CHAPTER XXXI.

ON THE DIFFERENT AGES OF THE VOLCANIC ROCKS—continued.

Volcanic rocks of the Older Pliocene period — Tuscany — Rome — Volcanic region of Olot in Catalonia — Cones and lava-currents — Ravines and ancient gravel-beds — Jets of air called Bufadors — Age of the Catalonian volcanos — Miocene period — Brown-coal of the Eifel and contemporaneous trachytic breccias — Age of the brown-coal — Peculiar characters of the volcanos of the upper and lower Eifel — Lake craters — Trass — Hungarian volcanos.

Older Pliocene period—Tuscany.—In Tuscany, as at Radicofani, Viterbo, and Aquapendente, and in the Campagna di Roma, submarine volcanic tuffs are interstratified with the Older Pliocene strata of the Subapennine hills, in such a manner as to leave no doubt that they were the products of eruptions which occurred when the shelly marls and sands of the Subapennine hills were in the course of deposition.

Catalonia.—Geologists are far from being able, as yet, to assign to each of the volcanic groups scattered over Europe a precise chronological place in the tertiary series; but I shall describe here, as probably referable to some part of the Pliocene period, a district of extinct volcanos near Olot, in the north of Spain, which is little known, and which I visited in the summer of 1830.

The whole extent of country occupied by volcanic products in Catalonia is not more than fifteen geographical miles from north to south, and about six from east to west. The vents of eruption range entirely within a narrow band running north and south; and the branches, which are represented as extending eastward in the map, are formed simply of two lava-streams—those of Castell Follit and Cellent.

Fig. 470.

Volcanic district of Catalonia.

Dr. Maclure, the American geologist, was the first who made known the existence of these volcanos[409-A]; and, according to his description, the volcanic region extended over twenty square leagues, from Amer to Massanet. I searched in vain in the environs of Massanet, in the Pyrenees, for traces of a lava-current; and I can say, with confidence, that the adjoining map gives a correct view of the true area of the volcanic action.

Geological structure of the district.—The eruptions have burst entirely through fossiliferous rocks, composed in great part of grey and greenish sandstone and conglomerate, with some thick beds of nummulitic limestone. The conglomerate contains pebbles of quartz, limestone, and Lydian stone. This system of rocks is very extensively spread throughout Catalonia; one of its members being a red sandstone, to which the celebrated salt-rock of Cardona, usually considered as of the cretaceous era, is subordinate.

Near Amer, in the Valley of the Ter, on the southern borders of the region delineated in the map, primary rocks are seen, consisting of gneiss, mica-schist, and clay-slate. They run in a line nearly parallel to the Pyrenees, and throw off the fossiliferous strata from their flanks, causing them to dip to the north and north-west. This dip, which is towards the Pyrenees, is connected with a distinct axis of elevation, and prevails through the whole area described in the map, the inclination of the beds being sometimes at an angle of between 40 and 50 degrees.

It is evident that the physical geography of the country has undergone no material change since the commencement of the era of the volcanic eruptions, except such as has resulted from the introduction of new hills of scoriæ, and currents of lava upon the surface. If the lavas could be remelted and poured out again from their respective craters, they would descend the same valleys in which they are now seen, and re-occupy the spaces which they at present fill. The only difference in the external configuration of the fresh lavas would consist in this, that they would nowhere be intersected by ravines, or exhibit marks of erosion by running water.

Volcanic cones and lavas.—There are about fourteen distinct cones with craters in this part of Spain, besides several points whence lavas may have issued; all of them arranged along a narrow line running north and south, as will be seen in the map. The greatest number of perfect cones are in the immediate neighbourhood of Olot, some of which (Nos. 2, 3. and 5.) are represented in the annexed woodcut; and the level plain on which that town stands has clearly been produced by the flowing down of many lava-streams from those hills into the bottom of a valley, probably once of considerable depth, like those of the surrounding country.

Fig. 471.

View of the Volcanos around Olot in Catalonia.

In this drawing an attempt is made to represent, by the shading of the landscape, the different geological formations of which the country is composed.[410-A] The white line of mountains (No. 1.) in the distance is the Pyrenees, which are to the north of the spectator, and consist of hypogene and ancient fossiliferous rocks. In front of these are the fossiliferous formations (No. 4.) which are in shade. The hills 2, 3. 5. are volcanic cones, and the rest of the ground on which the sunshine falls is strewed over with volcanic ashes and lava.

The Fluvia, which flows near the town of Olot, has cut to the depth of only 40 feet through the lavas of the plain before mentioned. The bed of the river is hard basalt; and at the bridge of Santa Madalena are seen two distinct lava-currents, one above the other, separated by a horizontal bed of scoriæ 8 feet thick.

In one place, to the south of Olot, the even surface of the plain is broken by a mound of lava, called the "Bosque de Tosca," the upper part of which is scoriaceous, and covered with enormous heaps of fragments of basalt, more or less porous. Between the numerous hummocks thus formed are deep cavities, having the appearance of small craters. The whole precisely resembles some of the modern currents of Etna, or that of Côme, near Clermont; the last of which, like the Bosque de Tosca, supports only a scanty vegetation.

Most of the Catalonian volcanos are as entire as those in the neighbourhood of Naples, or on the flanks of Etna. One of these, called Montsacopa (No. 3. [fig. 471.]), is of a very regular form, and has a circular depression or crater at the summit. It is chiefly made up of red scoriæ, undistinguishable from that of the minor cones of Etna. The neighbouring hills of Olivet (No. 2.) and Garrinada (No. 5.) are of similar composition and shape. The largest crater of the whole district occurs farther to the east of Olot, and is called Santa Margarita. It is 455 feet deep, and about a mile in circumference. Like Astroni, near Naples, it is richly covered with wood, wherein game of various kinds abounds.

Fig. 472.

Although the volcanos of Catalonia have broken out through sandstone, shale, and limestone, as have those of the Eifel, in Germany, to be described in the sequel, there is a remarkable difference in the nature of the ejections composing the cones in these two regions. In the Eifel, the quantity of pieces of sandstone and shale thrown out from the vents is often so immense as far to exceed in volume the scoriæ, pumice, and lava; but I sought in vain in the cones near Olot for a single fragment of any extraneous rock; and Don Francisco Bolos, an eminent botanist of Olot, informed me that he had never been able to detect any. Volcanic sand and ashes are not confined to the cones, but have been sometimes scattered by the wind over the country, and drifted into narrow valleys, as is seen between Olot and Cellent, where the annexed section ([fig. 472.]) is exposed. The light cindery volcanic matter rests in thin regular layers, just as it alighted on the slope formed by the solid conglomerate. No flood could have passed through the valley since the scoriæ fell, or these would have been for the most part removed.

Fig. 473.

Section above the bridge of Cellent.

The currents of lava in Catalonia, like those of Auvergne, the Vivarais, Iceland, and all mountainous countries, are of considerable depth in narrow defiles, but spread out into comparatively thin sheets in places where the valleys widen. If a river has flowed on nearly level ground, as in the great plain near Olot, the water has only excavated a channel of slight depth; but where the declivity is great, the stream has cut a deep section, sometimes by penetrating directly through the central part of a lava-current, but more frequently by passing between the lava and the secondary rock which bounds the valley. Thus, in the accompanying section, at the bridge of Cellent, six miles east of Olot, we see the lava on one side of the small stream; while the inclined stratified rocks constitute the channel and opposite bank. The upper part of the lava at that place, as is usual in the currents of Etna and Vesuvius, is scoriaceous; farther down it becomes less porous, and assumes a spheroidal structure; still lower it divides in horizontal plates, each about 2 inches in thickness, and is more compact. Lastly, at the bottom is a mass of prismatic basalt about 5 feet thick. The vertical columns often rest immediately on the subjacent secondary rocks; but there is sometimes an intervention of such sand and scoriæ as cover the country during volcanic eruptions, and which when unprotected, as here, by superincumbent lava, is washed away from the surface of the land. Sometimes, the bed d contains a few pebbles and angular fragments of rock; in other places fine earth, which may have constituted an ancient vegetable soil.

In several localities, beds of sand and ashes are interposed between the lava and subjacent stratified rock, as may be seen if we follow the course of the lava-current which descends from Las Planas towards Amer, and stops two miles short of that town. The river there has often cut through the lava, and through 18 feet of underlying limestone. Occasionally an alluvium, several feet thick, is interspersed between the igneous and marine formation; and it is interesting to remark that in this, as in other beds of pebbles occupying a similar position, there are no rounded fragments of lava; whereas in the most modern gravel-beds of rivers of this country, volcanic pebbles are abundant.

The deepest excavation made by a river through lava, which I observed in this part of Spain, is that seen in the bottom of a valley near San Feliu de Palleróls, opposite the Castell de Stolles. The lava there has filled up the bottom of a valley, and a narrow ravine has been cut through it to the depth of 100 feet. In the lower part the lava has a columnar structure. A great number of ages were probably required for the erosion of so deep a ravine; but we have no reason to infer that this current is of higher antiquity than those of the plain near Olot. The fall of the ground, and consequent velocity of the stream, being in this case greater, a more considerable volume of rock may have been removed in the same time.

Fig. 474.

Section at Castell Follit.

I shall describe one more section to elucidate the phenomena of this district. A lava-stream, flowing from a ridge of hills on the east of Olot, descends a considerable slope, until it reaches the valley of the river Fluvia. Here, for the first time, it comes in contact with running water, which has removed a portion, and laid open its internal structure in a precipice about 130 feet in height, at the edge of which stands the town of Castell Follit.

By the junction of the rivers Fluvia and Teronel, the mass of lava has been cut away on two sides; and the insular rock B ([fig. 474.]) has been left, which was probably never so high as the cliff A, as it may have constituted the lower part of the sloping side of the original current.

From an examination of the vertical cliffs, it appears that the upper part of the lava on which the town is built is scoriaceous, passing downwards into a spheroidal basalt; some of the huge spheroids being no less than 6 feet in diameter. Below this is a more compact basalt, with crystals of olivine. There are in all five distinct ranges of basalt, the uppermost spheroidal, and the rest prismatic, separated by thinner beds not columnar, and some of which are schistose. These were probably formed by successive flows of lava, whether during the same eruption or at different periods. The whole mass rests on alluvium, ten or twelve feet in thickness, composed of pebbles of limestone and quartz, but without any intermixture of igneous rocks; in which circumstance alone it appears to differ from the modern gravel of the Fluvia.

Bufadors.—The volcanic rocks near Olot have often a cavernous structure, like some of the lavas of Etna; and in many parts of the hill of Batet, in the environs of the town, the sound returned by the earth, when struck, is like that of an archway. At the base of the same hill are the mouths of several subterranean caverns, about twelve in number, which are called in the country "bufadors," from which a current of cold air issues during summer, but which in winter is said to be scarcely perceptible. I visited one of these bufadors in the beginning of August, 1830, when the heat of the season was unusually intense, and found a cold wind blowing from it, which may easily be explained; for as the external air, when rarefied by heat, ascends, the pressure of the colder and heavier air of the caverns in the interior of the mountain causes it to rush out to supply its place.

In regard to the age of these Spanish volcanos, attempts have been made to prove, that in this country, as well as in Auvergne and the Eifel, the earliest inhabitants were eye-witnesses to the volcanic action. In the year 1421, it is said, when Olot was destroyed by an earthquake, an eruption broke out near Amer, and consumed the town. The researches of Don Francisco Bolos have, I think, shown, in the most satisfactory manner, that there is no good historical foundation for the latter part of this story; and any geologist who has visited Amer must be convinced that there never was any eruption on that spot. It is true that, in the year above mentioned, the whole of Olot, with the exception of a single house, was cast down by an earthquake; one of those shocks which, at distant intervals during the last five centuries, have shaken the Pyrenees, and particularly the country between Perpignan and Olot, where the movements, at the period alluded to, were most violent.

The annihilation of the town may, perhaps, have been due to the cavernous nature of the subjacent rocks; for Catalonia is beyond the line of those European earthquakes which have, within the period of history, destroyed towns throughout extensive areas.

As we have no historical records, then, to guide us in regard to the extinct volcanos, we must appeal to geological monuments. The annexed diagram will present to the reader, in a synoptical form, the results obtained from numerous sections.

The more modern alluvium (d) is partial, and has been formed by the action of rivers and floods upon the lava; whereas the older gravel (b) was strewed over the country before the volcanic eruptions. In neither have any organic remains been discovered; so that we can merely affirm, as yet, that the volcanos broke out after the elevation of some of the newest rocks of the nummulitic (Eocene?) series of Catalonia, and before the formation of an alluvium (d) of unknown date. The integrity of the cones merely shows that the country has not been agitated by violent earthquakes, or subjected to the action of any great transient flood since their origin.

Fig. 475.

Superposition of rocks in the volcanic district of Catalonia.

East of Olot, on the Catalonian coast, marine tertiary strata occur, which, near Barcelona, attain the height of about 500 feet. From the shells which I collected, these strata appear to correspond in age with the Subapennine beds; and it is not improbable that their upheaval from beneath the sea took place during the period of volcanic eruption round Olot. In that case these eruptions may have occurred at the close of the Older Pliocene era, but perhaps subsequently, for their age is at present quite uncertain.

Miocene period—Volcanic rocks of the Eifel.—The chronological relations of the volcanic rocks of the Lower Rhine and the Eifel are also involved in a considerable degree of ambiguity; but we know that some portion of them were coeval with the deposition of a tertiary formation, called "Brown-Coal" by the Germans, which probably belongs to the Miocene, if not referable to the Upper Eocene, epoch.

This Brown-Coal is seen on both sides of the Rhine, in the neighbourhood of Bonn, resting unconformably on highly inclined and vertical strata of Silurian and Devonian rocks. Its position, and the space occupied by the volcanic rocks, both of the Westerwald and Eifel, will be seen by referring to the map in the next page ([fig. 476.]), for which I am indebted to Mr. Horner, whose residence in the country has enabled him to verify the maps of MM. Noeggerath and Von Oeynhausen, from which that now given has been principally compiled.

The Brown-Coal formation consists of beds of loose sand, sandstone, and conglomerate, clay with nodules of clay-ironstone, and occasionally silex. Layers of light brown, and sometimes black lignite, are interstratified with the clays and sands, and often irregularly diffused through them. They contain numerous impressions of leaves and stems of trees, and are extensively worked for fuel, whence the name of the formation.

Fig. 476. Map of the volcanic region of the Upper and Lower Eifel.

N.B. The country in that part of the map which is left blank is composed of inclined Silurian and Devonian rocks.

In several places, layers of trachytic tuff are interstratified, and in these tuffs are leaves of plants identical with those found in the brown-coal, showing that, during the period of the accumulation of the latter, some volcanic products were ejected.

The varieties of wood in the lignite are said to belong entirely to dicotyledonous trees; but among the impressions of leaves, collected by Mr. Horner, some were referred by Mr. Lindley to a palm, perhaps of the genus Chamærops, and others resembled the Cinnamomum dulce, and Podocarpus macrophylla, which would also indicate a warm climate.[416-A]

The other organic remains of the brown-coal are principally fishes; they are found in a bituminous shale, called paper-coal, from being divisible into extremely thin leaves. The individuals are very numerous; but they appear to belong to about five species, which M. Agassiz informs me are all extinct, and hitherto peculiar to this brown-coal. They belong to the freshwater genera Leuciscus, Aspius, and Perca. The remains of frogs also, of an extinct species, have been discovered in the paper-coal; and a complete series may be seen in the museum at Bonn, from the most imperfect state of the tadpole to that of the full-grown animal. With these a salamander, scarcely distinguishable from the recent species, has been found, and several remains of insects.

The brown-coal was evidently a freshwater formation; but fossil shells have been scarcely ever found in it; although near Marienforst, in the vicinity of Bonn, large blocks have been met with of a white opaque chert, containing numerous casts of freshwater shells, which appear to belong to Planorbis rotundatus and Limnea longiscata, two species common both to the Middle and Upper Eocene periods. It is very probable that the brown-coal may be connected in age with those fluvio-marine formations which are found in higher parts of the valley of the Rhine, as at Mayence before mentioned ([p. 177.]).

A vast deposit of gravel, chiefly composed of pebbles of white quartz, but containing also a few fragments of other rocks, lies over the brown-coal formation, forming sometimes only a thin covering, at others attaining a thickness of more than 100 feet. This gravel is very distinct in character from that now forming the bed of the Rhine. It is called "Kiesel gerolle" by the Germans, often reaches great elevations, and is covered in several places with volcanic ejections. It is evident that the country has undergone great changes in its physical geography since this gravel was formed; for its position has scarcely any relation to the existing drainage of the country, and all the more modern volcanic rocks of the same region are posterior to it in date.

Some of the newest beds of volcanic sand, pumice, and scoriæ are interstratified near Andernach and elsewhere with the loam called loess, which was before described as being full of land and freshwater shells of recent species, and referable to the Post-Pliocene period. I have before hinted (see [p. 118.]) that this intercalation of volcanic matter between beds of loess may possibly be explained without supposing the last eruptions of the Lower Eifel to have taken place so recently as the era of the deposition of the loess; but farther researches should be directed to the investigation of this curious point.

The igneous rocks of the Westerwald, and of the mountains called the Siebengebirge, consist partly of basaltic and partly of trachytic lavas, the latter being in general the more ancient of the two. There are many varieties of trachyte, some of which are highly crystalline, resembling a coarse-grained granite, with large separate crystals of felspar. Trachytic tuff is also very abundant. These formations, some of which were certainly contemporaneous with the origin of the brown-coal, were the first of a long series of eruptions, the more recent of which happened when the country had acquired nearly all its present geographical features.

Newer volcanos of the Eifel.—Lake-craters.—As I recognized in the more modern volcanos of the Eifel characters distinct from any previously observed by me in those of France, Italy, or Spain, I shall briefly describe them. The fundamental rocks of the district are grey and red sandstones and shales, with some associated limestones, replete with fossils of the Devonian or Old Red Sandstone group. The volcanos broke out in the midst of these inclined strata, and when the present systems of hills and valleys had already been formed. The eruptions occurred sometimes at the bottom of deep valleys, sometimes on the summit of hills, and frequently on intervening platforms. In travelling through this district we often fall upon them most unexpectedly, and may find ourselves on the very edge of a crater before we had been led to suspect that we were approaching the site of any igneous outburst. Thus, for example, on arriving at the village of Gemund, immediately south of Daun, we leave the stream, which flows at the bottom of a deep valley in which strata of sandstone and shale crop out. We then climb a steep hill, on the surface of which we see the edges of the same strata dipping inwards towards the mountain. When we have ascended to a considerable height, we see fragments of scoriæ sparingly scattered over the surface; till, at length, on reaching the summit, we find ourselves suddenly on the edge of a tarn, or deep circular lake-basin.

Fig. 477.

The Gemunder Maar.

Fig. 478.

This, which is called the Gemunder Maar, is the first of three lakes which are in immediate contact, the same ridge forming the barrier of two neighbouring cavities (see [fig. 477.]). On viewing the first of these, we recognize the ordinary form of a crater, for which we have been prepared by the occurrence of scoriæ scattered over the surface of the soil. But on examining the walls of the crater we find precipices of sandstone and shale which exhibit no signs of the action of heat; and we look in vain for those beds of lava and scoriæ, dipping in opposite directions on every side, which we have been accustomed to consider as characteristic of volcanic craters. As we proceed, however, to the opposite side of the lake, and afterwards visit the craters c and d ([fig. 478.]), we find a considerable quantity of scoriæ and some lava, and see the whole surface of the soil sparkling with volcanic sand, and strewed with ejected fragments of half-fused shale, which preserves its laminated texture in the interior, while it has a vitrified or scoriform coating.

A few miles to the south of the lakes above mentioned occurs the Pulvermaar of Gillenfeld, an oval lake of very regular form, and surrounded by an unbroken ridge of fragmentary materials, consisting of ejected shale and sandstone, and preserving a uniform height of about 150 feet above the water. The side slope in the interior is at an angle of about 45 degrees; on the exterior, of 35 degrees. Volcanic substances are intermixed very sparingly with the ejections, which in this place entirely conceal from view the stratified rocks of the country.[419-A]

Fig. 479.

Outline of Mosenberg, Upper Eifel.

The Meerfelder Maar is a cavity of far greater size and depth, hollowed out of similar strata; the sides presenting some abrupt sections of inclined secondary rocks, which in other places are buried under vast heaps of pulverized shale. I could discover no scoriæ amongst the ejected materials, but balls of olivine and other volcanic substances are mentioned as having been found.[419-B] This cavity, which we must suppose to have discharged an immense volume of gas, is nearly a mile in diameter, and is said to be more than one hundred fathoms deep. In the neighbourhood is a mountain called the Mosenberg, which consists of red sandstone and shale in its lower parts, but supports on its summit a triple volcanic cone, while a distinct current of lava is seen descending the flanks of the mountain. The edge of the crater of the largest cone reminded me much of the form and characters of that of Vesuvius; but I was much struck with the precipitous and almost overhanging wall or parapet which the scoriæ presented towards the exterior, as at a b ([fig. 479.]); which I can only explain by supposing that fragments of red-hot lava, as they fell round the vent, were cemented together into one compact mass, in consequence of continuing to be in a half-melted state.

If we pass from the Upper to the Lower Eifel, from A to B (see map, [p. 416.]), we find the celebrated lake-crater of Laach, which has a greater resemblance than any of those before mentioned to the Lago di Bolsena, and others in Italy—being surrounded by a ridge of gently sloping hills, composed of loose tuffs, scoriæ, and blocks of a variety of lavas.

One of the most interesting volcanos on the left bank of the Rhine is called the Roderberg. It forms a circular crater nearly a quarter of a mile in diameter, and 100 feet deep, now covered with fields of corn. The highly inclined strata of ancient sandstone and shale rise even to the rim of one side of the crater; but they are overspread by quartzose gravel, and this again is covered by volcanic scoriæ and tufaceous sand. The opposite wall of the crater is composed of cinders and scorified rock, like that at the summit of Vesuvius. It is quite evident that the eruption in this case burst through the sandstone and alluvium which immediately overlies it; and I observed some of the quartz pebbles mixed with scoriæ on the flanks of the mountain, as if they had been cast up into the air, and had fallen again with the volcanic ashes. I have already observed, that a large part of this crater has been filled up with loess ([p. 118.]).

The most striking peculiarity of a great many of the craters above described, is the absence of any signs of alteration or torrefaction in their walls, when these are composed of regular strata of ancient sandstone and shale. It is evident that the summits of hills formed of the above-mentioned stratified rocks have, in some cases, been carried away by gaseous explosions, while at the same time no lava, and often a very small quantity only of scoriæ, has escaped from the newly formed cavity. There is, indeed, no feature in the Eifel volcanos more worthy of note, than the proofs they afford of very copious aëriform discharges, unaccompanied by the pouring out of melted matter, except, here and there, in very insignificant volume. I know of no other extinct volcanos where gaseous explosions of such magnitude have been attended by the emission of so small a quantity of lava. Yet I looked in vain in the Eifel for any appearances which could lend support to the hypothesis, that the sudden rushing out of such enormous volumes of gas had ever lifted up the stratified rocks immediately around the vent, so as to form conical masses, having their strata dipping outwards on all sides from a central axis, as is assumed in the theory of elevation craters, alluded to at the end of Chap. XXIX.

Trass.—In the Lower Eifel, eruptions of trachytic lava preceded the emission of currents of basalt, and immense quantities of pumice were thrown out wherever trachyte issued. The tufaceous alluvium called trass, which has covered large areas in this region and choked up some valleys now partially re-excavated, is unstratified. Its base consists almost entirely of pumice, in which are included fragments of basalt and other lavas, pieces of burnt shale, slate, and sandstone, and numerous trunks and branches of trees. If this trass was formed during the period of volcanic eruptions it may perhaps have originated in the manner of the moya of the Andes.

We may easily conceive that a similar mass might now be produced, if a copious evolution of gases should occur in one of the lake basins. The water might remain for weeks in a state of violent ebullition, until it became of the consistency of mud, just as the sea continued to be charged with red mud round Graham's Island, in the Mediterranean, in the year 1831. If a breach should then be made in the side of the cone, the flood would sweep away great heaps of ejected fragments of shale and sandstone, which would be borne down into the adjoining valleys. Forests might be torn up by such a flood, and thus the occurrence of the numerous trunks of trees dispersed irregularly through the trass, can be explained.

Hungary.—M. Beudant, in his elaborate work on Hungary, describes five distinct groups of volcanic rocks, which although nowhere of great extent, form striking features in the physical geography of that country, rising as they do abruptly from extensive plains composed of tertiary strata. They may have constituted islands in the ancient sea, as Santorin and Milo now do in the Grecian Archipelago; and M. Beudant has remarked that the mineral products of the last-mentioned islands resemble remarkably those of the Hungarian extinct volcanos, where many of the same minerals as opal, calcedony, resinous silex (silex resinite), pearlite, obsidian, and pitchstone abound.

The Hungarian lavas are chiefly felspathic, consisting of different varieties of trachyte; many are cellular, and used as millstones; some so porous and even scoriform as to resemble those which have issued in the open air. Pumice occurs in great quantity; and there are conglomerates, or rather breccias, wherein fragments of trachyte are bound together by pumiceous tuff, or sometimes by silex.

It is probable that these rocks were permeated by the waters of hot springs, impregnated, like the Geysers, with silica; or in some instances, perhaps, by aqueous vapours, which, like those of Lancerote, may have precipitated hydrate of silica.

By the influence of such springs or vapours the trunks and branches of trees washed down during floods, and buried in tuffs on the flanks of the mountains, are supposed to have become silicified. It is scarcely possible, says M. Beudant, to dig into any of the pumiceous deposits of these mountains without meeting with opalized wood, and sometimes entire silicified trunks of trees of great size and weight.

It appears from the species of shells collected principally by M. Boué, and examined by M. Deshayes, that the fossil remains imbedded in the volcanic tuffs, and in strata alternating with them in Hungary, are of the Miocene type, and not identical, as was formerly supposed, with the fossils of the Paris basin.


CHAPTER XXXII.

ON THE DIFFERENT AGES OF THE VOLCANIC ROCKS—continued.

Volcanic rocks of the Pliocene and Miocene periods continued — Auvergne — Mont Dor — Breccias and alluviums of Mont Perrier, with bones of quadrupeds — River dammed up by lava-current — Range of minor cones from Auvergne to the Vivarais — Monts Dome — Puy de Côme — Puy de Pariou — Cones not denuded by general flood — Velay — Bones of quadrupeds buried in scoriæ — Cantal — Eocene volcanic rocks — Tuffs near Clermont — Hill of Gergovia — Trap of Cretaceous period — Oolitic period — New Red Sandstone period — Carboniferous period — Old Red Sandstone period — "Rock and Spindle" near St. Andrews — Silurian period — Cambrian volcanic rocks.

Tertiary Volcanic Rocks.—Auvergne.—The extinct volcanos of Auvergne and Cantal in Central France seem to have commenced their eruptions in the Upper Eocene period, but to have been most active during the Miocene and Pliocene eras. I have already alluded to the grand succession of events, of which there is evidence in Auvergne since the last retreat of the sea (see [p. 178.]).

The earliest monuments of the tertiary period in that region are lacustrine deposits of great thickness (2. [fig. 480.] [p. 424.]), in the lowest conglomerates of which are rounded pebbles of quartz, mica-schist, granite, and other non-volcanic rocks, without the slightest intermixture of igneous products. To these conglomerates succeed argillaceous and calcareous marls and limestones (3. [fig. 480.]) containing Upper Eocene shells and bones of mammalia, the higher beds of which sometimes alternate with volcanic tuff of contemporaneous origin. After the filling up or drainage of the ancient lakes, huge piles of trachytic and basaltic rocks, with volcanic breccias, accumulated to a thickness of several thousand feet, and were superimposed upon granite, or the contiguous lacustrine strata. The greater portion of these igneous rocks appear to have originated during the Miocene and Pliocene periods; and extinct quadrupeds of those eras, belonging to the genera Mastodon, Rhinoceros, and others, were buried in ashes and beds of alluvial sand and gravel, which owe their preservation to overspreading sheets of lava.

In Auvergne the most ancient and conspicuous of the volcanic masses is Mont Dor, which rests immediately on the granitic rocks standing apart from the freshwater strata.[422-A] This great mountain rises suddenly to the height of several thousand feet above the surrounding platform, and retains the shape of a flattened and somewhat irregular cone, all the sides sloping more or less rapidly, until their inclination is gradually lost in the high plain around. This cone is composed of layers of scoriæ, pumice-stones, and their fine detritus, with interposed beds of trachyte and basalt, which descend often in uninterrupted sheets, till they reach and spread themselves round the base of the mountain.[423-A] Conglomerates, also, composed of angular and rounded fragments of igneous rocks, are observed to alternate with the above; and the various masses are seen to dip off from the central axis, and to lie parallel to the sloping flanks of the mountain.

The summit of Mont Dor terminates in seven or eight rocky peaks, where no regular crater can now be traced, but where we may easily imagine one to have existed, which may have been shattered by earthquakes, and have suffered degradation by aqueous agents. Originally, perhaps, like the highest crater of Etna, it may have formed an insignificant feature in the great pile, and may frequently have been destroyed and renovated.

According to some geologists, this mountain, as well as Vesuvius, Etna, and all large volcanos, has derived its dome-like form not from the preponderance of eruptions from one or more central points, but from the upheaval of horizontal beds of lava and scoriæ. I have explained my reasons for objecting to this view at the close of Chap. XXIX., when speaking of Palma, and in the Principles of Geology.[423-B] The average inclination of the dome-shaped mass of Mont Dor is 8° 6', whereas in Mounts Loa and Kea, before mentioned, in the Sandwich Islands (see [fig. 457.] [p. 394.]), the flanks of which have been raised by recent lavas, we find from Mr. Dana's description that the one has a slope of 6° 30', the other of 7° 46'. We may, therefore, reasonably question whether there is any absolute necessity for supposing that the basaltic currents of the ancient French volcano were at first more horizontal than they are now. Nevertheless it is highly probable that during the long series of eruptions required to give rise to so vast a pile of volcanic matter, which is thickest at the summit or centre of the dome, some dislocation and upheaval took place; and during the distension of the mass, beds of lava and scoriæ may, in some places, have acquired a greater, in others a less inclination, than that which at first belonged to them.

Respecting the age of the great mass of Mont Dor, we cannot come at present to any positive decision, because no organic remains have yet been found in the tuffs, except impressions of the leaves of trees of species not yet determined. We may certainly conclude, that the earliest eruptions were posterior in origin to those grits, and conglomerates of the freshwater formation of the Limagne, which contain no pebbles of volcanic rocks; while, on the other hand, some eruptions took place before the great lakes were drained; and others occurred after the desiccation of those lakes, and when deep valleys had already been excavated through freshwater strata.

In the annexed section, I have endeavoured to explain the geological structure of a portion of Auvergne, which I re-examined in 1843.[423-C] It may convey some idea to the reader of the long and complicated series of events, which have occurred in that country, since the first lacustrine strata (No. 2.) were deposited on the granite (No. 1.). The changes of which we have evidence are the more striking, because they imply great denudation, without there being any proofs of the intervention of the sea during the whole period. It will be seen that the upper freshwater beds (No. 3.), once formed in a lake, must have suffered great destruction before the excavation of the valleys of the Couze and Allier had begun. In these freshwater beds, Upper Eocene fossils, as described in Chap. XV., have been found. The basaltic dike 4' is one of many examples of the intrusion of volcanic matter through the Eocene freshwater beds, and may have been of Upper Eocene or Miocene date, giving rise, when it reached the surface and overflowed, to such platforms of basalt, as often cap the tertiary hills in Auvergne, and one of which (4) is seen on Mont Perrier.

Fig. 480.

Section from the valley of the Couze at Nechers, through Mont Perrier and Issoire to the Valley of the Allier, and the Tour de Boulade, Auvergne.

It not unfrequently happens that beds of gravel containing bones of extinct mammalia are detected under these very ancient sheets of basalt, as between No. 4. and the freshwater strata, No. 3., at A, from which it is clear that the surface of 3 formed at that period the lowest level at which the waters then draining the country flowed. Next in age to this basaltic platform comes a patch of ochreous sand and gravel (No. 5.), containing many bones of quadrupeds. Upon this rests a pumiceous breccia and conglomerate, with angular masses of trachyte, and some quartz pebbles. This deposit is followed by 5 b, which is similar to 5, and 5 c similar to the trachytic breccia 5 a. These two breccias are supposed, from their similarity to others found on Mount Dor, to have descended from the flanks of that mountain during eruptions; and the interstratified alluvial deposits contain the remains of mastodon, rhinoceros, tapir, deer, beaver, and quadrupeds of other genera referable to about forty species, all of which are extinct. I formerly supposed them to belong to the same era as the Miocene faluns of Touraine; but, whether they may not rather be ascribed to the older Pliocene epoch is a question which farther inquiries and comparisons must determine.

Whatever be their date in the tertiary series, they are quadrupeds which inhabited the country when the formations 5 and 5 c originated. Probably they were drowned during floods, such as rush down the flanks of volcanos during eruptions, when great bodies of steam are emitted from the crater, or when, as we have seen, both on Etna and in Iceland in modern times, large masses of snow are suddenly melted by lava, causing a deluge of water to bear down fragments of igneous rocks mixed with mud, to the valleys and plains below.

It will be seen that the valley of the Issoire, down which these ancient inundations swept, was first excavated at the expense of the formations 2, 3, and 4, and then filled up by the masses 5 and 5 c, after which it was re-excavated before the more modern alluviums (Nos. 6. and 7.) were formed. In these again other fossil mammalia of distinct species have been detected by M. Bravard, the bones of an hippopotamus having been found among the rest.

At length, when the valley of the Allier was eroded at Issoire down to its lowest level, a talus of angular fragments of basalt and freshwater limestone (No. 8.) was formed, called the bone-bed of the Tour de Boulade, from which a great many other mammalia have been collected by MM. Bravard and Pomel. In this assemblage the Elephas primigenius, Rhinoceros tichorinus, Deer (including rein-deer), Equus, Bos, Antelope, Felis, and Canis, were included. Even this deposit seems hardly to be the newest in the neighbourhood, for if we cross from the town of Issoire (see [fig. 480.]) over Mont Perrier to the adjoining valley of the Couze, we find another bone-bed (No. 9.), overlaid by a current of lava (No. 10.).

The history of this lava-current, which terminates a few hundred yards below the point No. 10., in the suburbs of the village of Nechers, is interesting. It forms a long narrow stripe more than 13 miles in length, at the bottom of the valley of the Couze, which flows out of a lake at the foot of Mont Dor. This lake is caused by a barrier thrown across the ancient channel of the Couze, consisting partly of the volcanic cone called the Puy de Tartaret, formed of loose scoriæ, from the base of which has issued the lava-current before mentioned. The materials of the dam which blocked up the river, and caused the Lac de Chambon, are also, in part, derived from a land-slip which may have happened at the time of the great eruption which formed the cone.

This cone of Tartaret affords an impressive monument of the very different dates at which the igneous eruptions of Auvergne have happened; for it was evidently thrown up at the bottom of the existing valley, which is bounded by lofty precipices composed of sheets of ancient columnar trachyte and basalt, which once flowed at very high levels from Mont Dor.[425-A]

When we follow the course of the river Couze, from its source in the lake of Chambon, to the termination of the lava-current at Nechers, a distance of thirteen miles, we find that the torrent has in most places cut a deep channel through the lava, the lower portion of which is columnar. In some narrow gorges it has even had power to remove the entire mass of basaltic rock, though the work of erosion must have been very slow, as the basalt is tough and hard, and one column after another must have been undermined and reduced to pebbles, and then to sand. During the time required for this operation, the perishable cone of Tartaret, composed of sand and ashes, has stood uninjured, proving that no great flood or deluge can have passed over this region in the interval between the eruption of Tartaret and our own times.

If we now return to the section ([fig. 480.]), I may observe that the lava-current of Tartaret, which has diminished greatly in height and volume near its termination, presents here a steep and perpendicular face 25 feet in height towards the river. Beneath it is the alluvium No. 9., consisting of a red sandy clay, which must have covered the bottom of the valley when the current of melted rock flowed down. The bones found in this alluvium, which I obtained myself, consisted of a species of field-mouse, Arvicola, and the molar tooth of an extinct horse, Equus fossilis. The other species, obtained from the same bed, are referable to the genera Sus, Bos, Cervus, Felis, Canis, Martes, Talpa, Sorex, Lepus, Sciurus, Mus, and Lagomys, in all no less than forty-three species, all closely allied to recent animals, yet nearly all of them, according to M. Bravard, showing some points of difference, like those which Mr. Owen discovered in the case of the horse above alluded to. The bones, also, of a frog, snake, and lizard, and of several birds, were associated with the fossils before enumerated, and several recent land shells, such as Cyclostoma elegans, Helix hortensis, H. nemoralis, H. lapicida, and Clausilia rugosa. If the animals were drowned by floods, which accompanied the eruptions of the Puy de Tartaret, they would give an exceedingly modern geological date to that event, which must, in that case, have belonged to the Newer-Pliocene, or, perhaps, the Post-Pliocene period. That the current, which has issued from the Puy de Tartaret, may nevertheless be very ancient in reference to the events of human history, we may conclude, not only from the divergence of the mammiferous fauna from that of our day, but from the fact that a Roman bridge of such form and construction as continued in use down to the fifth century, but which may be older, is now seen at a place about a mile and a half from St. Nectaire. This ancient bridge spans the river Couze with two arches, each about 14 feet wide. These arches spring from the lava of Tartaret, on both banks, showing that a ravine precisely like that now existing, had already been excavated by the river through that lava thirteen or fourteen centuries ago.

In Central France there are several hundred minor cones, like that of Tartaret, a great number of which, like Monte Nuovo, near Naples, may have been principally due to a single eruption. Most of these cones range in a linear direction from Auvergne to the Vivarais, and they were faithfully described so early as the year 1802, by M. de Montlosier. They have given rise chiefly to currents of basaltic lava. Those of Auvergne called the Monts Dome, placed on a granitic platform, form an irregular ridge (see [fig. 436.]), about 18 miles in length, and 2 in breadth. They are usually truncated at the summit, where the crater is often preserved entire, the lava having issued from the base of the hill. But frequently the crater is broken down on one side, where the lava has flowed out. The hills are composed of loose scoriæ, blocks of lava, lapilli, and pozzuolana, with fragments of trachyte and granite.

Puy de Côme.—The Puy de Côme and its lava-current, near Clermont, may be mentioned as one of these minor volcanos. This conical hill rises from the granitic platform, at an angle of about 40°, to the height of more than 900 feet. Its summit presents two distinct craters, one of them with a vertical depth of 250 feet. A stream of lava takes its rise at the western base of the hill, instead of issuing from either crater, and descends the granitic slope towards the present site of the town of Pont Gibaud. Thence it pours in a broad sheet down a steep declivity into the valley of the Sioule, filling the ancient river-channel for the distance of more than a mile. The Sioule, thus dispossessed of its bed, has worked out a fresh one between the lava and the granite of its western bank; and the excavation has disclosed, in one spot, a wall of columnar basalt about 50 feet high.[427-A]

The excavation of the ravine is still in progress, every winter some columns of basalt being undermined and carried down the channel of the river, and in the course of a few miles rolled to sand and pebbles. Meanwhile the cone of Côme remains stationary, its loose materials being protected by a dense vegetation, and the hill standing on a ridge not commanded by any higher ground whence floods of rain-water may descend.

Puy Rouge.—At another point, farther down the course of the Sioule, we find a second illustration of the same phenomenon in the Puy Rouge, a conical hill to the north of the village of Pranal. The cone is composed entirely of red and black scoriæ, tuff, and volcanic bombs. On its western side there is a worn-down crater, whence a powerful stream of lava has issued, and flowed into the valley of the Sioule. The river has since excavated a ravine through the lava and subjacent gneiss, to the depth of 400 feet.

On the upper part of the precipice forming the left side of this ravine, we see a great mass of black and red scoriaceous lava; below this a thin bed of gravel, evidently an ancient river-bed, now at an elevation of 50 feet above the channel of the Sioule. The gravel again rests upon gneiss, which has been eroded to the depth of 50 feet. It is quite evident in this case, that, while the basalt was gradually undermined and carried away by the force of running water, the cone whence the lava issued escaped destruction, because it stood upon a platform of gneiss several hundred feet above the level of the valley in which the force of running water was exerted.

Puy de Pariou.—The brim of the crater of the Puy de Pariou, near Clermont, is so sharp, and has been so little blunted by time, that it scarcely affords room to stand upon. This and other cones in an equally remarkable state of integrity have stood, I conceive uninjured, not in spite of their loose porous nature, as might at first be naturally supposed, but in consequence of it. No rills can collect where all the rain is instantly absorbed by the sand and scoriæ, as is remarkably the case on Etna; and nothing but a waterspout breaking directly upon the Puy de Pariou could carry away a portion of the hill, so long as it is not rent or engulphed by earthquakes.

Hence it is conceivable that even those cones which have the freshest aspect, and most perfect shape, may lay claim to very high antiquity. Dr. Daubeny has justly observed, that had any of these volcanos been in a state of activity in the age of Julius Cæsar, that general, who encamped upon the plains of Auvergne, and laid siege to its principal city (Gergovia, near Clermont), could hardly have failed to notice them. Had there been any record of their eruptions in the time of Pliny or Sidonius Apollinaris, the one would scarcely have omitted to make mention of it in his Natural History, nor the other to introduce some allusion to it among the descriptions of this his native province. This poet's residence was on the borders of the Lake Aidat, which owed its very existence to the damming up of a river by one of the most modern lava-currents.[428-A]

Velay.—The observations of M. Bertrand de Doue have not yet established that any of the most ancient volcanos of Velay were in action during the Eocene period. There are beds of gravel in Velay, as in Auvergne, covered by lava at different heights above the channels of the existing rivers. In the highest and most ancient of these alluviums the pebbles are exclusively of granitic rocks; but in the newer, which are found at lower levels, and which originated when the valleys had been cut to a greater depth, an intermixture of volcanic rocks has been observed.

At St. Privat d'Allier a bed of volcanic scoriæ and tuff was discovered by Dr. Hibbert, inclosed between two sheets of basaltic lava; and in this tuff were found the bones of several quadrupeds, some of them adhering to masses of slaggy lava. Among other animals were Rhinoceros leptorhinus, Hyæna spelæa, and a species allied to the spotted hyæna of the Cape, together with four undetermined species of deer.[428-B] The manner of the occurrence of these bones reminds us of the published accounts of an eruption of Coseguina, 1835, in Central America (see [p. 399.]), during which hot cinders and scoriæ fell and scorched to death great numbers of wild and domestic animals and birds.

Plomb du Cantal.—In regard to the age of the igneous rocks of the Cantal, we can at present merely affirm, that they overlie the Eocene lacustrine strata of that country (see Map, [p. 179.]). They form a great dome-shaped mass, having an average slope of only 4°, which has evidently been accumulated, like the cone of Etna, during a long series of eruptions. It is composed of trachytic, phonolitic, and basaltic lavas, tuffs, and conglomerates, or breccias, forming a mountain several thousand feet in height. Dikes also of phonolite, trachyte, and basalt are numerous, especially in the neighbourhood of the large cavity, probably once a crater, around which the loftiest summits of the Cantal are ranged circularly, few of them, except the Plomb du Cantal, rising far above the border or ridge of this supposed crater. A pyramidal hill, called the Puy Griou, occupies the middle of the cavity.[429-A] It is clear that the volcano of the Cantal broke out precisely on the site of the lacustrine deposit before described ([p. 188.]), which had accumulated in a depression of a tract composed of micaceous schist. In the breccias, even to the very summit of the mountain, we find ejected masses of the freshwater beds, and sometimes fragments of flint, containing Eocene shells. Valleys radiate in all directions from the central heights of the mountain, increasing in size as they recede from those heights. Those of the Cer and Jourdanne, which are more than 20 miles in length, are of great depth, and lay open the geological structure of the mountain. No alternation of lavas with undisturbed Eocene strata has been observed, nor any tuffs containing freshwater shells, although some of these tuffs include fossil remains of terrestrial plants, said to imply several distinct restorations of the vegetation of the mountain in the intervals between great eruptions. On the northern side of the Plomb du Cantal, at La Vissiere, near Murat, is a spot, pointed out on the Map ([p. 179.]), where freshwater limestone and marl are seen covered by a thickness of about 800 feet of volcanic rock. Shifts are here seen in the strata of limestone and marl.[429-B]

Eocene period.—In treating of the lacustrine deposits of Central France, in the fifteenth chapter, it was stated that, in the arenaceous and pebbly group of the lacustrine basins of Auvergne, Cantal, and Velay, no volcanic pebbles had ever been detected, although massive piles of igneous rocks are now found in the immediate vicinity. As this observation has been confirmed by minute research, we are warranted in inferring that the volcanic eruptions had not commenced when the older subdivisions of the freshwater groups originated.

In Cantal and Velay no decisive proofs have yet been brought to light that any of the igneous outbursts happened during the deposition of the freshwater strata; but there can be no doubt that in Auvergne some volcanic explosions took place before the drainage of the lakes, and at a time when the Upper Eocene species of animals and plants still flourished. Thus, for example, at Pont du Chateau, near Clermont, a section is seen in a precipice on the right bank of the river Allier, in which beds of volcanic tuff alternate with a freshwater limestone, which is in some places pure, but in others spotted with fragments of volcanic matter, as if it were deposited while showers of sand and scoriæ were projected from a neighbouring vent.[430-A]

Another example occurs in the Puy de Marmont, near Veyres, where a freshwater marl alternates with volcanic tuff containing Eocene shells. The tuff or breccia in this locality is precisely such as is known to result from volcanic ashes falling into water, and subsiding together with ejected fragments of marl and other stratified rocks. These tuffs and marls are highly inclined, and traversed by a thick vein of basalt, which, as it rises in the hill, divides into two branches.

Gergovia.—The hill of Gergovia, near Clermont, affords a third example. I agree with MM. Dufrénoy and Jobert that there is no alternation here of a contemporaneous sheet of lava with freshwater strata, in the manner supposed by some other observers[430-B]; but the position and contents of some of the associated tuffs, prove them to have been derived from volcanic eruptions which occurred during the deposition of the lacustrine strata.

Fig. 481.

Hill of Gergovia.

The bottom of the hill consists of slightly inclined beds of white and greenish marls, more than 300 feet in thickness, intersected by a dike of basalt, which may be studied in the ravine above the village of Merdogne. The dike here cuts through the marly strata at a considerable angle, producing, in general, great alteration and confusion in them for some distance from the point of contact. Above the white and green marls, a series of beds of limestone and marl, containing freshwater shells, are seen to alternate with volcanic tuff. In the lowest part of this division, beds of pure marl alternate with compact fissile tuff, resembling some of the subaqueous tuffs of Italy and Sicily called peperinos. Occasionally fragments of scoriæ are visible in this rock. Still higher is seen another group of some thickness, consisting exclusively of tuff, upon which lie other marly strata intermixed with volcanic matter. Among the species of fossil shells which I found in these strata were Melania inquinata, a Unio, and a Melanopsis, but they were not sufficient to enable me to determine with precision the age of the formation.

There are many points in Auvergne where igneous rocks have been forced by subsequent injection through clays and marly limestones, in such a manner that the whole has become blended in one confused and brecciated mass, between which and the basalt there is sometimes no very distinct line of demarcation. In the cavities of such mixed rocks we often find calcedony, and crystals of mesotype, stilbite, and arragonite. To formations of this class may belong some of the breccias immediately adjoining the dike in the hill of Gergovia; but it cannot be contended that the volcanic sand and scoriæ interstratified with the marls and limestones in the upper part of that hill were introduced, like the dike, subsequently, by intrusion from below. They must have been thrown down like sediment from water, and can only have resulted from igneous action, which was going on contemporaneously with the deposition of the lacustrine strata.

The reader will bear in mind that this conclusion agrees well with the proofs, adverted to in the fifteenth chapter, of the abundance of silex, travertin, and gypsum precipitated when the upper lacustrine strata were formed; for these rocks are such as the waters of mineral and thermal springs might generate.

Cretaceous period.—Although we have no proof of volcanic rocks erupted in England during the deposition of the chalk and greensand, it would be an error to suppose that no theatres of igneous action existed in the cretaceous period. M. Virlet, in his account of the geology of the Morea, [p. 205.], has clearly shown that certain traps in Greece, called by him ophiolites, are of this date; as those, for example, which alternate conformably with cretaceous limestone and greensand between Kastri and Damala in the Morea. They consist in great part of diallage rocks and serpentine, and of an amygdaloid with calcareous kernels, and a base of serpentine.

In certain parts of the Morea, the age of these volcanic rocks is established by the following proofs: first, the lithographic limestones of the Cretaceous era are cut through by trap, and then a conglomerate occurs, at Nauplia and other places, containing in its calcareous cement many well-known fossils of the chalk and greensand, together with pebbles formed of rolled pieces of the same ophiolite, which appear in the dikes above alluded to.

Period of Oolite and Lias.—Although the green and serpentinous trap rocks of the Morea belong chiefly to the Cretaceous era, as before mentioned, yet it seems that some eruptions of similar rocks began during the Oolitic period[431-A]; and it is probable, that a large part of the trappean masses, called ophiolites in the Apennines, and associated with the limestone of that chain, are of corresponding age.

That part of the volcanic rocks of the Hebrides, in our own country, originated contemporaneously with the Oolite which they traverse and overlie, has been ascertained by Prof. E. Forbes, in 1850.

Trap of the New Red Sandstone period.—In the southern part of Devonshire, trappean rocks are associated with New Red Sandstone, and, according to Sir H. De la Beche, have not been intruded subsequently into the sandstone, but were produced by contemporaneous volcanic action. Some beds of grit, mingled with ordinary red marl, resemble sands ejected from a crater; and in the stratified conglomerates occurring near Tiverton are many angular fragments of trap porphyry, some of them one or two tons in weight, intermingled with pebbles of other rocks. These angular fragments were probably thrown out from volcanic vents, and fell upon sedimentary matter then in the course of deposition.[432-A]

Carboniferous period.—Two classes of contemporaneous trap rocks have been ascertained by Dr. Fleming to occur in the coal-field of the Forth in Scotland. The newest of these, connected with the higher series of coal-measures, is well exhibited along the shores of the Forth, in Fifeshire, where they consist of basalt with olivine, amygdaloid, greenstone, wacké, and tuff. They appear to have been erupted while the sedimentary strata were in a horizontal position, and to have suffered the same dislocations which those strata have subsequently undergone. In the volcanic tuffs of this age are found not only fragments of limestone, shale, flinty slate, and sandstone, but also pieces of coal.

The other or older class of carboniferous traps are traced along the south margin of Stratheden, and constitute a ridge parallel with the Ochils, and extending from Stirling to near St. Andrews. They consist almost exclusively of greenstone, becoming, in a few instances, earthy and amygdaloidal. They are regularly interstratified with the sandstone, shale, and ironstone of the lower Coal-measures, and, on the East Lomond, with Mountain Limestone.

I examined these trap rocks in 1838, in the cliffs south of St. Andrews, where they consist in great part of stratified tuffs, which are curved, vertical, and contorted, like the associated coal-measures. In the tuff I found fragments of carboniferous shale and limestone, and intersecting veins of greenstone. At one spot, about two miles from St. Andrews, the encroachment of the sea on the cliffs has isolated several masses of trap, one of which ([fig. 482.]) is aptly called the "rock and spindle,"[432-B] for it consists of a pinnacle of tuff, which may be compared to a distaff, and near the base is a mass of columnar greenstone, in which the pillars radiate from a centre, and appear at a distance like the spokes of a wheel. The largest diameter of this wheel is about twelve feet, and the polygonal terminations of the columns are seen round the circumference (or tire, as it were, of the wheel), as in the accompanying figure. I conceive this mass to be the extremity of a string or vein of greenstone, which penetrated the tuff. The prisms point in every direction, because they were surrounded on all sides by cooling surfaces, to which they always, arrange themselves at right angles, as before explained ([p. 385.]).

Fig. 482.

Rock and Spindle, St. Andrews.

Fig. 483.

Columns of Greenstone, seen endwise.

A trap dike was pointed out to me by Dr. Fleming, in the parish of Flisk, in the northern part of Fifeshire, which cuts through the grey sandstone and shale, forming the lowest part of the Old Red Sandstone. It may be traced for many miles, passing through the amygdaloidal and other traps of the hill called Normans Law. In its course it affords a good exemplification of the passage from the trappean into the plutonic, or highly crystalline texture. Professor Gustavus Rose, to whom I submitted specimens of this dike, finds the rock, which he calls dolerite, to consist of greenish black augite and Labrador felspar, the latter being the most abundant ingredient. A small quantity of magnetic iron, perhaps titaniferous, is also present. The result of this analysis is interesting, because both the ancient and modern lavas of Etna consist in like manner of augite, Labradorite, and titaniferous iron.

Trap of the Old Red sandstone period.—By referring to the section explanatory of the structure of Forfarshire, already given ([p. 48.]), the reader will perceive that beds of conglomerate, No. 3., occur in the middle of the Old Red sandstone system, 1, 2, 3, 4. The pebbles in these conglomerates are sometimes composed of granitic and quartz rocks, sometimes exclusively of different varieties of trap, which, although purposely omitted in the above section, are often found either intruding themselves in amorphous masses and dikes into the old fossiliferous tilestones, No. 4., or alternating with them in conformable beds. All the different divisions of the red sandstone, 1, 2, 3, 4, are occasionally intersected by dikes, but they are very rare in Nos. 1. and 2., the upper members of the group consisting of red shale and red sandstone. These phenomena, which occur at the foot of the Grampians, are repeated in the Sidlaw Hills; and it appears that in this part of Scotland, volcanic eruptions were most frequent in the earlier part of the Old Red sandstone period.

The trap rocks alluded to consist chiefly of felspathic porphyry and amygdaloid, the kernels of the latter being sometimes calcareous, often calcedonic, and forming beautiful agates. We meet also with claystone, clinkstone, greenstone, compact felspar, and tuff. Some of these rocks flowed as lavas over the bottom of the sea, and enveloped quartz pebbles which were lying there, so as to form conglomerates with a base of greenstone, as is seen in Lumley Den, in the Sidlaw Hills. On either side of the axis of this chain of hills (see section, [p. 48.]), the beds of massive trap, and the tuffs composed of volcanic sand and ashes, dip regularly to the south-east or north-west, conformably with the shales and sandstones.

Silurian period.—It appears from the investigations of Sir R. Murchison in Shropshire, that when the lower Silurian strata of that county were accumulating, there were frequent volcanic eruptions beneath the sea; and the ashes and scoriæ then ejected gave rise to a peculiar kind of tufaceous sandstone or grit, dissimilar to the other rocks of the Silurian series, and only observable in places where syenitic and other trap rocks protrude. These tuffs occur on the flanks of the Wrekin and Caer Caradoc, and contain Silurian fossils, such as casts of encrinites, trilobites, and mollusca. Although fossiliferous, the stone resembles a sandy claystone of the trap family.[435-A]

Thin layers of trap, only a few inches thick, alternate, in some parts of Shropshire and Montgomeryshire, with sedimentary strata of the lower Silurian system. This trap consists of slaty porphyry and granular felspar rock, the beds being traversed by joints like those in the associated sandstone, limestone, and shale, and having the same strike and dip.[435-B]

In Radnorshire there is an example of twelve bands of stratified trap, alternating with Silurian schists and flagstones, in a thickness of 350 feet. The bedded traps consist of felspar-porphyry, clinkstone, and other varieties; and the interposed Llandeilo flags are of sandstone and shale, with trilobites and graptolites.[435-C]

The vast thickness of contemporaneous trappean rocks of lower Silurian date in North Wales, explored by our government surveyors, has been already alluded to.[435-D]

Cambrian volcanic rocks.—Professor Sedgwick, in his account of the geology of Cumberland, has described various trap rocks which accompany the green slates of the Cambrian system, beneath all the rocks containing organic remains. Different felspathic and porphyritic rocks and greenstones occur, not only in dikes, but in conformable beds; and there is occasionally a passage from these igneous rocks to some of the green quartzose slates. Professor Sedgwick supposes these porphyries to have originated contemporaneously with the stratified chloritic slates, the materials of the slates having been supplied, in part at least, by submarine eruptions oftentimes repeated.[435-E]


CHAPTER XXXIII.

PLUTONIC ROCKS—GRANITE.

General aspect of granite — Decomposing into spherical masses — Rude columnar structure — Analogy and difference of volcanic and plutonic formations — Minerals in granite, and their arrangement — Graphic and porphyritic granite — Mutual penetration of crystals of quartz and felspar — Occasional minerals — Syenite — Syenitic, talcose, and schorly granites — Eurite — Passage of granite into trap — Examples near Christiania and in Aberdeenshire — Analogy in composition of trachyte and granite — Granite veins in Glen Tilt, Cornwall, the Valorsine, and other countries — Different composition of veins from main body of granite — Metalliferous veins in strata near their junction with granite — Apparent isolation of nodules of granite — Quartz veins — Whether plutonic rocks are ever overlying — Their exposure at the surface due to denudation.

The plutonic rocks may be treated of next in order, as they are most nearly allied to the volcanic class already considered. I have described, in the first chapter, these plutonic rocks as the unstratified division of the crystalline or hypogene formations, and have stated that they differ from the volcanic rocks, not only by their more crystalline texture, but also by the absence of tuffs and breccias, which are the products of eruptions at the earth's surface, or beneath seas of inconsiderable depth. They differ also by the absence of pores or cellular cavities, to which the expansion of the entangled gases gives rise in ordinary lava. From these and other peculiarities it has been inferred, that the granites have been formed at considerable depths in the earth, and have cooled and crystallized slowly under great pressure, where the contained gases could not expand. The volcanic rocks, on the contrary, although they also have risen up from below, have cooled from a melted state more rapidly upon or near the surface. From this hypothesis of the great depth at which the granites originated, has been derived the name of "Plutonic rocks." The beginner will easily conceive that the influence of subterranean heat may extend downwards from the crater of every active volcano to a great depth below, perhaps several miles or leagues, and the effects which are produced deep in the bowels of the earth may, or rather must be, distinct; so that volcanic and plutonic rocks, each different in texture, and sometimes even in composition, may originate simultaneously, the one at the surface, the other far beneath it.

By some writers, all the rocks now under consideration have been comprehended under the name of granite, which is, then, understood to embrace a large family of crystalline and compound rocks, usually found underlying all other formations; whereas we have seen that trap very commonly overlies strata of different ages. Granite often preserves a very uniform character throughout a wide range of territory, forming hills of a peculiar rounded form, usually clad with a scanty vegetation. The surface of the rock is for the most part in a crumbling state, and the hills are often surmounted by piles of stones like the remains of a stratified mass, as in the annexed figure, and sometimes like heaps of boulders, for which they have been mistaken. The exterior of these stones, originally quadrangular, acquires a rounded form by the action of air and water, for the edges and angles waste away more rapidly than the sides. A similar spherical structure has already been described as characteristic of basalt and other volcanic formations, and it must be referred to analogous causes, as yet but imperfectly understood.

Fig. 484.

Mass of granite near the Sharp Tor, Cornwall.

Although it is the general peculiarity of granite to assume no definite shapes, it is nevertheless occasionally subdivided by fissures, so as to assume a cuboidal, and even a columnar, structure. Examples of these appearances may be seen near the Land's End, in Cornwall. (See [figure.])

Fig. 485.

Granite having a cuboidal and rude columnar structure, Land's End, Cornwall.

The plutonic formations also agree with the volcanic, in having veins or ramifications proceeding from central masses into the adjoining rocks, and causing alterations in these last, which will be presently described. They also resemble trap in containing no organic remains; but they differ in being more uniform in texture, whole mountain masses of indefinite extent appearing to have originated under conditions precisely similar. They also differ in never being scoriaceous or amygdaloidal, and never forming a porphyry with an uncrystalline base, or alternating with tuffs. Nor do they form conglomerates, although there is sometimes an insensible passage from a fine to a coarse-grained granite, and occasionally patches of a fine texture are imbedded in a coarser variety.

Fig. 486.

Gneiss. (See description, [p. 464.])

Felspar, quartz, and mica are usually considered as the minerals essential to granite, the felspar being most abundant in quantity, and the proportion of quartz exceeding that of mica. These minerals are united in what is termed a confused crystallization; that is to say, there is no regular arrangement of the crystals in granite, as in gneiss (see [fig. 486.]), except in the variety termed graphic granite, which occurs mostly in granitic veins. This variety is a compound of felspar and quartz, so arranged as to produce an imperfect laminar structure. The crystals of felspar appear to have been first formed, leaving between them the space now occupied by the darker-coloured quartz. This mineral, when a section is made at right angles to the alternate plates of felspar and quartz, presents broken lines, which have been compared to Hebrew characters.

Graphic granite.

As a general rule, quartz, in a compact or amorphous state, forms a vitreous mass, serving as the base in which felspar and mica have crystallized; for although these minerals are much more fusible than silex, they have often imprinted their shapes upon the quartz. This fact, apparently so paradoxical, has given rise to much ingenious speculation. We should naturally have anticipated that, during the cooling of the mass, the flinty portion would be the first to consolidate; and that the different varieties of felspar, as well as garnets and tourmalines, being more easily liquefied by heat, would be the last. Precisely the reverse has taken place in the passage of most granitic aggregates from a fluid to a solid state, crystals of the more fusible minerals being found enveloped in hard, transparent, glassy quartz, which has often taken very faithful casts of each, so as to preserve even the microscopically minute striations on the surface of prisms of tourmaline. Various explanations of this phenomenon have been proposed by MM. de Beaumont, Fournet, and Durocher. They refer to M. Gaudin's experiments on the fusion of quartz, which show that silex, as it cools, has the property of remaining in a viscous state, whereas alumina never does. This "gelatinous flint" is supposed to retain a considerable degree of plasticity long after the granitic mixture has acquired a low temperature; and M. E. de Beaumont suggests, that electric action may prolong the duration of the viscosity of silex. Occasionally, however, we find the quartz and felspar mutually imprinting their forms on each other, affording evidence of the simultaneous crystallization of both.[439-A]

Fig. 489.

Porphyritic granite. Land's End, Cornwall.

Porphyritic granite.—This name has been sometimes given to that variety in which large crystals of felspar, sometimes more than 3 inches in length, are scattered through an ordinary base of granite. An example of this texture may be seen in the granite of the Land's End, in Cornwall ([fig. 489.]). The two larger prismatic crystals in this drawing represent felspar, smaller crystals of which are also seen, similar in form, scattered through the base. In this base also appear black specks of mica, the crystals of which have a more or less perfect hexagonal outline. The remainder of the mass is quartz, the translucency of which is strongly contrasted to the opaqueness of the white felspar and black mica. But neither the transparency of the quartz, nor the silvery lustre of the mica, can be expressed in the engraving.

The uniform mineral character of large masses of granite seems to indicate that large quantities of the component elements were thoroughly mixed up together, and then crystallized under precisely similar conditions. There are, however, many accidental, or "occasional," minerals, as they are termed, which belong to granite. Among these black schorl or tourmaline, actinolite, zircon, garnet, and fluor spar, are not uncommon; but they are too sparingly dispersed to modify the general aspect of the rock. They show, nevertheless, that the ingredients were not everywhere exactly the same; and a still greater variation may be traced in the ever-varying proportions of the felspar, quartz, and mica.

Syenite.—When hornblende is the substitute for mica, which is very commonly the case, the rock becomes Syenite: so called from the celebrated ancient quarries of Syene in Egypt. It has all the appearance of ordinary granite, except when mineralogically examined in hand specimens, and is fully entitled to rank as a geological member of the same plutonic family as granite. Syenite, however, after maintaining the granitic character throughout extensive regions, is not uncommonly found to lose its quartz, and to pass insensibly into syenitic greenstone, a rock of the trap family. Werner considered syenite as a binary compound of felspar and hornblende, and regarded quartz as merely one of its occasional minerals.

Syenitic-granite.—The quadruple compound of quartz, felspar, mica, and hornblende, may be so termed. This rock occurs in Scotland and in Guernsey.

Talcose granite, or Protogine of the French, is a mixture of felspar, quartz, and talc. It abounds in the Alps, and in some parts of Cornwall, producing by its decomposition the china clay, more than 12,000 tons of which are annually exported from that country for the potteries.[440-A]

Schorl rock, and schorly granite.—The former of these is an aggregate of schorl, or tourmaline, and quartz. When felspar and mica are also present, it may be called schorly granite. This kind of granite is comparatively rare.

Eurite.—A rock in which all the ingredients of granite are blended into a finely granular mass. Crystals of quartz and mica are sometimes scattered through the base of Eurite.

Pegmatite.—A name given by French writers to a variety of granite; a granular mixture of quartz and felspar; frequent in granite veins; passes into graphic granite.

All these granites pass into certain kinds of trap, a circumstance which affords one of many arguments in favour of what is now the prevailing opinion, that the granites are also of igneous origin. The contrast of the most crystalline form of granite, to that of the most common and earthy trap, is undoubtedly great; but each member of the volcanic class is capable of becoming porphyritic, and the base of the porphyry may be more and more crystalline, until the mass passes to the kind of granite most nearly allied in mineral composition.

The minerals which constitute alike the granitic and volcanic rocks consist, almost exclusively, of seven elements, namely, silica, alumina, magnesia, lime, soda, potash, and iron; and these may sometimes exist in about the same proportions in a porous lava, a compact trap, or a crystalline granite. It may perhaps be found, on farther examination—for on this subject we have yet much to learn—that the presence of these elements in certain proportions is more favourable than in others to their assuming a crystalline or true granitic structure; but it is also ascertained by experiment, that the same materials may, under different circumstances, form very different rocks. The same lava, for example, may be glassy, or scoriaceous, or stony, or porphyritic, according to the more or less rapid rate at which it cools; and some trachytes and syenitic-greenstones may doubtless form granite and syenite, if the crystallization take place slowly.

It has also been suggested that the peculiar nature and structure of granite may be due to its retaining in it that water which is seen to escape from lavas when they cool slowly, and consolidate in the atmosphere. Boutigny's experiments have shown that melted matter, at a white heat, requires to have its temperature lowered before it can vapourize water; and such discoveries, if they fail to explain the manner in which granites have been formed, serve at least to remind us of the entire distinctness of the conditions under which plutonic and volcanic rocks must be produced.[441-A]

It would be easy to multiply examples and authorities to prove the gradation of the granitic into the trap rocks. On the western side of the fiord of Christiania, in Norway, there is a large district of trap, chiefly greenstone-porphyry, and syenitic-greenstone, resting on fossiliferous strata. To this, on its southern limit, succeeds a region equally extensive of syenite, the passage from the volcanic to the plutonic rock being so gradual that it is impossible to draw a line of demarcation between them.

"The ordinary granite of Aberdeenshire," says Dr. MacCulloch, "is the usual ternary compound of quartz, felspar, and mica; but sometimes hornblende is substituted for the mica. But in many places a variety occurs which is composed simply of felspar and hornblende; and in examining more minutely this duplicate compound, it is observed in some places to assume a fine grain, and at length to become undistinguishable from the greenstones of the trap family. It also passes in the same uninterrupted manner into a basalt, and at length into a soft claystone, with a schistose tendency on exposure, in no respect differing from those of the trap islands of the western coast."[441-B] The same author mentions, that in Shetland, a granite composed of hornblende, mica, felspar, and quartz, graduates in an equally perfect manner into basalt.[441-C]

In Hungary there are varieties of trachyte, which, geologically speaking, are of modern origin, in which crystals, not only of mica, but of quartz, are common, together with felspar and hornblende. It is easy to conceive how such volcanic masses may, at a certain depth from the surface, pass downwards into granite.

Junction of granite and argillaceous schist in Glen Tilt. (MacCulloch.)[442-A]

I have already hinted at the close analogy in the forms of certain granitic and trappean veins; and it will be found that strata penetrated by plutonic rocks have suffered changes very similar to those exhibited near the contact of volcanic dikes. Thus, in Glen Tilt, in Scotland, alternating strata of limestone and argillaceous schist come in contact with a mass of granite. The contact does not take place as might have been looked for, if the granite had been formed there before the strata were deposited, in which case the section would have appeared as in [fig. 490.]; but the union is as represented in [fig. 491.], the undulating outline of the granite intersecting different strata, and occasionally intruding itself in tortuous veins into the beds of clay-slate and limestone, from which it differs so remarkably in composition. The limestone is sometimes changed in character by the proximity of the granitic mass or its veins, and acquires a more compact texture, like that of hornstone or chert, with a splintery fracture, effervescing feebly with acids.

The annexed diagram ([fig. 492.]) represents another junction, in the same district, where the granite sends forth so many veins as to reticulate the limestone and schist, the veins diminishing towards their termination to the thickness of a leaf of paper or a thread. In some places fragments of granite appear entangled, as it were, in the limestone, and are not visibly connected with any larger mass; while sometimes, on the other hand, a lump of the limestone is found in the midst of the granite. The ordinary colour of the limestone of Glen Tilt is lead blue, and its texture large-grained and highly crystalline; but where it approximates to the granite, particularly where it is penetrated by the smaller veins, the crystalline texture disappears, and it assumes an appearance exactly resembling that of hornstone. The associated argillaceous schist often passes into hornblende slate, where it approaches very near to the granite.[442-B]

Fig. 492.

Junction of granite and limestone in Glen Tilt. (MacCulloch.)

The conversion of the limestone in these and many other instances into a siliceous rock, effervescing slowly with acids, would be difficult of explanation, were it not ascertained that such limestones are always impure, containing grains of quartz, mica, or felspar disseminated through them. The elements of these minerals, when the rock has been subjected to great heat, may have been fused, and so spread more uniformly through the whole mass.

Fig. 493.

Granite veins traversing clay slate. Table Mountain, Cape of Good Hope.[443-A]

In the plutonic, as in the volcanic rocks, there is every gradation from a tortuous vein to the most regular form of a dike, such as intersect the tuffs and lavas of Vesuvius and Etna. Dikes of granite may be seen, among other places, on the southern flank of Mount Battock, one of the Grampians, the opposite walls sometimes preserving an exact parallelism for a considerable distance.

As a general rule, however, granite veins in all quarters of the globe are more sinuous in their course than those of trap. They present similar shapes at the most northern point of Scotland, and the southernmost extremity of Africa, as the annexed drawings will show.

It is not uncommon for one set of granite veins to intersect another; and sometimes there are three sets, as in the environs of Heidelberg, where the granite on the banks of the river Necker is seen to consist of three varieties, differing in colour, grain, and various peculiarities of mineral composition. One of these, which is evidently the second in age, is seen to cut through an older granite; and another, still newer, traverses both the second and the first.

In Shetland there are two kinds of granite. One of them, composed of hornblende, mica, felspar, and quartz, is of a dark colour, and is seen underlying gneiss. The other is a red granite, which penetrates the dark variety everywhere in veins.[444-A]

Fig. 494.

Granite veins traversing gneiss, Cape Wrath. (MacCulloch.)[444-B]

Fig. 495.

Granite veins traversing gneiss at Cape Wrath, in Scotland. (MacCulloch.)

The accompanying sketches will explain the manner in which granite veins often ramify and cut each other ([figs. 494.] and [495.]). They represent the manner in which the gneiss at Cape Wrath, in Sutherlandshire, is intersected by veins. Their light colour, strongly contrasted with that of the hornblende-schist, here associated with the gneiss, renders them very conspicuous.

Granite very generally assumes a finer grain, and undergoes a change in mineral composition, in the veins which it sends into contiguous rocks. Thus, according to Professor Sedgwick, the main body of the Cornish granite is an aggregate of mica, quartz, and felspar; but the veins are sometimes without mica, being a granular aggregate of quartz and felspar. In other varieties quartz prevails to the almost entire exclusion both of felspar and mica; in others, the mica and quartz both disappear, and the vein is simply composed of white granular felspar.[444-C]

[Fig. 496.] is a sketch of a group of granite veins in Cornwall, given by Messrs. Von Oeynhausen and Von Dechen.[445-A] The main body of the granite here is of a porphyritic appearance, with large crystals of felspar; but in the veins it is fine-grained, and without these large crystals. The general height of the veins is from 16 to 20 feet, but some are much higher.

Fig. 496.

Granite veins passing through hornblende slate, Carnsilver Cove, Cornwall.

In the Valorsine, a valley not far from Mont Blanc in Switzerland, an ordinary granite, consisting of felspar, quartz, and mica, sends forth veins into a talcose gneiss (or stratified protogine), and in some places lateral ramifications are thrown off from the principal veins at right angles (see [fig. 497.]), the veins, especially the minute ones, being finer grained than the granite in mass.

Fig. 497.

Veins of granite in talcose gneiss. (L. A. Necker.)

It is here remarked, that the schist and granite, as they approach, seem to exercise a reciprocal influence on each other, for both undergo a modification of mineral character. The granite, still remaining unstratified, becomes charged with green particles; and the talcose gneiss assumes a granitiform structure without losing its stratification.[445-B]

Professor Keilhau drew my attention to several localities in the country near Christiania, where the mineral character of gneiss appears to have been affected by a granite of much newer origin, for some distance from the point of contact. The gneiss, without losing its laminated structure, seems to have become charged with a larger quantity of felspar, and that of a redder colour, than the felspar usually belonging to the gneiss of Norway.

Granite, syenite, and those porphyries which have a granitiform structure, in short all plutonic rocks, are frequently observed to contain metals, at or near their junction with stratified formations. On the other hand, the veins which traverse stratified rocks are, as a general law, more metalliferous near such junctions than in other positions. Hence it has been inferred that these metals may have been spread in a gaseous form through the fused mass, and that the contact of another rock, in a different state of temperature, or sometimes the existence of rents in other rocks in the vicinity, may have caused the sublimation of the metals.[446-A]

There are many instances, as at Markerud, near Christiania, in Norway, where the strike of the beds has not been deranged throughout a large area by the intrusion of granite, both in large masses and in veins. This fact is considered by some geologists to militate against the theory of the forcible injection of granite in a fluid state. But it may be stated in reply, that ramifying dikes of trap, which almost all now admit to have been once fluid, pass through the same fossiliferous strata, near Christiania, without deranging their strike or dip.[446-B]

Fig. 498.

General view of junction of granite and schist of the Valorsine. (L. A. Necker.)

The real or apparent isolation of large or small masses of granite detached from the main body, as at a b, [fig. 498.], and above, [fig. 492.], and a, [fig. 497.], has been thought by some writers to be irreconcilable with the doctrine usually taught respecting veins; but many of them may, in fact, be sections of root-shaped prolongations of granite; while, in other cases, they may in reality be detached portions of rock having the plutonic structure. For there may have been spots in the midst of the invaded strata, in which there was an assemblage of materials more fusible than the rest, or more fitted to combine readily into some form of granite.

Veins of pure quartz are often found in granite, as in many stratified rocks, but they are not traceable, like veins of granite or trap, to large bodies of rock of similar composition. They appear to have been cracks, into which siliceous matter was infiltered. Such segregation, as it is called, can sometimes be shown to have clearly taken place long subsequently to the original consolidation of the containing rock. Thus, for example, in the gneiss of Tronstad Strand, near Drammen, in Norway, the annexed section is seen on the beach. It appears that the alternating strata of whitish granitiform gneiss, and black hornblende-schist, were first cut through by a greenstone dike, about 21/2 feet wide; then the crack a b passed through all these rocks, and was filled up with quartz. The opposite walls of the vein are in some parts incrusted with transparent crystals of quartz, the middle of the vein being filled up with common opaque white quartz.

Fig. 499.

a, b. Quartz vein passing through gneiss and greenstone, Tronstad Strand, near Christiania.

Fig. 500.

Euritic porphyry alternating with primary fossiliferous strata, near Christiania.

We have seen that the volcanic formations have been called overlying, because they not only penetrate others, but spread over them. Mr. Necker has proposed to call the granites the underlying igneous rocks, and the distinction here indicated is highly characteristic. It was indeed supposed by some of the earlier observers, that the granite of Christiania, in Norway, was intercalated in mountain masses between the primary or paleozoic strata of that country, so as to overlie fossiliferous shale and limestone. But although the granite sends veins into these fossiliferous rocks, and is decidedly posterior in origin, its actual superposition in mass has been disproved by Professor Keilhau, whose observations on this controverted point I had opportunities in 1837 of verifying. There are, however, on a smaller scale, certain beds of euritic porphyry, some a few feet, others many yards in thickness, which pass into granite, and deserve perhaps to be classed as plutonic rather than trappean rocks, which may truly be described as interposed conformably between fossiliferous strata, as the porphyries (a c, [fig. 500.]), which divide the bituminous shales and argillaceous limestones, f f. But some of these same porphyries are partially unconformable, as b, and may lead us to suspect that the others also, notwithstanding their appearance of interstratification, have been forcibly injected. Some of the porphyritic rocks above mentioned are highly quartzose, others very felspathic. In proportion as the masses are more voluminous, they become more granitic in their texture, less conformable, and even begin to send forth veins into contiguous strata. In a word, we have here a beautiful illustration of the intermediate gradations between volcanic and plutonic rocks, not only in their mineralogical composition and structure, but also in their relations of position to associated formations. If the term overlying can in this instance be applied to a plutonic rock, it is only in proportion as that rock begins to acquire a trappean aspect.

It has been already hinted that the heat, which in every active volcano extends downwards to indefinite depths, must produce simultaneously very different effects near the surface, and far below it; and we cannot suppose that rocks resulting from the crystallizing of fused matter under a pressure of several thousand feet, much less miles, of the earth's crust can resemble those formed at or near the surface. Hence the production at great depths of a class of rocks analogous to the volcanic, and yet differing in many particulars, might almost have been predicted, even had we no plutonic formations to account for. How well these agree, both in their positive and negative characters, with the theory of their deep subterranean origin, the student will be able to judge by considering the descriptions already given.

It has, however, been objected, that if the granitic and volcanic rocks were simply different parts of one great series, we ought to find in mountain chains volcanic dikes passing upwards into lava, and downwards into granite. But we may answer, that our vertical sections are usually of small extent; and if we find in certain places a transition from trap to porous lava, and in others a passage from granite to trap, it is as much as could be expected of this evidence.

The prodigious extent of denudation which has been already demonstrated to have occurred at former periods, will reconcile the student to the belief that crystalline rocks of high antiquity, although deep in the earth's crust when originally formed, may have become uncovered and exposed at the surface. Their actual elevation above the sea may be referred to the same causes to which we have attributed the upheaval of marine strata, even to the summits of some mountain chains. But to these and other topics, I shall revert when speaking, in the next chapter, of the relative ages of different masses of granite.


CHAPTER XXXIV.

ON THE DIFFERENT AGES OF THE PLUTONIC ROCKS.

Difficulty in ascertaining the precise age of a plutonic rock — Test of age by relative position — Test by intrusion and alteration — Test by mineral composition — Test by included fragments — Recent and Pliocene plutonic rocks, why invisible — Tertiary plutonic rocks in the Andes — Granite altering Cretaceous rocks — Granite altering Lias in the Alps and in Skye — Granite of Dartmoor altering Carboniferous strata — Granite of the Old Red Sandstone period — Syenite altering Silurian strata in Norway — Blending of the same with gneiss — Most ancient plutonic rocks — Granite protruded in a solid form — On the probable age of the granites of Arran, in Scotland.

When we adopt the igneous theory of granite, as explained in the last chapter, and believe that different plutonic rocks have originated at successive periods beneath the surface of the planet, we must be prepared to encounter greater difficulty in ascertaining the precise age of such rocks, than in the case of volcanic and fossiliferous formations. We must bear in mind, that the evidence of the age of each contemporaneous volcanic rock was derived, either from lavas poured out upon the ancient surface, whether in the sea or in the atmosphere, or from tuffs and conglomerates, also deposited at the surface, and either containing organic remains themselves, or intercalated between strata containing fossils. But all these tests fail when we endeavour to fix the chronology of a rock which has crystallized from a state of fusion in the bowels of the earth. In that case, we are reduced to the following tests; 1st, relative position; 2dly, intrusion, and alteration of the rocks in contact; 3dly, mineral characters; 4thly, included fragments.

Test of age by relative position.—Unaltered fossiliferous strata of every age are met with reposing immediately on plutonic rocks; as at Christiania, in Norway, where the Newer Pliocene deposits rest on granite; in Auvergne, where the freshwater Eocene strata, and at Heidelberg, on the Rhine, where the New Red sandstone, occupy a similar place. In all these, and similar instances, inferiority in position is connected with the superior antiquity of granite. The crystalline rock was solid before the sedimentary beds were superimposed, and the latter usually contain in them rounded pebbles of the subjacent granite.

Test by intrusion and alteration.—But when plutonic rocks send veins into strata, and alter them near the point of contact, in the manner before described ([p. 442.]), it is clear that, like intrusive traps, they are newer than the strata which they invade and alter. Examples of the application of this test will be given in the sequel.

Test by mineral composition.—Notwithstanding a general uniformity in the aspect of plutonic rocks, we have seen in the last chapter that there are many varieties, such as Syenite, Talcose granite, and others. One of these varieties is sometimes found exclusively prevailing throughout an extensive region, where it preserves a homogeneous character; so that having ascertained its relative age in one place, we can easily recognize its identity in others, and thus determine from a single section the chronological relations of large mountain masses. Having observed, for example, that the syenitic granite of Norway, in which the mineral called zircon abounds, has altered the Silurian strata wherever it is in contact, we do not hesitate to refer other masses of the same zircon-syenite in the south of Norway to the same era.

Some have imagined that the age of different granites might, to a great extent, be determined by their mineral characters alone; syenite, for instance, or granite with hornblende, being more modern than common or micaceous granite. But modern investigations have proved these generalizations to have been premature. The syenitic granite of Norway already alluded to may be of the same age as the Silurian strata, which it traverses and alters, or may belong to the Old Red sandstone period; whereas the granite of Dartmoor, although consisting of mica, quartz, and felspar, is newer than the coal. (See [p. 456.])

Test by included fragments.—This criterion can rarely be of much importance, because the fragments involved in granite are usually so much altered, that they cannot be referred with certainty to the rocks whence they were derived. In the White Mountains, in North America, according to Professor Hubbard, a granite vein traversing granite, contains fragments of slate and trap, which must have fallen into the fissure when the fused materials of the vein were injected from below[450-A], and thus the granite is shown to be newer than certain superficial slaty and trappean formations.

Recent and Pliocene plutonic rocks, why invisible.—The explanation already given in the 29th and in the last chapter, of the probable relation of the plutonic to the volcanic formations, will naturally lead the reader to infer, that rocks of the one class can never be produced at or near the surface without some members of the other being formed below simultaneously, or soon afterwards. It is not uncommon for lava-streams to require more than ten years to cool in the open air; and where they are of great depth, a much longer period. The melted matter poured from Jorullo, in Mexico, in the year 1759, which accumulated in some places to the height of 550 feet, was found to retain a high temperature half a century after the eruption.[450-B] We may conceive, therefore, that great masses of subterranean lava may remain in a red-hot or incandescent state in the volcanic foci for immense periods, and the process of refrigeration may be extremely gradual. Sometimes, indeed, this process may be retarded for an indefinite period, by the accession of fresh supplies of heat; for we find that the lava in the crater of Stromboli, one of the Lipari Islands, has been in a state of constant ebullition for the last two thousand years; and we may suppose this fluid mass to communicate with some caldron or reservoir of fused matter below. In the Isle of Bourbon, also, where there has been an emission of lava once in every two years for a long period, the lava below can scarcely fail to have been permanently in a state of liquefaction. If then it be a reasonable conjecture, that about 2000 volcanic eruptions occur in the course of every century, either above the waters of the sea or beneath them[451-A], it will follow, that the quantity of plutonic rock generated, or in progress during the Recent epoch, must already have been considerable.

But as the plutonic rocks originate at some depth in the earth's crust, they can only be rendered accessible to human observation, by subsequent upheaval and denudation. Between the period when a plutonic rock crystallizes in the subterranean regions, and the era of its protrusion at any single point of the surface, one or two geological periods must usually intervene. Hence, we must not expect to find the Recent or Newer Pliocene granites laid open to view, unless we are prepared to assume that sufficient time has elapsed since the commencement of the Newer Pliocene period for great upheaval and denudation. A plutonic rock, therefore, must, in general, be of considerable antiquity relatively to the fossiliferous and volcanic formations, before it becomes extensively visible. As we know that the upheaval of land has been sometimes accompanied in South America by volcanic eruptions and the emission of lava, we may conceive the more ancient plutonic rocks to be forced upwards to the surface by the newer rocks of the same class formed successively below,—subterposition in the plutonic, like superposition in the sedimentary rocks, being usually characteristic of a newer origin.

In the accompanying diagram ([fig. 501.]), an attempt is made to show the inverted order in which sedimentary and plutonic formations may occur in the earth's crust.

The oldest plutonic rock, No. I., has been upheaved at successive periods until it has become exposed to view in a mountain-chain. This protrusion of No. I. has been caused by the igneous agency which produced the newer plutonic rocks Nos. II. III. and IV. Part of the primary fossiliferous strata, No. 1., have also been raised to the surface by the same gradual process. It will be observed that the Recent strata No. 4., and the Recent granite or plutonic rock No. IV., are the most remote from each other in position, although of contemporaneous date. According to this hypothesis, the convulsions of many periods will be required before Recent granite will be upraised so as to form the highest ridges and central axes of mountain-chains. During that time the Recent strata No. 4. might be covered by a great many newer sedimentary formations.

Fig. 501.

Diagram showing the relative position which the plutonic and sedimentary formations of different ages may occupy.

I. Primary plutonic.4. Recent strata.
II.Secondary plutonic.3. Tertiary strata.
III.Tertiary plutonic.2. Secondary strata.
IV.Recent plutonic.1. Primary fossiliferous strata.

The metamorphic rocks are not indicated in this diagram; but the student will infer, from what has been said in Chap. XXXII., that some portions of the stratified formations Nos. 1. and 2. invaded by granite will have become metamorphic.

Eocene granite and plutonic rocks.—In a former part of this volume ([p. 205.]), the great nummulitic formation of the Alps and Pyrenees was referred to the Eocene period, and it follows that those vast movements which have raised fossiliferous rocks from the level of the sea to the height of more than 10,000 feet above its level have taken place since the commencement of the tertiary epoch. Here, therefore, if anywhere, we might expect to find hypogene formations of Eocene date breaking out in the central axis or most disturbed region of the loftiest chain in Europe. Accordingly, in the Swiss Alps, even the flysch, or upper portion of the nummulitic series, has been occasionally invaded by plutonic rocks, and converted into crystalline schists of the hypogene class. There can be little doubt that even the talcose granite of Mont Blanc itself has been in a fused or pasty state since the flysch was deposited at the bottom of the sea; and the question as to its age is not so much whether it be a secondary or tertiary granite, as whether it should be assigned to the Eocene or Miocene epoch.

Great upheaving movements have been experienced in the region of the Andes, during the Post-Pliocene period. In some part, therefore, of this chain, we may expect to discover tertiary plutonic rocks laid open to view. What we already know of the structure of the Chilian Andes seems to realize this expectation. In a transverse section, examined by Mr. Darwin, between Valparaiso and Mendoza, the Cordillera was found to consist of two separate and parallel chains, formed of sedimentary rocks of different ages, the strata in both resting on plutonic rocks, by which they have been altered. In the western or oldest range, called the Peuquenes, are black calcareous clay-slates, rising to the height of nearly 14,000 feet above the sea, in which are shells of the genera Gryphæa, Turritella, Terebratula, and Ammonite. These rocks are supposed to be of the age of the central parts of the secondary series of Europe. They are penetrated and altered by dikes and mountain masses of a plutonic rock, which has the texture of ordinary granite, but rarely contains quartz, being a compound of albite and hornblende.

The second or eastern chain consists chiefly of sandstones and conglomerates, of vast thickness, the materials of which are derived from the ruins of the western chain. The pebbles of the conglomerates are, for the most part, rounded fragments of the fossiliferous slates before mentioned. The resemblance of the whole series to certain tertiary deposits on the shores of the Pacific, not only in mineral character, but in the imbedded lignite and silicified woods, leads to the conjecture that they also are tertiary. Yet these strata are not only associated with trap rocks and volcanic tuffs, but are also altered by a granite consisting of quartz, felspar, and talc. They are traversed, moreover, by dikes of the same granite, and by numerous veins of iron, copper, arsenic, silver, and gold; all of which can be traced to the underlying granite.[453-A] We have, therefore, strong ground to presume that the plutonic rock, here exposed on a large scale in the Chilian Andes, is of later date than certain tertiary formations.

But the theory adopted in this work of the subterranean origin of the hypogene formations would be untenable, if the supposed fact here alluded to, of the appearance of tertiary granite at the surface was not a rare exception to the general rule. A considerable lapse of time must intervene between the formation in the nether regions of plutonic and metamorphic rocks, and their emergence at the surface. For a long series of subterranean movements must occur before such rocks can be uplifted into the atmosphere or the ocean; and, before they can be rendered visible to man, some strata which previously covered them must usually have been stripped off by denudation.

We know that in the Bay of Baiæ, in 1538, in Cutch in 1819, and on several occasions in Peru and Chili, since the commencement of the present century, the permanent upheaval or subsidence of land has been accompanied by the simultaneous emission of lava at one or more points in the same volcanic region. From these and other examples it may be inferred that the rising or sinking of the earth's crust, operations by which sea is converted into land, and land into sea, are a part only of the consequences of subterranean igneous action. It can scarcely be doubted that this action consists, in a great degree, of the baking, and occasionally the liquefaction, of rocks, causing them to assume, in some cases a larger, in others a smaller volume than before the application of heat. It consists also in the generation of gases, and their expansion by heat, and the injection of liquid matter into rents formed in superincumbent rocks. The prodigious scale on which these subterranean causes have operated in Sicily since the deposition of the Newer Pliocene strata will be appreciated, when we remember that throughout half the surface of that island such strata are met with, raised to the height of from 50 to that of 2000 and even 3000 feet above the level of the sea. In the same island also the older rocks which are contiguous to these marine tertiary strata must have undergone, within the same period, a similar amount of upheaval.

The like observations may be extended to nearly the whole of Europe, for, since the commencement of the Eocene period, the entire European area, including some of the central and very lofty portions of the Alps themselves, as I have elsewhere shown[454-A], has, with the exception of a few districts, emerged from the deep to its present altitude; and even those tracts, which were already dry land before the Eocene era, have almost everywhere acquired additional height. A large amount of subsidence has also occurred during the same period, so that the extent of the subterranean spaces which have either become the receptacles of sunken fragments of the earth's crust, or have been rendered capable of supporting other fragments at a much greater height than before, must be so great that they probably equal, if not exceed in volume, the entire continent of Europe. We are entitled, therefore, to ask what amount of change of equivalent importance can be proved to have occurred in the earth's crust within an equal quantity of time anterior to the Eocene epoch. They who contend for the more intense energy of subterranean causes in the remoter eras of the earth's history, may find it more difficult to give an answer to this question than they anticipated.

The principal effect of volcanic action in the nether regions, during the tertiary period, seems to have consisted in the upheaval to the surface of hypogene formations of an age anterior to the carboniferous. The repetition of another series of movements, of equal violence, might upraise the plutonic and metamorphic rocks of many secondary periods; and if the same force should still continue to act, the next convulsions might bring up to the day the tertiary and recent hypogene rocks. In the course of such changes many of the existing sedimentary strata would suffer greatly by denudation, others might assume a metamorphic structure, or become melted down into plutonic and volcanic rocks. Meanwhile the deposition of a vast thickness of new strata would not fail to take place during the upheaval and partial destruction of the older rocks. But I must refer the reader to the last chapter but one of this volume for a fuller explanation of these views.

Fig. 502.

Cretaceous period.—It will be shown in the next chapter that chalk, as well as lias, has been altered by granite in the eastern Pyrenees. Whether such granite be cretaceous or tertiary cannot easily be decided. Suppose b, c, d, to be three members of the Cretaceous series, the lowest of which, b, has been altered by the granite A, the modifying influence not having extended so far as c, or having but slightly affected its lowest beds. Now it can rarely be possible for the geologist to decide whether the beds d existed at the time of the intrusion of A, and alteration of b and c, or whether they were subsequently thrown down upon c.

As some Cretaceous rocks, however, have been raised to the height of more than 9000 feet in the Pyrenees, we must not assume that plutonic formations of the same age may not have been brought up and exposed by denudation, at the height of 2000 or 3000 feet on the flanks of that chain.

Period of Oolite and Lias.—In the department of the Hautes Alpes, in France, near Vizille, M. Elie de Beaumont traced a black argillaceous limestone, charged with belemnites, to within a few yards of a mass of granite. Here the limestone begins to put on a granular texture, but is extremely fine-grained. When nearer the junction it becomes grey, and has a saccharoid structure. In another locality, near Champoleon, a granite composed of quartz, black mica, and rose-coloured felspar, is observed partly to overlie the secondary rocks, producing an alteration which extends for about 30 feet downwards, diminishing in the beds which lie farthest from the granite. (See [fig. 503.]) In the altered mass the argillaceous beds are hardened, the limestone is saccharoid, the grits quartzose, and in the midst of them is a thin layer of an imperfect granite. It is also an important circumstance that near the point of contact, both the granite and the secondary rocks become metalliferous, and contain nests and small veins of blende, galena, iron, and copper pyrites. The stratified rocks become harder and more crystalline, but the granite, on the contrary, softer and less perfectly crystallized near the junction.[456-A]

Fig. 503.

Junction of granite with Jurassic or Oolite strata in the Alps, near Champoleon.

Although the granite is incumbent in the above section ([fig. 503.]), we cannot assume that it overflowed the strata, for the disturbances of the rocks are so great in this part of the Alps that they seldom retain the position which they must originally have occupied.

A considerable mass of syenite, in the Isle of Skye, is described by Dr. MacCulloch as intersecting limestone and shale, which are of the age of the lias.[456-B] The limestone, which, at a greater distance from the granite, contains shells, exhibits no traces of them near its junction, where it has been converted into a pure crystalline marble.[456-C]

At Predazzo, in the Tyrol, secondary strata, some of which are limestones of the Oolitic period, have been traversed and altered by plutonic rocks, one portion of which is an augitic porphyry, which passes insensibly into granite. The limestone is changed into granular marble, with a band of serpentine at the junction.[456-D]

Carboniferous period.—The granite of Dartmoor, in Devonshire, was formerly supposed to be one of the most ancient of the plutonic rocks, but is now ascertained to be posterior in date to the culm-measures of that county, which, from their position, and as containing true coal-plants, are regarded by Professor Sedgwick and Sir R. Murchison as members of the true carboniferous series. This granite, like the syenitic granite of Christiania, has broken through the stratified formations without much changing their strike. Hence, on the north-west side of Dartmoor, the successive members of the culm-measures abut against the granite, and become metamorphic as they approach. These strata are also penetrated by granite veins, and plutonic dikes, called "elvans."[457-A] The granite of Cornwall is probably of the same date, and, therefore, as modern as the Carboniferous strata, if not much newer.

Silurian period.—It has long been known that the granite near Christiania, in Norway, is of newer origin than the Silurian strata of that region. Von Buch first announced, in 1813, the discovery of its posteriority in date to limestones containing orthocerata and trilobites. The proofs consist in the penetration of granite veins into the shale and limestone, and the alteration of the strata, for a considerable distance from the point of contact, both of these veins and the central mass from which they emanate. (See [p. 447.]) Von Buch supposed that the plutonic rock alternated with the fossiliferous strata, and that large masses of granite were sometimes incumbent upon the strata; but this idea was erroneous, and arose from the fact that the beds of shale and limestone often dip towards the granite up to the point of contact, appearing as if they would pass under it in mass, as at a, [fig. 504.], and then again on the opposite side of the same mountain, as at b, dip away from the same granite. When the junctions, however, are carefully examined, it is found that the plutonic rock intrudes itself in veins, and nowhere covers the fossiliferous strata in large overlying masses, as is so commonly the case with trappean formations.[457-B]

Fig. 504.

Now this granite, which is more modern than the Silurian strata of Norway, also sends veins in the same country into an ancient formation of gneiss; and the relations of the plutonic rock and the gneiss, at their junction, are full of interest when we duly consider the wide difference of epoch which must have separated their origin.

Fig. 505.

Granite sending veins into Silurian strata and Gneiss,—Christiania, Norway.

The length of this interval of time is attested by the following facts:—The fossiliferous, or Silurian beds, rest unconformably upon the truncated edges of the gneiss, the inclined strata of which had been disturbed and denuded before the sedimentary beds were superimposed (see [fig. 505.]). The signs of denudation are twofold; first, the surface of the gneiss is seen occasionally, on the removal of the newer beds, containing organic remains, to be worn and smoothed; secondly, pebbles of gneiss have been found in some of the transition strata. Between the origin, therefore, of the gneiss and the granite there intervened, first, the period when the strata of gneiss were inclined; secondly, the period when they were denuded; thirdly, the period of the deposition of the transition deposits. Yet the granite produced, after this long interval, is often so intimately blended with the ancient gneiss, at the point of junction, that it is impossible to draw any other than an arbitrary line of separation between them; and where this is not the case, tortuous veins of granite pass freely through gneiss, ending sometimes in threads, as if the older rock had offered no resistance to their passage. It seems necessary, therefore, to conceive that the gneiss was softened and more or less melted when penetrated by the granite. But had such junctions alone been visible, and had we not learnt, from other sections, how long a period elapsed between the consolidation of the gneiss and the injection of this granite, we might have suspected that the gneiss was scarcely solidified, or had not yet assumed its complete metamorphic character, when invaded by the plutonic rock. From this example we may learn how impossible it is to conjecture whether certain granites in Scotland, and other countries, which send veins into gneiss and other metamorphic rocks, are primary, or whether they may not belong to some secondary or tertiary period.

Oldest granites.—It is not half a century since the doctrine was very general that all granitic rocks were primitive, that is to say, that they originated before the deposition of the first sedimentary strata, and before the creation of organic beings (see above, [p. 9.]). But so greatly are our views now changed, that we find it no easy task to point out a single mass of granite demonstrably more ancient than all the known fossiliferous deposits. Could we discover some Lower Cambrian strata resting immediately on granite, there being no alterations at the point of contact, nor any intersecting granitic veins, we might then affirm the plutonic rock to have originated before the oldest known fossiliferous strata. Still it would be presumptuous to suppose that when a small part only of the globe has been investigated, we are acquainted with the oldest fossiliferous strata in the crust of our planet. Even when these are found, we cannot assume that there never were any antecedent strata containing organic remains, which may have become metamorphic. If we find pebbles of granite in a conglomerate of the Lower Cambrian system, we may then feel assured that the parent granite was formed before the Lower Cambrian formation. But if the incumbent strata be merely Silurian or Upper Cambrian, the fundamental granite, although of high antiquity, may be posterior in date to known fossiliferous formations.

Protrusion of solid granite.—In part of Sutherlandshire, near Brora, common granite, composed of felspar, quartz, and mica, is in immediate contact with Oolitic strata, and has clearly been elevated to the surface at a period subsequent to the deposition of those strata.[459-A] Professor Sedgwick and Sir R. Murchison conceive that this granite has been upheaved in a solid form; and that in breaking through the submarine deposits, with which it was not perhaps originally in contact, it has fractured them so as to form a breccia along the line of junction. This breccia consists of fragments of shale, sandstone, and limestone, with fossils of the oolite, all united together by a calcareous cement. The secondary strata, at some distance from the granite, are but slightly disturbed, but in proportion to their proximity the amount of dislocation becomes greater.

If we admit that solid hypogene rocks, whether stratified or unstratified, have in such cases been driven upwards so as to pierce through yielding sedimentary deposits, we shall be enabled to account for many geological appearances otherwise inexplicable. Thus, for example, at Weinböhla and Hohnstein, near Meissen, in Saxony, a mass of granite has been observed covering strata of the Cretaceous and Oolitic periods for the space of between 300 and 400 yards square. It appears clearly from a recent Memoir of Dr. B. Cotta on this subject[459-B], that the granite was thrust into its actual position when solid. There are no intersecting veins at the junction—no alteration as if by heat, but evident signs of rubbing, and a breccia in some places, in which pieces of granite are mingled with broken fragments of the secondary rocks. As the granite overhangs both the lias and chalk, so the lias is in some places bent over strata of the cretaceous era.

Relative age of the granites of Arran.—In this island, the largest in the Firth of Clyde, being twenty miles in length from north to south, the four great classes of rocks, the fossiliferous, volcanic, plutonic, and metamorphic, are all conspicuously displayed within a very small area, and with their peculiar characters strongly contrasted. In the north of the island the granite rises to the height of nearly 3000 feet above the sea, terminating in mountainous peaks. (See section, [fig. 506.]) On the flanks of the same mountains are chloritic-schists, blue roofing-slate, and other rocks of the metamorphic order (No. 1.), into which the granite (No. 2.) sends veins. This granite, therefore, is newer than the hypogene schists (No. 1.), which it penetrates.

These schists are highly inclined. Upon them rest beds of conglomerate and sandstone (No. 3.), which are referable to the Old Red formation, to which succeed various shales and limestones (No. 4.) containing the fossils of the Carboniferous period, upon which are other strata of sandstone and conglomerate (upper part of No. 4.), in which no fossils have been met with, which it is conjectured may belong to the New Red sandstone period. All the preceding formations are cut through by the volcanic rocks (No. 5.), which consist of greenstone, basalt, pitchstone, claystone-porphyry, and other varieties. These appear either in the form of dikes, or in dense masses from 50 to 700 feet in thickness, overlying the strata (No. 4.). They sometimes pass into syenite of so crystalline a form, that it may rank as a plutonic formation; and in one region, at Ploverfield, in Glen Cloy, a fine-grained granite (6. a) is seen associated with the trap formation, and sending veins into the sandstone or into the upper strata of No. 4. This interesting discovery of granite in the southern region of Arran, at a point where it is separated from the northern mass of granite by a great thickness of secondary strata and overlying trap, was made by Mr. L. A. Necker of Geneva, during his survey of Arran in 1839. We also learn from the recent investigations of Prof. A. C. Ramsay, that a similar fine-grained granite (No. 6. b) appears in the interior of the northern granitic district, forming the nucleus of it, and sending veins into the older coarse-grained granite (No. 2.). The trap dikes which penetrate the older granite are cut off, according to Mr. Ramsay, at the junction of the fine grained.

It is not improbable that the granite (No. 6. b) may be of the same age as that of Ploverfield (No. 6. a), and this again may belong to the same geological epoch as the trap formations (No. 5.). If there be any difference of date, it would seem that the fine-grained granite must be newer than the trappean rocks. But, on the other hand, the coarser granite (No. 2.) may be the oldest rock in Arran, with the exception of the hypogene slates (No. 1.), into which it sends veins.

Fig. 506. General Section of Arran from north to south.

An objection may perhaps at first be started to this conclusion, derived from the curious and striking fact, the importance of which was first emphatically pointed out by Dr. MacCulloch, that no pebbles of granite occur in the conglomerates of the red sandstone in Arran, although these conglomerates are several hundred feet in thickness, and lie at the foot of lofty granite mountains, which tower above them. As a general rule, all such aggregates of pebbles and sand are mainly composed of the wreck of pre-existing rocks occurring in the immediate vicinity. The total absence therefore of granitic pebbles has justly been a theme of wonder to those geologists who have successively visited Arran, and they have carefully searched there, as I have done myself, to find an exception, but in vain. The rounded masses consist exclusively of quartz, chlorite-schist, and other members of the metamorphic series; nor in the newer conglomerates of No. 4. have any granitic fragments been discovered. Are we then entitled to affirm that the coarse-grained granite (No. 2.), like the fine-grained variety (No. 6. a), is more modern than all the other rocks of the island? This we cannot assume at present, but we may confidently infer that when the various beds of sandstone and conglomerate were formed, no granite had reached the surface, or had been exposed to denudation in Arran. It is clear that the crystalline schists were ground into sand and shingle when the strata No. 3. were deposited, and at that time the waves had never acted upon the granite, which now sends its veins into the schist. May we then conclude, that the schists suffered denudation before they were invaded by granite? This opinion, although not inadmissible, is by no means fully borne out by the evidence. For at the time when the Old Red sandstone originated, the metamorphic strata may have formed islands in the sea, as in [fig. 507.], over which the breakers rolled, or from which torrents and rivers descended, carrying down gravel and sand. The plutonic rock or granite (B) may even then have been previously injected at a certain depth below, and yet may never have been exposed to denudation.

Fig. 507.

As to the time and manner of the subsequent protrusion of the coarse-grained granite (No. 2.), this rock may have been thrust up bodily, in a solid form, during that long series of igneous operations which produced the trappean and plutonic formations (Nos. 5., 6. a, and 6. b).

We have shown that these eruptions, whatever their date, were posterior to the deposition of all the fossiliferous strata of Arran. We can also prove that subsequently both the granitic and trappean rocks underwent great aqueous denudation, which they probably suffered during their emergence from the sea. The fact is demonstrated by the abrupt truncation of numerous dikes, such as those at c, d, e, which are cut off on the surface of the granite and trap. The overlying trap also ceases very abruptly on approaching the boundary of the great hypogene region, and terminates in a steep escarpment facing towards it as at f, [fig. 506.] When in its original fluid state it could not have come thus suddenly to an end, but must have filled up the hollow now separating it from the hypogene rocks, had such a hollow then existed. This necessity of supposing that both the trap and the conglomerate once extended farther, and that veins such as c, d, [fig. 506.], were once prolonged farther upwards, prepares us to believe that the whole of the northern granite may at one time have been covered by newer formations, under the pressure of which, before its protrusion, it assumed its highly crystalline texture.

The theory of the protrusion in a solid form of the northern nucleus of granite is confirmed by the manner in which the hypogene slates (No. 1.) and the beds of conglomerate (No. 3.) dip away from it on all sides. In some places indeed the slates are inclined towards the granite, but this exception might have been looked for, because these hypogene strata have undergone disturbances at more than one geological epoch, and may at some points, perhaps, have their original order of position inverted. The high inclination, therefore, and the quâquâversal dip of the beds around the borders of the granitic boss, and the comparative horizontality of the fossiliferous strata in the southern part of the island, are facts which all accord with the hypothesis of a great amount of movement at that point where the granite is supposed to have been thrust up bodily, and where we may conceive it to have been distended laterally by the repeated injection of fresh supplies of melted materials.[463-A]


[CHAPTER XXXV].

METAMORPHIC ROCKS.

General character of metamorphic rocks — Gneiss — Hornblende-schist — Mica-schist — Clay-slate — Quartzite — Chlorite-schist — Metamorphic limestone — Alphabetical list and explanation of other rocks of this family — Origin of the metamorphic strata — Their stratification is real and distinct from cleavage — Joints and slaty cleavage — Supposed causes of these structures — How far connected with crystalline action.

We have now considered three distinct classes of rocks: first, the aqueous, or fossiliferous; secondly, the volcanic; and, thirdly, the plutonic, or granitic; and we have now, lastly, to examine those crystalline (or hypogene) strata to which the name of metamorphic has been assigned. The last-mentioned term expresses, as before explained, a theoretical opinion that such strata, after having been deposited from water, acquired, by the influence of heat and other causes, a highly crystalline texture. They who still question this opinion may call the rocks under consideration the stratified hypogene, or schistose hypogene formations.

These rocks, when in their most characteristic or normal state, are wholly devoid of organic remains, and contain no distinct fragments of other rocks, whether rounded or angular. They sometimes break out in the central parts of narrow mountain chains, but in other cases extend over areas of vast dimensions, occupying, for example, nearly the whole of Norway and Sweden, where, as in Brazil, they appear alike in the lower and higher grounds. In Great Britain, those members of the series which approach most nearly to granite in their composition, as gneiss, mica-schist, and hornblende-schist, are confined to the country north of the rivers Forth and Clyde.

Many attempts have been made to trace a general order of succession or superposition in the members of this family; gneiss, for example, having been often supposed to hold invariably a lower geological position than mica-schist. But although such an order may prevail throughout limited districts, it is by no means universal, nor even general, throughout the globe. To this subject, however, I shall again revert, in the last chapter of this volume, when the chronological relations of the metamorphic rocks are pointed out.

The following may be enumerated as the principal members of the metamorphic class:—gneiss, mica-schist, hornblende-schist, clay-slate, chlorite-schist, hypogene or metamorphic limestone, and certain kinds of quartz-rock or quartzite.

Fig. 508.

Fragment of gneiss, natural size; section at right angles to planes of stratification.

Gneiss.—The first of these, gneiss, may be called stratified granite, being formed of the same materials as granite, namely, felspar, quartz, and mica. In the specimen here figured, the white layers consist almost exclusively of granular felspar, with here and there a speck of mica and grain of quartz. The dark layers are composed of grey quartz and black mica, with occasionally a grain of felspar intermixed. The rock splits most easily in the plane of these darker layers, and the surface thus exposed is almost entirely covered with shining spangles of mica. The accompanying quartz, however, greatly predominates in quantity, but the most ready cleavage is determined by the abundance of mica in certain parts of the dark layer.

Instead of these thin laminæ, gneiss is sometimes simply divided into thick beds, in which the mica has only a slight degree of parallelism to the planes of stratification.

The term "gneiss," however, in geology is commonly used in a wider sense, to designate a formation in which the above-mentioned rock prevails, but with which any one of the other metamorphic rocks, and more especially hornblende-schist, may alternate. These other members of the metamorphic series are, in this case, considered as subordinate to the true gneiss.

The different varieties of rock allied to gneiss, into which felspar enters as an essential ingredient, will be understood by referring to what was said of granite. Thus, for example, hornblende may be superadded to mica, quartz, and felspar, forming a syenitic gneiss; or talc may be substituted for mica, constituting talcose gneiss, a rock composed of felspar, quartz, and talc, in distinct crystals or grains (stratified protogine of the French).

Hornblende-schist is usually black, and composed principally of hornblende, with a variable quantity of felspar, and sometimes grains of quartz. When the hornblende and felspar are nearly in equal quantities, and the rock is not slaty, it corresponds in character with the greenstones of the trap family, and has been called "primitive greenstone." It may be termed hornblende rock. Some of these hornblendic masses may really have been volcanic rocks, which have since assumed a more crystalline or metamorphic texture.

Mica-schist, or Micaceous schist, is, next to gneiss, one of the most abundant rocks of the metamorphic series. It is slaty, essentially composed of mica and quartz, the mica sometimes appearing to constitute the whole mass. Beds of pure quartz also occur in this formation. In some districts, garnets in regular twelve-sided crystals form an integrant part of mica-schist. This rock passes by insensible gradations into clay-slate.

Clay-slate, or Argillaceous schist.—This rock resembles an indurated clay or shale, is for the most part extremely fissile, often affording good roofing slate. It may consist of the ingredients of gneiss, or of an extremely fine mixture of mica and quartz, or talc and quartz. Occasionally it derives a shining and silky lustre from the minute particles of mica or talc which it contains. It varies from greenish or bluish-grey to a lead colour. It may be said of this, more than of any other schist, that it is common to the metamorphic and fossiliferous series, for some clay-slates taken from each division would not be distinguishable by mineralogical characters.

Quartzite, or Quartz rock, is an aggregate of grains of quartz, which are either in minute crystals, or in many cases slightly rounded, occurring in regular strata, associated with gneiss or other metamorphic rocks. Compact quartz, like that so frequently found in veins, is also found together with granular quartzite. Both of these alternate with gneiss or mica-schist, or pass into those rocks by the addition of mica, or of felspar and mica.

Chlorite-schist is a green slaty rock, in which chlorite is abundant in foliated plates, usually blended with minute grains of quartz, or sometimes with felspar or mica. Often associated with, and graduating into, gneiss and clay-slate.

Hypogene, or Metamorphic limestone.—This rock, commonly called primary limestone, is sometimes a thick bedded white crystalline granular marble used in sculpture; but more frequently it occurs in thin beds, forming a foliated schist much resembling in colour and appearance certain varieties of gneiss and mica-schist. It alternates with both these rocks, and in like manner with argillaceous schist. It then usually contains some crystals of mica, and occasionally quartz, felspar, hornblende, and talc. This member of the metamorphic series enters sparingly into the structure of the hypogene districts of Norway, Sweden, and Scotland, but is largely developed in the Alps.

Before offering any farther observations on the probable origin of the metamorphic rocks, I subjoin, in the form of a glossary, a brief explanation of some of the principal varieties and their synonymies.

Actinolite-schist. A slaty foliated rock, composed chiefly of actinolite, (an emerald-green mineral, allied to hornblende,) with some admixture of felspar, or quartz, or mica.

Ampelite. Aluminous slate (Brongniart); occurs both in the metamorphic and fossiliferous series.

Amphibolite. [Hornblende rock], which see.

Argillaceous-schist, or Clay-slate. See [p. 465.]

Arkose. Term used by Brongniart for granular [Quartzite], which see.

Chiastolite-slate scarcely differs from clay-slate, but includes numerous crystals of Chiastolite; in considerable thickness in Cumberland. Chiastolite occurs in long slender rhomboidal crystals. For composition, see Table, [p. 377.]

Chlorite-schist. A green slaty rock, in which chlorite, a green scaly mineral, is abundant. See [p. 465.]

Clay-slate, or Argillaceous-schist. See [p. 465.]

Eurite and Euritic Porphyry. A base of compact felspar, with grains of laminar felspar, and often mica and other minerals disseminated (Brongniart). M. D'Aubuisson regards eurite as an extremely fine-grained granite, in which felspar predominates, the whole forming an apparently homogeneous rock. Eurite has been already mentioned as a plutonic rock, but occurs also in beds subordinate to gneiss or mica-slate.

Gneiss. A stratified or laminated rock, same composition as granite. See [p. 464.]

[Hornblende Rock], or Amphibolite. Composed of hornblende and felspar. The same composition as hornblende-schist, stratified, but not fissile. See [p. 376.]

Hornblende-schist, or Slate. Composed chiefly of hornblende, with occasionally some felspar. See [p. 464.]

Hornblendic or Syenitic-Gneiss. Composed of felspar, quartz, and hornblende.

Hypogene Limestone. See [p. 465.]

Marble. See [p. 465.]

Mica-schist, or Micaceous-schist. A slaty rock, composed of mica and quartz in variable proportions. See [p. 465.]

Mica-slate. See Mica-schist, [p. 465.]

Phyllade. D'Aubuisson's term for clay-slate, from φυλλας, a heap of leaves.

Primary Limestone. See Hypogene Limestone, [p. 465.]

Protogine. See Talcose-gneiss, [p. 464.]; when unstratified it is Talcose-granite.

Quartz Rock, or [Quartzite]. A stratified rock; an aggregate of grains of quartz. See [p. 465.]

Serpentine occurs in both divisions of the hypogene series, as a stratified or unstratified rock; contains much magnesia; is chiefly composed of the mineral called serpentine, mixed with diallage, talc, and steatite. The pure varieties of this rock, called noble serpentine, consist of a hydrated silicate of magnesia, generally of a greenish colour: this base is commonly mixed with oxide of iron.

Talcose-gneiss. Same composition as talcose-granite or protogine, but either stratified or laminated. See [p. 464.]

Talcose-schist consists chiefly of talc, or of talc and quartz, or of talc and felspar, and has a texture something like that of clay-slate.

Whitestone. Same as Eurite.

Origin of the Metamorphic Strata.

Having said thus much of the mineral composition of the metamorphic rocks, I may combine what remains to be said of their structure and history with an account of the opinions entertained of their probable origin. At the same time, it may be well to forewarn the reader that we are here entering upon ground of controversy, and soon reach the limits where positive induction ends, and beyond which we can only indulge in speculations. It was once a favourite doctrine, and is still maintained by many, that these rocks owe their crystalline texture, their want of all signs of a mechanical origin, or of fossil contents, to a peculiar and nascent condition of the planet at the period of their formation. The arguments in refutation of this hypothesis will be more fully considered when I show, in the last chapter of this volume, to how many different ages the metamorphic formations are referable, and how gneiss, mica-schist, clay-slate, and hypogene limestone (that of Carrara for example), have been formed, not only since the first introduction of organic beings into this planet, but even long after many distinct races of plants and animals had passed away in succession.

The doctrine respecting the crystalline strata, implied in the name metamorphic, may properly be treated of in this place; and we must first inquire whether these rocks are really entitled to be called stratified in the strict sense of having been originally deposited as sediment from water. The general adoption by geologists of the term stratified, as applied to these rocks, sufficiently attests their division into beds very analogous, at least in form, to ordinary fossiliferous strata. This resemblance is by no means confined to the existence in both of an occasional slaty structure, but extends to every kind of arrangement which is compatible with the absence of fossils, and of sand, pebbles, ripple-mark, and other characters which the metamorphic theory supposes to have been obliterated by plutonic action. Thus, for example, we behold alike in the crystalline and fossiliferous formations an alternation of beds varying greatly in composition, colour, and thickness. We observe, for instance, gneiss alternating with layers of black hornblende-schist, or with granular quartz, or limestone; and the interchange of these different strata may be repeated for an indefinite number of times. In the like manner, mica-schist alternates with chlorite-schist, and with granular limestone in thin layers.

As in fossiliferous formations strata of pure siliceous sand alternate with micaceous sand and with layers of clay, so in the crystalline or metamorphic rocks we have beds of pure quartzite alternating with mica-schist and clay-slate. As in the secondary and tertiary series we meet with limestone alternating again and again with micaceous or argillaceous sand, so we find in the hypogene, gneiss and mica-schist alternating with pure and impure granular limestones.

It has also been shown that the ripple-mark is very commonly repeated throughout a considerable thickness of fossiliferous strata; so in mica-schist and gneiss, there is sometimes an undulation of the laminæ on a minute scale, which may, perhaps, be a modification of similar inequalities in the original deposit.

In the crystalline formations also, as in many of the sedimentary before described, single strata are sometimes made up of laminæ placed diagonally, such laminæ not being regularly parallel to the planes of cleavage.

Fig. 509.

Lamination of clay-slate, Montagne de Seguinat, near Gavarnie, in the Pyrenees.

This disposition of the layers is illustrated in the accompanying diagram, in which I have represented carefully the stratification of a coarse argillaceous schist, which I examined in the Pyrenees, part of which approaches in character to a green and blue roofing slate, while part is extremely quartzose, the whole mass passing downwards into micaceous schist. The vertical section here exhibited is about 3 feet in height, and the layers are sometimes so thin that fifty may be counted in the thickness of an inch. Some of them consist of pure quartz.

The inference drawn from the phenomena above described in favour of the aqueous origin of clay-slate and other crystalline strata, is greatly strengthened by the fact that many of these metamorphic rocks occasionally alternate with, and sometimes pass by intermediate gradations into, rocks of a decidedly mechanical origin, and exhibiting traces of organic remains. The fossiliferous formations, moreover, into which this passage is effected, are by no means invariably of the same age nor of the highest antiquity, as will be afterwards explained.

Stratification of the metamorphic rocks distinct from cleavage.—The beds into which gneiss, mica-schist, and hypogene limestone divide, exhibit most commonly, like ordinary strata, a want of perfect geometrical parallelism. For this reason, therefore, in addition to the alternate recurrence of layers of distinct materials, the stratified arrangement of the crystalline rocks cannot be explained away by supposing it to be simply a divisional structure like that to which we owe some of the slates used for writing and roofing. Slaty cleavage, as it has been called, has in many cases been produced by the regular deposition of thin plates of fine sediment one upon another; but there are many instances where it is decidedly unconnected with such a mode of origin, and where it is not even confined to the aqueous formations. Some kinds of trap, for example, as clinkstone, split into laminæ, and are used for roofing.

There are, says Professor Sedgwick, three distinct forms of structure exhibited in certain rocks throughout large districts: viz.—First, stratification; secondly, joints; and thirdly, slaty cleavage; the two last having no connection with true bedding, and having been superinduced by causes absolutely independent of gravitation. All these different structures must have different names, even though there be some cases where it is impossible, after carefully studying the appearances, to decide upon the class to which they belong.[469-A]

Joints.—Now, in regard to the second of these forms of structure or joints, they are natural fissures which often traverse rocks in straight and well-determined lines. They afford to the quarryman, as Sir R. Murchison observes, when speaking of the phenomena, as exhibited in Shropshire and the neighbouring counties, the greatest aid in the extraction of blocks of stone; and, if a sufficient number cross each other, the whole mass of rock is split into symmetrical blocks.[469-B] The faces of the joints are for the most part smoother and more regular than the surfaces of true strata. The joints are straight-cut chinks, often slightly open, often passing, not only through layers of successive deposition, but also through balls of limestone or other matter which have been formed by concretionary action, since the original accumulation of the strata. Such joints, therefore, must often have resulted from one of the last changes superinduced upon sedimentary deposits.[469-C]

In the annexed diagram the flat surfaces of rock A, B, C, represent exposed faces of joints, to which the walls of other joints, J J, are parallel. S S are the lines of stratification; D D are lines of slaty cleavage, which intersect the rock at a considerable angle to the planes of stratification.

Fig. 510.

Stratification, joints, and cleavage.

Joints, according to Professor Sedgwick, are distinguishable from lines of slaty cleavage in this, that the rock intervening between two joints has no tendency to cleave in a direction parallel to the planes of the joints, whereas a rock is capable of indefinite subdivision in the direction of its slaty cleavage. In some cases where the strata are curved, the planes of cleavage are still perfectly parallel. This has been observed in the slate rocks of part of Wales (see [fig. 511.]), which consist of a hard greenish slate. The true bedding is there indicated by a number of parallel stripes, some of a lighter and some of a darker colour than the general mass. Such stripes are found to be parallel to the true planes of stratification, wherever these are manifested by ripple-mark, or by beds containing peculiar organic remains. Some of the contorted strata are of a coarse mechanical structure, alternating with fine-grained crystalline chloritic slates, in which case the same slaty cleavage extends through the coarser and finer beds, though it is brought out in greater perfection in proportion as the materials of the rock are fine and homogeneous. It is only when these are very coarse that the cleavage planes entirely vanish. These planes are usually inclined at a very considerable angle to the planes of the strata. In the Welsh chains, for example, the average angle is as much as from 30° to 40°. Sometimes the cleavage planes dip towards the same point of the compass as those of stratification, but more frequently to opposite points. It may be stated as a general rule, that when beds of coarser materials alternate with those composed of finer particles, the slaty cleavage is either entirely confined to the fine-grained rock, or is very imperfectly exhibited in that of coarser texture. This rule holds, whether the cleavage is parallel to the planes of stratification or not.

Fig. 511.

Parallel planes of cleavage intersecting curved strata. (Sedgwick.)

In the Swiss and Savoy Alps, as Mr. Bakewell has remarked, enormous masses of limestone are cut through so regularly by nearly vertical partings, and these are often so much more conspicuous than the seams of stratification, that an inexperienced observer will almost inevitably confound them, and suppose the strata to be perpendicular in places where in fact they are almost horizontal.[470-A]

Now these joints are supposed to be analogous to those partings which have been already observed to separate volcanic and plutonic rocks into cuboidal and prismatic masses. On a small scale we see clay and starch when dry split into similar shapes, which is often caused by simple contraction, whether the shrinking be due to the evaporation of water, or to a change of temperature. It is well known that many sandstones and other rocks expand by the application of moderate degrees of heat, and then contract again on cooling; and there can be no doubt that large portions of the earth's crust have, in the course of past ages, been subjected again and again to very different degrees of heat and cold. These alternations of temperature have probably contributed largely to the production of joints in rocks.

In some countries, as in Saxony, where masses of basalt rest on sandstone, the aqueous rock has for the distance of several feet from the point of junction assumed a columnar structure similar to that of the trap. In like manner some hearthstones, after exposure to the heat of a furnace without being melted, have become prismatic. Certain crystals also acquire by the application of heat a new internal arrangement, so as to break in a new direction, their external form remaining unaltered.

Sir R. Murchison observes, that in referring both joints and slaty cleavage to crystalline action, we are borne out by a well-known analogy in which crystallization has in like manner given rise to two distinct kinds of structure in the same body. Thus, for example, in a six-sided prism of quartz, the planes of cleavage are distinct from those of the prism. It is impossible to cleave the crystals parallel to the plane of the prism, just as slaty rocks cannot be cleaved parallel to the joints; but the quartz crystal, like the older schists, may be cleaved ad infinitum in the direction of the cleavage planes.[471-A]

It seems, therefore, that the fissures called joints may have been the result of different causes, as of some modification of crystalline action, or simple contraction during consolidation, or during a change of temperature. And there are cases where joints may have been due to mechanical violence, and the strain exerted on strata during their upheaval, or when they have sunk down below their former level. Professor Phillips has suggested that the previous existence of divisional planes may often have determined, and must greatly have modified, the lines and points of fracture caused in rocks by those forces to which they owe their elevation or dislocations. These lines and points being those of least resistance, cannot fail to have influenced the direction in which the solid mass would give way on the application of external force.

Professor Phillips has also remarked that in some slaty rocks the form of the outline of fossil shells and trilobites has been much changed by distortion, which has taken place in a longitudinal, transverse, or oblique direction. This change, he adds, seems to be the result of a "creeping movement" of the particles of the rock along the planes of cleavage, its direction being always uniform over the same tract of country, and its amount in space being sometimes measurable, and being as much as a quarter or even half an inch. The hard shells are not affected, but only those which are thin.[471-B] Mr. D. Sharpe, following up the same line of inquiry, came to the conclusion, that the present distorted forms of the shells in certain British slate rocks may be accounted for by supposing that the rocks in which they are imbedded have undergone compression in a direction perpendicular to the planes of cleavage, and a corresponding expansion in the direction of the dip of the cleavage.[471-C]

Mr. Darwin infers from his observations, that in South America the strike of the cleavage planes is very uniform over wide regions, and that it corresponds with the strike of the planes of foliation in the gneiss and mica-schists of the same parts of Chili, Tierra del Fuego, &c. The explanation which he suggests, is based upon a combination of mechanical and crystalline forces. The planes, he says, of cleavage, and even the foliation of mica-schist and gneiss, may be intimately connected with the planes of different tension to which the area was long subjected, after the main fissures or axis of upheavement had been formed, but before the final consolidation of the mass and the total cessation of all molecular movement.[472-A]

I have already stated that some extremely fine slates are perfectly parallel to the planes of stratification, as those of the Niesen, for example, near the Lake of Thun, in Switzerland, which contain fucoids, and are no doubt due to successive aqueous deposition. Even where the slates are oblique to the general planes of the strata, it by no means follows as a matter of course that they have been caused by crystalline action, for they may be the result of that diagonal lamination which I have before described ([p. 17.]). In this case, however, there is usually much irregularity, whereas cleavage planes oblique to the true stratification, which are referred to a crystalline action, are often perfectly symmetrical, and observe a strict geometrical parallelism, even when the strata are contorted, as already described ([p. 470.]).

Professor Sedgwick, speaking of the planes of slaty cleavage, where they are decidedly distinct from those of sedimentary deposition, declares his opinion that no retreat of parts, no contraction in the dimensions of rocks in passing to a solid state, can account for the phenomenon. It must be referred to crystalline or polar forces acting simultaneously, and somewhat uniformly, in given directions, on large masses having a homogeneous composition.

Sir John Herschel, in allusion to slaty cleavage, has suggested, "that if rocks have been so heated as to allow a commencement of crystallization; that is to say, if they have been heated to a point at which the particles can begin to move amongst themselves, or at least on their own axes, some general law must then determine the position in which these particles will rest on cooling. Probably that position will have some relation to the direction in which the heat escapes. Now, when all, or a majority of particles of the same nature, have a general tendency to one position, that must of course determine a cleavage plane. Thus we see the infinitesimal crystals of fresh precipitated sulphate of barytes, and some other such bodies, arrange themselves alike in the fluid in which they float; so as, when stirred, all to glance with one light, and give the appearance of silky filaments. Some sorts of soap, in which insoluble margarates[472-B] exist, exhibit the same phenomenon when mixed with water; and what occurs in our experiments on a minute scale may occur in nature on a great one."[472-C]


[CHAPTER XXXVI].

METAMORPHIC ROCKS—continued.

Strata near some intrusive masses of granite converted into rocks identical with different members of the metamorphic series — Arguments hence derived as to the nature of plutonic action — Time may enable this action to pervade denser masses — From what kinds of sedimentary rock each variety of the metamorphic class may be derived — Certain objections to the metamorphic theory considered — Lamination of trachyte and obsidian due to motion — Whether some kinds of gneiss have become schistose by a similar action.

It has been seen that geologists have been very generally led to infer, from the phenomena of joints and slaty cleavage, that mountain masses, of which the sedimentary origin is unquestionable, have been acted upon simultaneously by vast crystalline forces. That the structure of fossiliferous strata has often been modified by some general cause since their original deposition, and even subsequently to their consolidation and dislocation, is undeniable. These facts prepare us to believe that still greater changes may have been worked out by a greater intensity, or more prolonged development of the same agency, combined, perhaps, with other causes. Now we have seen that, near the immediate contact of granitic veins and volcanic dikes, very extraordinary alterations in rocks have taken place, more especially in the neighbourhood of granite. It will be useful here to add other illustrations, showing that a texture undistinguishable from that which characterizes the more crystalline metamorphic formations, has actually been superinduced in strata once fossiliferous.

In the southern extremity of Norway there is a large district, on the west side of the fiord of Christiania, in which granite or syenite protrudes in mountain masses through fossiliferous strata, and usually sends veins into them at the point of contact. The stratified rocks, replete with shells and zoophytes, consist chiefly of shale, limestone, and some sandstone, and all these are invariably altered near the granite for a distance of from 50 to 400 yards. The aluminous shales are hardened and have become flinty. Sometimes they resemble jasper. Ribboned jasper is produced by the hardening of alternate layers of green and chocolate-coloured schist, each stripe faithfully representing the original lines of stratification. Nearer the granite the schist often contains crystals of hornblende, which are even met with in some places for a distance of several hundred yards from the junction; and this black hornblende is so abundant that eminent geologists, when passing through the country, have confounded it with the ancient hornblende-schist, subordinate to the great gneiss formation of Norway. Frequently, between the granite and the hornblende slate, above mentioned, grains of mica and crystalline felspar appear in the schist, so that rocks resembling gneiss and mica-schist are produced. Fossils can rarely be detected in these schists, and they are more completely effaced in proportion to the more crystalline texture of the beds, and their vicinity to the granite. In some places the siliceous matter of the schist becomes a granular quartz; and when hornblende and mica are added, the altered rock loses its stratification, and passes into a kind of granite. The limestone, which at points remote from the granite is of an earthy texture, blue colour, and often abounds in corals, becomes a white granular marble near the granite, sometimes siliceous, the granular structure extending occasionally upwards of 400 yards from the junction; and the corals being for the most part obliterated, though sometimes preserved, even in the white marble. Both the altered limestone and hardened slate contain garnets in many places, also ores of iron, lead, and copper, with some silver. These alterations occur equally, whether the granite invades the strata in a line parallel to the general strike of the fossiliferous beds, or in a line at right angles to their strike, as will be seen by the accompanying ground plan.[474-A]

Fig. 512.

Altered zone of fossiliferous slate and limestone near granite. Christiania.

The arrows indicate the dip, and the straight lines the strike, of the beds.

The indurated and ribboned schists above mentioned bear a strong resemblance to certain shales of the coal found at Russell's Hall, near Dudley, where coal-mines have been on fire for ages. Beds of shale of considerable thickness, lying over the burning coal, have been baked and hardened so as to acquire a flinty fracture, the layers being alternately green and brick-coloured.

The granite of Cornwall, in like manner, sends forth veins into a coarse argillaceous-schist, provincially termed killas. This killas is converted into hornblende-schist near the contact with the veins. These appearances are well seen at the junction of the granite and killas, in St. Michael's Mount, a small island nearly 300 feet high, situated in the bay, at a distance of about three miles from Penzance.

The granite of Dartmoor, in Devonshire, says Sir H. De la Beche, has intruded itself into the slate and slaty sandstone called greywacké, twisting and contorting the strata, and sending veins into them. Hence some of the slate rocks have become "micaceous; others more indurated, and with the characters of mica-slate and gneiss; while others again appear converted into a hard-zoned rock strongly impregnated with felspar."[475-A]

We learn from the investigations of M. Dufrénoy, that in the eastern Pyrenees there are mountain masses of granite posterior in date to the formations called lias and chalk of that district, and that these fossiliferous rocks are greatly altered in texture, and often charged with iron-ore, in the neighbourhood of the granite. Thus in the environs of St. Martin, near St. Paul de Fénouillet, the chalky limestone becomes more crystalline and saccharoid as it approaches the granite, and loses all trace of the fossils which it previously contained in abundance. At some points, also, it becomes dolomitic, and filled with small veins of carbonate of iron, and spots of red iron-ore. At Rancié the lias nearest the granite is not only filled with iron-ore, but charged with pyrites, tremolite, garnet, and a new mineral somewhat allied to felspar, called, from the place in the Pyrenees where it occurs, "couzeranite."

Now the alterations above described as superinduced in rocks by volcanic dikes and granite veins, prove incontestably that powers exist in nature capable of transforming fossiliferous into crystalline strata—powers capable of generating in them a new mineral character, similar, nay, often absolutely identical, with that of gneiss, mica-schist, and other stratified members of the hypogene series. The precise nature of these altering causes, which may provisionally be termed plutonic, is in a great degree obscure and doubtful; but their reality is no less clear, and we must suppose the influence of heat to be in some way connected with the transmutation, if, for reasons before explained, we concede the igneous origin of granite.

The experiments of Gregory Watt, in fusing rocks in the laboratory, and allowing them to consolidate by slow cooling, prove distinctly that a rock need not be perfectly melted in order that a re-arrangement of its component particles should take place, and a partial crystallization ensue.[475-B] We may easily suppose, therefore, that all traces of shells and other organic remains may be destroyed; and that new chemical combinations may arise, without the mass being so fused as that the lines of stratification should be wholly obliterated.

We must not, however, imagine that heat alone, such as may be applied to a stone in the open air, can constitute all that is comprised in plutonic action. We know that volcanos in eruption not only emit fluid lava, but give off steam and other heated gases, which rush out in enormous volume, for days, weeks, or years continuously, and are even disengaged from lava during its consolidation. When the materials of granite, therefore, came in contact with the fossiliferous stratum in the bowels of the earth under great pressure, the contained gases might be unable to escape; yet when brought into contact with rocks, might pass through their pores with greater facility than water is known to do ([p. 35.]). These aëriform fluids, such as sulphuretted hydrogen, muriatic acid, and carbonic acid, issue in many places from rents in rocks, which they have discoloured and corroded, softening some and hardening others. If the rocks are charged with water, they would pass through more readily; for, according to the experiments of Henry, water, under an hydrostatic pressure of 96 feet, will absorb three times as much carbonic acid gas as it can under the ordinary pressure of the atmosphere. Although this increased power of absorption would be diminished, in consequence of the higher temperature found to exist as we descend in the earth, yet Professor Bischoff has shown that the heat by no means augments in such a proportion as to counteract the effect of augmented pressure.[476-A] There are other gases, as well as the carbonic acid, which water absorbs, and more rapidly in proportion to the amount of pressure. Now even the most compact rocks may be regarded, before they have been exposed to the air and dried, in the light of sponges filled with water; and it is conceivable that heated gases brought into contact with them, at great depths, may be absorbed readily, and transfused through their pores. Although the gaseous matter first observed would soon be condensed, and part with its heat, yet the continual arrival of fresh supplies from below might, in the course of ages, cause the temperature of the water, and with it that of the containing rock, to be materially raised.

M. Fournet, in his description of the metalliferous gneiss near Clermont, in Auvergne, states that all the minute fissures of the rock are quite saturated with free carbonic acid gas, which rises plentifully from the soil there and in many parts of the surrounding country. The various elements of the gneiss, with the exception of the quartz, are all softened; and new combinations of the acid, with lime, iron, and manganese, are continually in progress.[476-B]

Another illustration of the power of subterranean gases is afforded by the stufas of St. Calogero, situated in the largest of the Lipari Islands. Here, according to the description published by Hoffmann, horizontal strata of tuff, extending for 4 miles along the coast, and forming cliffs more than 200 feet high, have been discoloured in various places, and strangely altered by the "all-penetrating vapours." Dark clays have become yellow, or often snow-white; or have assumed a chequered or brecciated appearance, being crossed with ferruginous red stripes. In some places the fumaroles have been found by analysis to consist partly of sublimations of oxide of iron; but it also appears that veins of chalcedony and opal, and others of fibrous gypsum, have resulted from these volcanic exhalations.[476-C]

The reader may also refer to M. Virlet's account of the corrosion of hard, flinty, and jaspideous rocks near Corinth, by the prolonged agency of subterranean gases[477-A]; and to Dr. Daubeny's description of the decomposition of trachytic rocks in the Solfatara, near Naples, by sulphuretted hydrogen and muriatic acid gases.[477-B]

Although in all these instances we can only study the phenomena as exhibited at the surface, it is clear that the gaseous fluids must have made their way through the whole thickness of porous or fissured rocks, which intervene between the subterranean reservoirs of gas and the external air. The extent, therefore, of the earth's crust, which the vapours have permeated and are now permeating, may be thousands of fathoms in thickness, and their heating and modifying influence may be spread throughout the whole of this solid mass.

We learn from Professor Bischoff that the steam of a hot spring at Aix-la-Chapelle, although its temperature is only from 133° to 167° F., has converted the surface of some blocks of black marble into a doughy mass. He conceives, therefore, that steam in the bowels of the earth having a temperature equal or even greater than the melting point of lava, and having an elasticity of which even Papin's digester can give but a faint idea, may convert rocks into liquid matter.[477-C]

The above observations are calculated to meet some of the objections which have been urged against the metamorphic theory on the ground of the small power of rocks to conduct heat; for it is well known that rocks, when dry and in the air, differ remarkably from metals in this respect. It has been asked how the changes which extend merely for a few feet from the contact of a dike could have penetrated through mountain masses of crystalline strata several miles in thickness. Now it has been stated that the plutonic influence of the syenite of Norway has sometimes altered fossiliferous strata for a distance of a quarter of a mile, both in the direction of their dip and of their strike. (See [fig. 512.] [p. 474.]) This is undoubtedly an extreme case; but is it not far more philosophical to suppose that this influence may, under favourable circumstances, affect denser masses, than to invent an entirely new cause to account for effects merely differing in quantity, and not in kind? The metamorphic theory does not require us to affirm that some contiguous mass of granite has been the altering power; but merely that an action, existing in the interior of the earth at an unknown depth, whether thermal, electrical, or other, analogous to that exerted near intruding masses of granite, has, in the course of vast and indefinite periods, and when rising perhaps from a large heated surface, reduced strata thousands of yards thick to a state of semi-fusion, so that on cooling they have become crystalline, like gneiss. Granite may have been another result of the same action in a higher state of intensity, by which a thorough fusion has been produced; and in this manner the passage from granite into gneiss may be explained.

Some geologists are of opinion, that the alternate layers of mica and quartz, or mica and felspar, or lime and felspar, are so much more distinct, in certain metamorphic rocks, than the ingredients composing alternate layers in many sedimentary deposits, that the similar particles must be supposed to have exerted a molecular attraction for each other, and to have thus congregated together in layers more distinct in mineral composition than before they were crystallized.

In considering, then, the various data already enumerated, the forms of stratification in metamorphic rocks, their passage on the one hand into the fossiliferous, and on the other into the plutonic formations, and the conversions which can be ascertained to have occurred in the vicinity of granite, we may conclude that gneiss and mica-schist may be nothing more than altered micaceous and argillaceous sandstones that granular quartz may have been derived from siliceous sandstone, and compact quartz from the same materials. Clay-slate may be altered shale, and granular marble may have originated in the form of ordinary limestone, replete with shells and corals, which have since been obliterated; and, lastly, calcareous sands and marls may have been changed into impure crystalline limestones.

"Hornblende-schist," says Dr. MacCulloch, "may at first have been mere clay; for clay or shale is found altered by trap into Lydian stone, a substance differing from hornblende-schist almost solely in compactness and uniformity of texture."[478-A] "In Shetland," remarks the same author, "argillaceous-schist (or clay-slate), when in contact with granite, is sometimes converted into hornblende-schist, the schist becoming first siliceous, and ultimately, at the contact, hornblende-schist."[478-B]

The anthracite and plumbago associated with hypogene rocks may have been coal; for not only is coal converted into anthracite in the vicinity of some trap dikes, but we have seen that a like change has taken place generally even far from the contact of igneous rocks, in the disturbed region of the Appalachians.[478-C] At Worcester, in the state of Massachusetts, 45 miles due west of Boston, a bed of plumbago and impure anthracite occurs, interstratified with mica-schist. It is about 2 feet in thickness, and has been made use of both as fuel, and in the manufacture of lead pencils. At the distance of 30 miles from the plumbago, there occurs, on the borders of Rhode Island, an impure anthracite in slates, containing impressions of coal-plants of the genera Pecopteris, Neuropteris, Calamites, &c. This anthracite is intermediate in character between that of Pennsylvania and the plumbago of Worcester, in which last the gaseous or volatile matter (hydrogen, oxygen, and nitrogen) is to the carbon only in the proportion of 3 per cent. After traversing the country in various directions, I came to the conclusion that the carboniferous shales or slates with anthracite and plants, which in Rhode Island often pass into mica-schist, have at Worcester assumed a perfectly crystalline and metamorphic texture; the anthracite having been nearly transmuted into that state of pure carbon which is called plumbago or graphite.[479-A]

The total absence of any trace of fossils has inclined many geologists to attribute the origin of crystalline strata to a period antecedent to the existence of organic beings. Admitting, they say, the obliteration, in some cases, of fossils by plutonic action, we might still expect that traces of them would oftener occur in certain ancient systems of slate, in which, as in Cumberland, some conglomerates occur. But in urging this argument, it seems to have been forgotten that there are stratified formations of enormous thickness, and of various ages, and some of them very modern, all formed after the earth had become the abode of living creatures, which are, nevertheless, in certain districts, entirely destitute of all vestiges of organic bodies. In some, the traces of fossils may have been effaced by water and acids, at many successive periods; and it is clear, that, the older the stratum, the greater is the chance of its being non-fossiliferous, even if it has escaped all metamorphic action.

It has been also objected to the metamorphic theory, that the chemical composition of the secondary strata differs essentially from that of the crystalline schists, into which they are supposed to be convertible.[479-B] The "primary" schists, it is said, usually contain a considerable proportion of potash or of soda, which the secondary clays, shales, and slates do not, these last being the result of the decomposition of felspathic rocks, from which the alkaline matter has been abstracted during the process of decomposition. But this reasoning proceeds on insufficient and apparently mistaken data; for a large portion of what is usually called clay, marl, shale, and slate does actually contain a certain, and often a considerable, proportion of alkali; so that it is difficult, in many countries, to obtain clay or shale sufficiently free from alkaline ingredients to allow of their being burnt into bricks or used for pottery.

Thus the argillaceous shales and slates of the Old Red sandstone, in Forfarshire and other parts of Scotland, are so much charged with alkali, derived from triturated felspar, that, instead of hardening when exposed to fire, they sometimes melt into a glass. They contain no lime, but appear to consist of extremely minute grains of the various ingredients of granite, which are distinctly visible in the coarser-grained varieties, and in almost all the interposed sandstones. These laminated clays and shales might certainly, if crystallized, resemble in composition many of the primary strata.

There is also potash in fossil vegetable remains, and soda in the salts by which strata are sometimes so largely impregnated, as in Patagonia.

Another objection has been derived from the alternation of highly crystalline strata with others having a less crystalline texture. The heat, it is said, in its ascent from below, must have traversed the less altered schists before it reached a higher and more crystalline bed. In answer to this, it may be observed, that if a number of strata differing greatly in composition from each other be subjected to equal quantities of heat, there is every probability that some will be more fusible than others. Some, for example, will contain soda, potash, lime, or some other ingredient capable of acting as a flux; while others may be destitute of the same elements, and so refractory as to be very slightly affected by a degree of heat capable of reducing others to semi-fusion. Nor should it be forgotten that, as a general rule, the less crystalline rocks do really occur in the upper, and the more crystalline in the lower part of each metamorphic series.

There are geologists, however, of high authority, who admit the metamorphic origin of gneiss and mica-schist even on a grand scale in some mountain-chains, and who nevertheless believe that gneiss has in some instances been an eruptive rock, deriving its lamination from motion when in a fluid or viscous state. Mr. Scrope, in his description of the Ponza Islands, ascribes "the zoned structure of the Hungarian perlite (a semi-vitreous trachyte) to its having subsided, in obedience to the impulse of its own gravity, down a slightly inclined plane, while possessed of an imperfect fluidity. In the islands of Ponza and Palmarola, the direction of the zones is more frequently vertical than horizontal, because the mass was impelled from below upwards."[480-A] In like manner, Mr. Darwin attributes the lamination and fissile structure of volcanic rocks of the trachytic series, including some obsidians in Ascension, Mexico, and elsewhere, to their having moved when liquid in the direction of the laminæ. The zones consist sometimes of layers of air-cells drawn out and lengthened in the supposed direction of the moving mass. He compares this division into parallel zones, thus caused by the stretching of a pasty mass as it flowed slowly onwards, to the zoned or ribboned structure of ice, which Professor James Forbes has so ably explained, showing that it is due to the fissuring of a viscous body in motion.[480-B] Mr. Darwin also imagines the lamination or foliation, as he terms it, of gneiss and mica-schist in South America to be the extreme result of that process of which cleavage is the first effect.[480-C]

M. Elie de Beaumont, while he regards the greater part of the gneiss and mica-schist of the Alps as sedimentary strata altered by plutonic action, still conceives that some of the Alpine gneiss may have been erupted, or, in other words, may be granite drawn out into parallel laminæ in the manner of trachyte as above alluded to.[480-D]

Opinions such as these, and others which might be cited, prove the difficulty of arriving at clear theoretical views on this subject. I may also add another difficulty. In many extensive regions experienced geologists have been at a loss to decide which of two sets of divisional planes were referable to cleavage and which to stratification; and that, too, where the rocks are of undisputed aqueous origin. After much doubt, they have sometimes discovered that they had at first mistaken the lines of cleavage for those of deposition, because the former were by far the most marked of the two. Now if such slaty masses should become highly crystalline, and be converted into gneiss, hornblende-schist, or any other member of the hypogene class, the cleavage planes would be more likely to remain visible than those of stratification.

But although the cause last-mentioned may, in some instances, be a "vera causa," as applied to gneiss and mica-schist, I believe it to be an exception to the general rule. Nor would it, I conceive, produce that kind of irregular parallelism in the laminæ which belongs to so many of the hypogene rocks of the Grampians, Pyrenees, and the White mountains of North America, where I have chiefly studied them.

But it will be impossible for the reader duly to appreciate the propriety of the term metamorphic, as applied to the strata formerly called primitive, until I have shown, in the next chapter, at how many distinct periods these crystalline strata have been formed.