truth, to have been converted into one solid salt formation in less than 3000 years.[297-A] Does the Red Sea receive a supply of water from the ocean, through the narrow Straits of Babelmandeb, sufficient to balance the loss by evaporation? And is there an undercurrent of heavier saline water annually flowing outwards? If not, in what manner is the excess of salt disposed of? An investigation of this subject by our nautical surveyors may perhaps aid the geologist in framing a true theory of the origin of rock-salt.
On the New Red Sandstone of the valley of the Connecticut River in the United States.
In a depression of the granitic or hypogene rocks in the States of Massachusetts and Connecticut, strata of red sandstone, shale, and conglomerate are found occupying an area more than 150 miles in length from north to south, and about 5 to 10 miles in breadth, the beds dipping to the eastward at angles varying from 5 to 50 degrees. The extreme inclination of 50 degrees is rare, and only observed in the neighbourhood of masses of trap which have been intruded into the red sandstone while it was forming, or before the newer parts of the deposit had been completed. Having examined this series of rocks in many places, I feel satisfied that they were formed in shallow water, and for the most part near the shore, and that some of the beds were from time to time raised above the level of the water, and laid dry, while a newer series, composed of similar sediment, was forming. The red flags of thin-bedded sandstone are often ripple-marked, and exhibit on their under sides casts of cracks formed in the underlying red and green shales. These last must have shrunk by drying before the sand was spread over them. On some shales of the finest texture impressions of rain drops may be seen, and casts of them in the incumbent argillaceous sandstones. Having observed similar markings produced by showers, of which the precise date was known, on the recent red mud of the Bay of Fundy, and casts in relief of the same, on layers of dried mud thrown down by subsequent tides, I feel no doubt in regard to the origin of some of the ancient Connecticut impressions. I have also seen on the mud-flats of the Bay of Fundy the footmarks of birds (Tringa minuta), which daily run along the borders of that estuary at low water, and which I have described in my Travels.[297-B] Similar layers of red mud, now hardened and compressed into shale, are laid open on the banks of the Connecticut, and retain faithfully the impressions and casts of the feet of numerous birds and reptiles which walked over them at the time when they were deposited, probably in the Triassic Period.
According to Professor Hitchcock, the footprints of no less than thirty-two species of bipeds, and twelve of quadrupeds, have been already detected in these rocks. Thirty of these are believed to be those of birds, four of lizards, two of chelonians, and six of batrachians. The tracks have been found in more than twenty places, scattered through an extent of nearly 80 miles from north to south, and they are repeated through a succession of beds attaining at some points a thickness of more than 1000 feet, which may have been thousands of years in forming.[298-A]
Fig. 332.
Footprints of a bird. Turner's Falls, Valley of the Connecticut. (See Dr. Deane, Mem. of Amer. Acad. vol. iv. 1849.)
As considerable scepticism is naturally entertained in regard to the nature of the evidence derived from footprints, it may be well to enumerate some facts respecting them on which the faith of the geologist may rest. When I visited the United States in 1842, more than 2000 impressions had been observed by Professor Hitchcock, in the district alluded to, and all of them were indented on the upper surface of the layers, while the corresponding casts, standing out in relief, were always on the lower surfaces or planes of the strata. If we follow a single line of marks we find them uniform in size, and nearly uniform in distance from each other, the toes of two successive footprints, turning alternately right and left (see [fig. 332.]). Such single lines indicate a biped; and there is generally such a deviation from a straight line, in any three successive prints, as we remark in the tracks left by birds. There is also a striking relation between the distance separating two footprints in one series and the size of the impressions; in other words, an obvious proportion between the length of the stride and the dimension of the creature which walked over the mud. If the marks are small, they may be half an inch asunder; if gigantic, as, for example, where the toes are 20 inches long, they are occasionally 4 feet and a half apart. The bipedal impressions are for the most part trifid, and show the same number of joints as exist in the feet of living tridactylous birds. Now such birds have three phalangeal bones for the inner toe, four for the middle and five for the outer one (see [fig. 332.]); but the impression of the terminal joint is that of the nail only. The fossil footprints exhibit regularly, where the joints are seen, the same number; and we see in each continuous line of tracks the three-jointed and five-jointed toes placed alternately outwards, first on the one side and then on the other. It is not often that the matrix has been fine enough to retain impressions of the integument or skin of the foot; but in one fine specimen found at Turner's Falls on the Connecticut, by Dr. Deane, these markings are well preserved, and have been recognized by Mr. Owen as resembling the skin of the ostrich, and not that of reptiles.[298-B] Much care is required to ascertain the precise layer of a laminated rock on which an animal has walked, because the impression usually extends downwards through several laminæ; and if the upper layer originally trodden upon is wanting, one or more joints, or even in some cases an entire toe, which sank less deep into the soft ground, may disappear, and yet the remainder of the footprint be well defined.
The size of several of the fossil impressions of the Connecticut red sandstone so far exceeds that of any living ostrich, that naturalists at first were extremely adverse to the opinion of their having been made by birds, until the bones and almost entire skeleton of the Dinornis and of other feathered giants of New Zealand were discovered. Their dimensions have at least destroyed the force of this particular objection. The magnitude of the impressions of the feet of a heavy animal, which has walked on soft mud, increases for some distance below the surface originally trodden upon. In order, therefore, to guard against exaggeration, the casts rather than the mould are relied on. These casts show that some of the fossil birds had feet four times as large as the ostrich, but not perhaps larger than the Dinornis.
Some of the quadrupedal footprints which accompany those of birds are analogous to European Chirotheria, and with a similar disproportion between the hind and fore feet. Others resemble that remarkable reptile, the Rhyncosaurus of the English Trias, a creature having some relation in its osteology both to chelonians and birds. Other imprints, again, are like those of turtles.
Among the supposed bipedal tracks, a single distinct example only has been observed of feet in which there are four toes directed forwards. In this case a series of four footprints is seen, each 22 inches long and 12 wide, with joints much resembling those in the toes of birds. Professor Agassiz has suggested that it might have belonged to a gigantic bipedal batrachian; but the evidence on this subject is too defective to warrant such a bold conjecture, and if we were to give the reins to our imagination, we might as well conceive a bird having four toes projecting forwards as a huge two-legged frog. Nor should we forget that some quadrupeds place the hind foot so precisely on the spot just quitted by the fore foot, as to produce a single line of imprints like a biped.
No bones have as yet been met with, whether of reptiles or birds, in the rocks of the Connecticut, but there are numerous coprolites; and an ingenious argument has been derived by Mr. Dana, from the analysis of these bodies, and the proportion they contain of uric acid, phosphate of lime, carbonate of lime, and organic matter, to show that, like guano, they are the droppings of birds, rather than of reptiles.[299-A]
Mr. Darwin, in his "Journal of a Voyage in the Beagle," informs us that the "South American ostriches, although they live on vegetable matter, such as roots and grass, are repeatedly seen at Bahia Blanca (lat. 39° S.), on the coast of Buenos Ayres, coming down at low water to the extensive mud-banks which are then dry, for the sake, as the Gauchos say, of feeding on small fish." They readily take to the water, and have been seen at the bay of San Blas, and at Port Valdez, in Patagonia, swimming from island to island.[300-A] It is therefore evident, that in our times a South American mud-bank might be trodden simultaneously by ostriches, alligators, tortoises, and frogs; and the impressions left, in the nineteenth century, by the feet of these various tribes of animals, would not differ from each other more entirely than do those attributed to birds, saurians, chelonians, and batrachians, in the rocks of the Connecticut.
To determine the exact age of the red sandstone and shale containing these ancient footprints in the United States, is not possible at present. No fossil shells have yet been found in the deposit, nor plants in a determinable state. The fossil fish are numerous and very perfect; but they are of a peculiar type, which was originally referred to the genus Palæoniscus, but has since, with propriety, been ascribed, by Sir Philip Egerton, to a new genus. To this he has given the name of Ischypterus, from the great size and strength of the fulcral rays of the dorsal fin (from ισχὺς; strength, and πτερὸν, a fin). They differ from Palæoniscus, as Mr. Redfield first pointed out, by having the vertebral column prolonged to a more limited extent into the upper lobe of the tail, or, in the language of M. Agassiz, they are less heterocercal. The teeth also, according to Sir P. Egerton, who, in 1844, examined for me a fine series of specimens which I procured at Durham, Connecticut, differ from those of Palæoniscus in being strong and conical.
That the sandstones containing these fish are of older date than the strata containing coal, before described ([p. 284.]) as occurring near Richmond in Virginia, is highly probable. These were shown to be as old at least as the oolite and lias. The higher antiquity of the Connecticut beds cannot be proved by direct superposition, but may be presumed from the general structure of the country. That structure proves them to be newer than the movements to which the Appalachian or Alleghany chain owes its flexures, and this chain includes the ancient coal formation among its contorted rocks. The unconformable position of this New Red with ornithichnites on the edges of the inclined primary or paleozoic rocks of the Appalachians is seen at 4. of the section, [fig. 379.] [p. 327.] The absence of fish with decidedly heterocercal tails may afford an argument against the Permian age of the formation; and the opinion that the red sandstone is triassic, seems, on the whole, the best that we can embrace in the present state of our knowledge.
CHAPTER XXIII.
PERMIAN OR MAGNESIAN LIMESTONE GROUP.
Fossils of Magnesian Limestone and Lower New Red distinct from the Triassic — Term Permian — English and German equivalents — Marine shells and corals of English Magnesian limestone — Palæoniscus and other fish of the marl slate — Thecodont Saurians of dolomitic conglomerate of Bristol — Zechstein and Rothliegendes of Thuringia — Permian Flora — Its generic affinity to the carboniferous — Psaronites or tree-ferns.
When the use of the term "Poikilitic" was explained in the last chapter, I stated, that in some parts of England it is scarcely possible to separate the red marls and sandstones so called (originally named "the New Red"), into two distinct geological systems. Nevertheless, the progress of investigation, and a careful comparison of English rocks between the lias and the coal with those occupying a similar geological position in Germany and Russia, has enabled geologists to divide the Poikilitic formation; and has even shown that the lowermost of the two divisions is more closely connected, by its fossil remains, with the carboniferous group than with the trias. If, therefore, we are to draw a line between the secondary and primary fossiliferous strata, as between the tertiary and secondary, it must run through the middle of what was once called the "New Red," or Poikilitic group. The inferior half of this group will rank as Primary or Paleozoic, while its upper member will form the base of the Secondary series. For the lower, or Magnesian Limestone division of English geologists, Sir R. Murchison has proposed the name of Permian, from Perm, a Russian government where these strata are more extensively developed than elsewhere, occupying an area twice the size of France, and containing an abundant and varied suite of fossils.
Mr. King, in his valuable monograph, recently published, of the Permian fossils of England, has given a table of the following six members of the Permian system of the north of England, with what he conceives to be the corresponding formations in Thuringia.[301-A]
| North of England. | Thuringia. |
| 1. Crystalline or concretionary, and non-crystalline limestone. | 1. Stinkstein. |
| 2. Brecciated and pseudo-brecciated limestone. | 2. Rauchwacke. |
| 3. Fossiliferous limestone. | 3. Dolomit, or Upper Zechstein. |
| 4. Compact limestone. | 4. Zechstein, or Lower Zechstein. |
| 5. Marl-slate. | 5. Mergel-schiefer, or Kupferschiefer. |
| 6. Inferior sandstones of various colours. | 6. Rothliegendes. |
I shall proceed, therefore, to treat briefly of these subdivisions, beginning with the highest, and referring the reader, for a fuller description of the lithological character of the whole group, as it occurs in the north of England, to a valuable memoir by Professor Sedgwick, published in 1835.[302-A]
Crystalline or concretionary limestone (No. 1.).—This formation is seen upon the coast of Durham and Yorkshire, between the Wear and the Tees. Among its characteristic fossils are Schizodus Schlotheimi ([fig. 333.]) and Mytilus septifer ([fig. 335.]).
Fig. 333.
Schizodus Schlotheimi, Geinitz. Syn. Axinus obscurus, Sow. Crystalline limestone, Permian.
Fig. 334.
Schizodus truncatus, King; to show hinge. Permian.
Fig. 335.
Mytilus septifer, King. Syn. Modiola acuminata, James Sow. Permian crystalline limestone.
These shells occur at Hartlepool and Sunderland, where the rock assumes an oolitic and botryoidal character. Some of the beds in this division are ripple-marked; and Mr. King imagines that the absence of corals and the character of the shells indicate shallow water. In some parts of the coast of Durham, where the rock is not crystalline, it contains as much as forty-four per cent. of carbonate of magnesia, mixed with carbonate of lime. In other places,—for it is extremely variable in structure,—it consists chiefly of carbonate of lime, and has concreted into globular and hemispherical masses, varying from the size of a marble to that of a cannon-ball, and radiating from the centre. Occasionally earthy and pulverulent beds pass into compact limestone or hard granular dolomite. The stratification is very irregular, in some places well-defined, in others obliterated by the concretionary action which has re-arranged the materials of the rocks subsequently to their original deposition. Examples of this are seen at Pontefract and Ripon in Yorkshire.
The brecciated limestone (No. 2.) contains no fragments of foreign rocks, but seems composed of the breaking-up of the Permian limestone itself, about the time of its consolidation. Some of the angular masses in Tynemouth Cliff are 2 feet in diameter. This breccia is considered by Professor Sedgwick as one of the forms of the preceding limestone, No. 1., rather than as regularly underlying it. The fragments are angular and never water-worn, and appear to have been re-cemented on the spot where they were formed. It is, therefore, suggested that they may have been due to those internal movements of the mass which produced the concretionary structure; but the subject is very obscure, and after studying the phenomenon in the Marston Rocks, on the coast of Durham, I found it impossible to form any positive opinion on the subject. The well-known brecciated limestones of the Pyrenees appeared to me to present the nearest analogy, but on a much smaller scale.
The fossiliferous limestone (No. 3.) is regarded by Mr. King as a deep-water formation, from the numerous delicate corals which it includes. One of these, Fenestella retiformis ([fig. 336.]), is a very variable species, and has received many different names. It sometimes attains a large size, measuring 8 inches in width. The same zoophyte is also found abundantly in the Permian of Germany.
Fig. 336.
- a. Fenestella retiformis, Schlot.
- Syn. Gorgonia infundibuliformis, Goldf.; Retepora flustracea, Phillips.
- b. Part of the same highly magnified.
Magnesian limestone, Humbleton Hill, near Sunderland.[303-A]
Shells of the genera Spirifer and Productus, which do not occur in strata newer than the Permian, are abundant in this division of the series in the ordinary yellow magnesian limestone. (See [figs. 337], [338.])
Fig. 337.
Productus calvus, Sow. Min. Con. Syn. Productus horridus, Bronn's Index, &c., King's Monogr., &c.; Leptæna, Dalman.
Magnesian Limestone.
Fig. 338.
Spirifer undulatus, Sow. Min. Con. Syn. Triogonotreta undulata, King's Monogr.
Magnesian Limestone.
The compact limestone (No. 4.) also contains organic remains, especially corallines, and is intimately connected with the preceding. Beneath it lies the marl-slate (No. 5.), which consists of hard, calcareous shales, marl-slate, and thin-bedded limestones. At East Thickley, in Durham, where it is thirty feet thick, this slate has yielded many fine specimens of fossil fish of the genera Palæoniscus, Pygopterus, Cœlacanthus, and Platysomus, genera which are all found in the coal-measures of the carboniferous epoch, and which therefore, says Mr. King, probably lived at no great distance from the shore. But the Permian species are peculiar, and, for the most part, identical with those found in the marl-slate or copper-slate of Thuringia.
Fig. 339.
Restored outline of a fish of the genus Palæoniscus, Agass. Palæothrissum, Blainville.
The Palæoniscus above mentioned belongs to that division of fishes which M. Agassiz has called "Heterocercal," which have their tails unequally bilobate, like the recent shark and sturgeon, and the vertebral column running along the upper caudal lobe. (See [fig. 340.]) The "Homocercal" fish, which comprise almost all the 8000 species at present known in the living creation, have the tail-fin either single or equally divided; and the vertebral column stops short, and is not prolonged into either lobe. (See [fig. 341.])
Fig. 340.
Shark.
Heterocercal.
Fig. 341.
Shad. (Clupea, Herring tribe.)
Homocercal.
Now it is a singular fact, first pointed out by Agassiz, that the heterocercal form, which is confined to a small number of genera in the existing creation, is universal in the Magnesian limestone, and all the more ancient formations. It characterizes the earlier periods of the earth's history, when the organization of fishes made a greater approach to that of saurian reptiles than at later epochs. In all the strata above the Magnesian limestone the homocercal tail predominates.
A full description has been given by Sir Philip Egerton of the species of fish characteristic of the marl-slate in Mr. King's monograph before referred to, where figures of the ichthyolites which are very entire and well preserved, will be found. Even a single scale is usually so characteristically marked as to indicate the genus, and sometimes even the particular species. They are often scattered through the beds singly, and maybe useful to a geologist in determining the age of the rock.
Fig. 342.
Palæoniscus comtus, Agassiz. Scale magnified. Marl-slate.
Fig. 343.
Palæoniscus elegans, Sedg. Under surface of scale magnified. Marl-slate.
Fig. 344.
Palæoniscus glaphyrus, Ag. Under surface of scale magnified. Marl-slate.
Fig. 345.
Cœlacanthus caudalis, Egerton. Scale showing granulated surface magnified. Marl-slate.
Scales of fish. Magnesian limestone.
Fig. 346. Pygopterus mandibularis, Ag. Marl-slate.
- a. Outside of scale magnified.
- b. Under surface of same.
Fig. 347. Acrolepis Sedgwickii, Ag. Marl-slate.
The inferior sandstones (No. 6. Tab. [p. 301.]), which lie beneath the marl-slate, consist of sandstone and sand, separating the magnesian limestone from the coal, in Yorkshire and Durham. In some instances, red marl and gypsum have been found associated with these beds. They have been classed with the magnesian limestone by Professor Sedgwick, as being nearly co-extensive with it in geographical range, though their relations are very obscure. In some regions we find it stated that the imbedded plants are all specifically identical with those of the carboniferous series; and, if so, they probably belong to that epoch; for the true Permian flora appears, from the researches of MM. Murchison and de Verneuil in Russia, and of Colonel von Gutbier in Saxony, to be, with few exceptions, distinct from that of the coal (see [p. 307.]).
Dolomitic conglomerate of Bristol.—Near Bristol, in Somersetshire, and in other counties bordering the Severn, the unconformable beds of the Lower New Red, resting immediately upon the Coal, consist of a conglomerate called "dolomitic," because the pebbles of older rocks are cemented together by a red or yellow base of dolomite or magnesian limestone. This conglomerate or breccia, for the imbedded fragments are sometimes angular, occurs in patches over the whole of the downs near Bristol, filling up the hollows and irregularities in the mountain limestone, and being principally composed at every spot of the debris of those rocks on which it immediately rests. At one point we find pieces of coal shale, in another of mountain limestone, recognizable by its peculiar shells and zoophytes. Fractured bones, also, and teeth of saurians, are dispersed through some parts of the breccia.
These saurians (which until the discovery of the Archegosaurus in the coal were the most ancient examples of fossil reptiles) are all distinguished by having the teeth implanted deeply in the jaw-bone, and in distinct sockets, instead of being soldered, as in frogs, to a simple alveolar parapet. In the dolomitic conglomerate near Bristol the remains of species of two distinct genera have been found, called Thecodontosaurus and Palæosaurus by Dr. Riley and Mr. Stutchbury[306-A]; the teeth of which are conical, compressed, and with finely serrated edges ([figs. 348] and [349.]).
Fig. 348.
Tooth of Palæosaurus platyodon, nat. size.
Fig. 349.
Tooth of Thecodontosaurus, 3 times magnified.
In Russia, also, Thecodont saurians occur, in beds of the Permian age, of several genera, while others named Protorosaurus are met with in the Zechstein of Thuringia. This family of reptiles is allied to the living monitor, and its appearance in a primary or paleozoic formation, observes Mr. Owen, is opposed to the doctrine of the progressive development of reptiles from fish, or from simpler to more complex forms; for, if they existed at the present day, these monitors would take rank at the head of the Lacertian order.[306-B]
In Russia the Permian rocks are composed of white limestone, with gypsum and white salt; and of red and green grits, with occasionally copper ore; also magnesian limestones, marlstones, and conglomerates.
The country of Mansfeld, in Thuringia, may be called the classic ground of the Lower New Red, or Magnesian Limestone, or Permian formation, on the Continent. It consists there principally of, first, the Zechstein, corresponding to the upper portion of our English series; and, secondly, the marl-slate, with fish of species identical with those of the bed so called in Durham. This slaty marlstone is richly impregnated with copper pyrites, for which it is extensively worked. Magnesian limestone, gypsum, and rock-salt, occur among the superior strata of this group. At its base lies the Rothliegendes, supposed to correspond with the Inferior or Lower New Red Sandstone above mentioned, which occupies a similar place in England between the marl-slate and coal. Its local name of Rothliegendes, red-lyer, or "Roth-todt-liegendes," red-dead-lyer, was given by the workmen in the German mines from its red colour, and because the copper has died out when they reach this rock, which is not metalliferous. It is, in fact, a great deposit of red sandstone and conglomerate, with associated porphyry, basaltic trap, and amygdaloid.
Permian Flora.—We learn from the recent investigation of Colonel von Gutbier, that in the Permian rocks of Saxony no less than sixty species of fossil plants have been met with, forty of which have not yet been found elsewhere. Two or three of these, as Calamites gigas, Sphenopteris erosa, and S. lobata, are also met with in the government of Perm in Russia. Seven others, and among them Neuropteris Loshii, Pecopteris arborescens, and P. similis, with several species of Walchia (Lycopodites), are common to the coal-measures.
Among the genera also enumerated by Colonel Gutbier are Asterophyllites and Annularia, so characteristic of the carboniferous period; also Lepidodendron, which is common to the Permian of Saxony, Thuringia, and Russia, although not abundant. Noeggerathia (see [fig. 350.]), supposed by A. Brongniart to be allied to Cycas, is another link between the Permian and carboniferous vegetation. Coniferæ, of the Araucarian division, also occur; but these are likewise met with both in older and newer rocks. The plants called Sigillaria and Stigmaria, so marked a feature in the carboniferous period, are as yet wanting.
Fig. 350.
Noeggerathia cuneifolia. Ad. Brongniart.[307-A]
Among the remarkable fossils of the rothliegendes, or lowest part of the Permian in Saxony and Bohemia, are the silicified trunks of tree-ferns called generically Psaronius. Their bark was surrounded by a dense mass of air-roots, which often constituted a great addition to the original stem, so as to double or quadruple its diameter. The same remark holds good in regard to certain living extra-tropical arborescent ferns, particularly those of New Zealand.
Psaronites are also found in the uppermost coal of Autun in France, and in the upper coal-measures of the State of Ohio in the United States, but specifically different from those of the rothliegendes. They serve to connect the Permian flora with the more modern portion of the preceding or carboniferous group. Upon the whole, it is evident that the Permian plants approach nearer to the carboniferous ones than to the triassic; and the same may be said of the Permian fauna.