BOOK II.
CHANGES IN THE INORGANIC WORLD.
AQUEOUS CAUSES.
CHAPTER XIV.
Division of the subject into changes of the organic and inorganic world—Inorganic causes of change divided into aqueous and igneous—Aqueous causes first considered—Fall of rain—Recent rain-prints in mud—Destroying and transporting power of running water—Newly formed valleys in Georgia—Sinuosities of rivers—Two streams when united do not occupy a bed of double surface—Inundations in Scotland—Floods caused by landslips in the White Mountains—Bursting of a lake in Switzerland—Devastations caused by the Anio at Tivoli—Excavations in the lavas of Etna by Sicilian rivers—Gorge of the Simeto—Gradual recession of the cataract of Niagara.
Division of the subject.—Geology was defined to be the science which investigates the former changes that have taken place in the organic as well as in the inorganic kingdoms of nature. As vicissitudes in the inorganic world are most apparent, and as on them all fluctuations in the animate creation must in a great measure depend, they may claim our first consideration. The great agents of change in the inorganic world may be divided into two principal classes, the aqueous and the igneous. To the aqueous belong Rain, Rivers, Torrents, Springs, Currents, and Tides; to the igneous, Volcanoes, and Earthquakes. Both these classes are instruments of decay as well as of reproduction; but they may also be regarded as antagonist forces. For the aqueous agents are incessantly laboring to reduce the inequalities of the earth's surface to a level; while the igneous are equally active in restoring the unevenness of the external crust, partly by heaping up new matter in certain localities, and partly by depressing one portion, and forcing out another, of the earth's envelope.
It is difficult, in a scientific arrangement, to give an accurate view of the combined effects of so many forces in simultaneous operation; because, when we consider them separately, we cannot easily estimate either the extent of their efficacy, or the kind of results which they produce. We are in danger, therefore, when we attempt to examine the influence exerted singly by each, of overlooking the modifications which they produce on one another; and these are so complicated, that sometimes the igneous and aqueous forces co-operate to produce a joint effect, to which neither of them unaided by the other could give rise,—as when repeated earthquakes unite with running water to widen a valley; or when a thermal spring rises up from a great depth, and conveys the mineral ingredients with which it is impregnated from the interior of the earth to the surface. Sometimes the organic combine with the inorganic causes; as when a reef, composed of shells and corals, protects one line of coast from the destroying power of tides or currents, and turns them against some other point; or when drift timber, floated into a lake, fills a hollow to which the stream would not have had sufficient velocity to convey earthy sediment.
It is necessary, however, to divide our observations on these various causes, and to classify them systematically, endeavoring as much as possible to keep in view that the effects in nature are mixed and not simple, as they may appear in an artificial arrangement.
In treating, in the first place, of the aqueous causes, we may consider them under two divisions; first, those which are connected with the circulation of water from the land to the sea, under which are included all the phenomena of rain, rivers, glaciers, and springs; secondly, those which arise from the movements of water in lakes, seas, and the ocean, wherein are comprised the phenomena of waves, tides, and currents. In turning our attention to the former division, we find that the effects of rivers may be subdivided into, first, those of a destroying and transporting, and, secondly, those of a renovating nature; in the former are included the erosion of rocks and the transportation of matter to lower levels; in the renovating class, the formation of deltas by the influx of sediment, and the shallowing of seas; but these processes are so intimately related to each other, that it will not always be possible to consider them under their separate heads.
Fall of Rain.—It is well known that the capacity of the atmosphere to absorb aqueous vapor, and hold it in suspension, increases with every increment of temperature. This capacity is also found to augment in a higher ratio than the augmentation of the heat. Hence, as was first suggested by the geologist, Dr. Hutton, when two volumes of air, of different temperatures, both saturated with moisture, mingle together, clouds and rain are produced, for a mean degree of heat having resulted from the union of the two moist airs, the excess of vapor previously held in suspension by the warmer of the two is given out, and if it be in sufficient abundance is precipitated in the form of rain.
As the temperature of the atmosphere diminishes gradually from the equator towards the pole, the evaporation of water and the quantity of rain diminish also. According to Humboldt's computation, the average annual depth of rain at the equator is 96 inches, while in lat. 45° it is only 29 inches, and in lat. 60° not more than 17 inches. But there are so many disturbing causes, that the actual discharge, in any given locality, may deviate very widely from this rule. In England, for example, where the average fall at London is 24½ inches, as ascertained at the Greenwich Observatory, there is such irregularity in some districts, that while at Whitehaven, in Cumberland, there fell in 1849, 32 inches, the quantity of rain in Borrowdale, near Keswick (only 15 miles to the westward), was no less than 142 inches![262] In like manner, in India, Colonel Sykes found by observations made in 1847 and 1848, that at places situated between 17° and 18° north lat., on a line drawn across the Western Ghauts in the Deccan, the fall of rain varied from 21 to 219 inches.[263] The annual average in Bengal is probably below 80 inches, yet Dr. G. Hooker witnessed at Churrapoonjee, in the year 1850, a fall of 30 inches in 24 hours, and in the same place during a residence of six months (from June to November) 530 inches! This occurred on the south face of the Khasia (or Garrow) mountains in Eastern Bengal (see [map], Chap. XVIII.), where the depth during the whole of the same year probably exceeded 600 inches. So extraordinary a discharge of water, which, as we shall presently see, is very local, may be thus accounted for. Warm, southerly winds, blowing over the Bay of Bengal, and becoming laden with vapor during their passage, reach the low level delta of the Ganges and Brahmapootra, where the ordinary heat exceeds that of the sea, and where evaporation is constantly going on from countless marshes and the arms of the great rivers. A mingling of two masses of damp air of different temperatures probably causes the fall of 70 or 80 inches of rain, which takes place on the plains. The monsoon having crossed the delta, impinges on the Khasia mountains, which rise abruptly from the plain to a mean elevation of between 4000 and 5000 feet. Here the wind not only encounters the cold air of the mountains, but, what is far more effective as a refrigerating cause, the aerial current is made to flow upwards, and to ascend to a height of several thousand feet above the sea. Both the air and the vapor contained in it, being thus relieved of much atmospheric pressure, expand suddenly, and are cooled by rarefaction. The vapor is condensed, and about 500 inches of rain are thrown down annually, nearly twenty times as much as falls in Great Britain in a year, and almost all of it poured down in six months. The channel of every torrent and river is swollen at this season, and much sandstone horizontally stratified, and other rocks are reduced to sand and gravel by the flooded streams. So great is the superficial waste (or denudation), that what would otherwise be a rich and luxuriantly wooded region, is converted into a wild and barren moorland.
After the current of warm air has been thus drained of a large portion of its moisture, it still continues its northerly course to the opposite flank of the Khasia range, only 20 miles farther north, and here the fall of rain is reduced to 70 inches in the year. The same wind then blows northwards across the valley of the Brahmapootra, and at length arrives so dry and exhausted at the Bhootan Himalaya (lat. 28° N.), that those mountains, up to the height of 5000 feet, are naked and sterile, and all their outer valleys arid and dusty. The aerial current still continuing its northerly course and ascending to a higher region, becomes further cooled, condensation again ensues, and Bhootan, above 5000 feet, is densely clothed with vegetation.[264]
In another part of India, immediately to the westward, similar phenomena are repeated. The same warm and humid winds, copiously charged with aqueous vapor from the Bay of Bengal, hold their course due north for 300 miles across the flat and hot plains of the Ganges, till they encounter the lofty Sikkim mountains. (See map, Chap. XVIII.) On the southern flank of these they discharge such a deluge of rain that the rivers in the rainy season rise twelve feet in as many hours. Numerous landslips, some of them extending three or four thousand feet along the face of the mountains, composed of granite, gneiss, and slate, descend into the beds of streams, and dam them up for a time, causing temporary lakes, which soon burst their barriers. "Day and night," says Dr. Hooker, "we heard the crashing of falling trees, and the sound of boulders thrown violently against each other in the beds of torrents. By such wear and tear rocky fragments swept down from the hills are in part converted into sand and fine mud; and the turbid Ganges, during its annual inundation, derives more of its sediment from this source than from the waste of the fine clay of the alluvial plains below.[265]
On the verge of the tropics a greater quantity of rain falls annually than at the equator. Yet parts even of the tropical latitudes are entirely destitute of rain: Peru, for example, which owes its vegetation solely to rivers and nightly dews. In that country easterly winds prevail, blowing from the Pacific, and these being intercepted by the Andes, and cooled as they rise, are made to part with all their moisture before reaching the low region to the leeward. The desert zone of North Africa, between lat. 15° and 30° N., is another instance of a rainless region. Five or six consecutive years may pass in Upper Egypt, Nubia, and Dongola, or in the Desert of Sahara, without rain.
From the facts above mentioned, the reader will infer that in the course of successive geological periods there will be great variations in the quantity of rain falling in one and the same region. At one time there may be none whatever during the whole year; at another a fall of 100 or 500 inches; and these two last averages may occur on the two opposite flanks of a mountain-chain, not more than 20 miles wide. While, therefore, the valleys in one district are widened and deepened annually, they may remain stationary in another, the superficial soil being protected from waste by a dense covering of vegetation. This diversity depends on many geographical circumstances, but principally on the height of the land above the sea, the direction of the prevailing winds, and the relative position, at the time being, of the plains, hills, and the ocean, conditions all of which are liable in the course of ages to undergo a complete revolution.
Recent rain-prints.—When examining, in 1842, the extensive mud-flats of Nova Scotia, which are exposed at low tide on the borders of the Bay of Fundy, I observed not only the foot-prints of birds which had recently passed over the mud, but also very distinct impressions of rain-drops. A peculiar combination of circumstances renders these mud-flats admirably fitted to receive and retain any markings which may happen to be made on their surface. The sediment with which the waters are charged is extremely fine, being derived from the destruction of cliffs of red sandstone and shale, and as the tides rise fifty feet and upwards, large areas are laid dry for nearly a fortnight between the spring and neap tides. In this interval the mud is baked in summer by a hot sun, so that it solidifies and becomes traversed by cracks, caused by shrinkage. Portions of the hardened mud between these cracks may then be taken up and removed without injury. On examining the edges of each slab, we observe numerous layers, formed by successive tides, each layer being usually very thin, sometimes only one-tenth of an inch thick. When a shower of rain falls, the highest portion of the mud-covered flat is usually too hard to receive any impressions; while that recently uncovered by the tide near the water's edge is too soft. Between these areas a zone occurs, almost as smooth and even as a looking-glass, on which every drop forms a cavity of circular or oval form, and, if the shower be transient, these pits retain their shape permanently, being dried by the sun, and being then too firm to be effaced by the action of the succeeding tide, which deposits upon them a new layer of mud. Hence we often find, in splitting open a slab an inch or more thick, on the upper surface of which the marks of recent rain occur, that an inferior layer, deposited during some previous rise of the tide, exhibits on its under side perfect casts of rain-prints, which stand out in relief, the moulds of the same being seen on the layer below. But in some cases, especially in the more sandy layers, the markings have been somewhat blunted by the tide, and by several rain-prints having been joined into one by a repetition of drops falling on the same spot; in which case the casts present a very irregular and blistered appearance.
The finest examples which I have seen of these rain-prints were sent to me by Dr. Webster, from Kentville, on the borders of the Bay of Mines, in Nova Scotia. They were made by a heavy shower which fell on the 21st of July, 1849, when the rise and fall of the tides were at their maximum. The impressions (see [fig. 13]) consist of cup-shaped or hemispherical cavities, the average size of which is from one-eighth to one-tenth of an inch across, but the largest are fully half an inch in diameter, and one-tenth of an inch deep. The depth is chiefly below the general surface or plane of stratification, but the walls of the cavity consist partly of a prominent rim of sandy mud, formed of the matter which has been forcibly expelled from the pit. All the cavities having an oval form are deeper at one end, where they have also a higher rim, and all the deep ends have the same direction, showing towards which quarter the wind was blowing. Two or more drops are sometimes seen to have interfered with each other; in which case it is usually possible to determine which drop fell last, its rim being unbroken.
Recent rain-prints, formed July 21, 1849, at Kentville, Bay of Fundy, Nova Scotia.
The arrow represents the direction of the shower.
On some of the specimens the winding tubular tracks of worms are seen, which have been bored just beneath the surface (see [fig. 13], left side). They occasionally pass under the middle of a rain-mark, having been formed subsequently. Sometimes the worms have dived beneath the surface, and then reappeared. All these appearances, both of rain-prints and worm-tracks, are of great geological interest, as their exact counterparts are seen in rocks of various ages, even in formations of very high antiquity.[266] Small cavities, often corresponding in size to those produced by rain, are also caused by air-bubbles rising up through sand or mud; but these differ in character from rain-prints, being usually deeper than they are wide, and having their sides steeper. These, indeed, are occasionally vertical, or overarching, the opening at the top being narrower than the pit below. In their mode, also, of mutual interference they are unlike rain-prints.[267]
In consequence of the effects of mountains in cooling currents of moist air, and causing the condensation of aqueous vapor in the manner above described, it follows that in every country, as a general rule, the more elevated regions become perpetual reservoirs of water, which descends and irrigates the lower valleys and plains. The largest quantity of water is first carried to the highest region, and then made to descend by steep declivities towards the sea; so that it acquires superior velocity, and removes more soil, than it would do if the rain had been distributed over the plains and mountains equally in proportion to their relative areas. The water is also made by these means to pass over the greatest distances before it can regain the sea.
It has already been observed that in higher latitudes, where the atmosphere being colder is capable of holding less water in suspension, a diminished fall of rain takes place. Thus at St. Petersburg, the amount is only 16 inches, and at Uleaborg in the Gulf of Bothnia (N. lat. 65°), only 13½ inches, or less than half the average of England, and even this small quantity descends more slowly in the temperate zone, and is spread more equally over the year than in tropical climates. But in reference to geological changes, frost in the colder latitude acts as a compensating power in the disintegration of rocks, and the transportation of stones to lower levels.
Water when converted into ice augments in bulk more than one-twentieth of its volume, and owing to this property it widens the minute crevices (or joints) of rocks into which it penetrates. Ice also in various ways, as will be shown in the next chapter, gives buoyancy to mud and sand, even to huge blocks of stone, enabling rivers of moderate size and velocity to carry them to a great distance.
The mechanical force exerted by running water in undermining cliffs, and rounding off the angles of hard rock, is mainly due to the intermixture of foreign ingredients. Sand and pebbles, when hurried along by the violence of the stream, are thrown against every obstacle lying in their way, and thus a power of attrition is acquired, capable of wearing through the hardest siliceous stones, on which water alone could make no impression.
Newly formed valleys.—When travelling in Georgia and Alabama, in 1846, I saw in both those States the commencement of hundreds of valleys in places where the native forest had recently been removed. One of these newly formed gulleys or ravines is represented in the annexed woodcut ([fig. 14]), from a drawing which I made on the spot. It occurs three miles and a half due west of Milledgeville, the capital of Georgia, and is situated on the farm of Pomona, on the direct road to Macon.[268]
Twenty years ago, before the land was cleared, it had no existence; but when the trees of the forest were cut down, cracks three feet deep were caused by the sun's heat in the clay; and, during the rains, a sudden rush of water through the principal crack deepened it at its lower extremity, from whence the excavating power worked backwards, till, in the course of twenty years, a chasm, measuring no less than 55 feet in depth, 300 yards in length, and varying in width from 20 to 180 feet, was the result. The high road has been several times turned to avoid this cavity, the enlargement of which is still proceeding, and the old line of road may be seen to have held its course directly over what is now the wildest part of the ravine. In the perpendicular walls of this great chasm appear beds of clay and sand, red, white, yellow, and green, produced by the decomposition in situ of hornblendic gneiss, with layers and veins of quartz, which remain entire, to prove that the whole mass was once solid and crystalline.
Ravine on the farm of Pomona, near Milledgeville, Georgia, as it appeared January, 1846. Excavated in twenty years, 55 feet deep, and 180 feet broad.
I infer, from the rapidity of the denudation which only began here after the removal of the native wood, that this spot, elevated about 600 feet above the sea, has been always covered with a dense forest, from the remote time when it first emerged from the sea. The termination of the cavity on the right hand in the foreground is the head or upper end of the ravine, and in almost every case, such gulleys are lengthened by the streams cutting their way backwards. The depth at the upper end is often, as in this case, considerable, and there is usually at this point, during floods, a small cascade.
Sinuosities of rivers.—In proportion as such valleys are widened, sinuosities are caused by the deflection of the stream first to one side and then to the other. The unequal hardness of the materials through which the channel is eroded tends partly to give new directions to the lateral force of excavation. When by these, or by accidental shiftings of the alluvial matter in the channel, the current is made to cross its general line of descent, it eats out a curve in the opposite bank, or in the side of the hills bounding the valley, from which curve it is turned back again at an equal angle, so that it recrosses the line of descent, and gradually hollows out another curve lower down in the opposite bank, till the whole sides of the valley, or river bed, present a succession of salient and retiring angles. Among the causes of deviation from a straight course, by which torrents and rivers tend in mountainous regions to widen the valleys through which they flow, may be mentioned the confluence of lateral torrents, swollen irregularly at different seasons by partial storms, and discharging at different times unequal quantities of sand, mud, and pebbles, into the main channel.
When the tortuous flexures of a river are extremely great, as often happens in alluvial plains, the aberration from the direct line of descent may be restored by the river cutting through the isthmus which separates two neighboring curves. Thus in the annexed diagram, the extreme sinuosity of the river has caused it to return for a brief space in a contrary direction to its main course, so that a peninsula is formed, and the isthmus (at a) is consumed on both sides by currents flowing in opposite directions. In this case an island is soon formed,—on either side of which a portion of the stream usually remains.
Transporting power of water.—In regard to the transporting power of water, we may often be surprised at the facility with which streams of a small size, and descending a slight declivity, bear along coarse sand and gravel; for we usually estimate the weight of rocks in air, and do not reflect on their comparative buoyancy when submerged in a denser fluid. The specific gravity of many rocks is not more than twice that of water, and very rarely more than thrice, so that almost all the fragments propelled by a stream have lost a third, and many of them a half, of what we usually term their weight.
It has been proved by experiment, in contradiction to the theories of the earlier writers on hydrostatics, to be a universal law, regulating the motion of running water, that the velocity at the bottom of the stream is everywhere less than in any part above it, and is greatest at the surface. Also that the superficial particles in the middle of the stream move swifter than those at the sides. This retardation of the lowest and lateral currents is produced by friction; and when the velocity is sufficiently great, the soil composing the sides and bottom gives way. A velocity of three inches per second at the bottom is ascertained to be sufficient to tear up fine clay,—six inches per second, fine sand,—twelve inches per second, fine gravel,—and three feet per second, stones of the size of an egg.[269]
When this mechanical power of running water is considered, we are prepared for the transportation before alluded to of large quantities of gravel, sand, and mud, by torrents which descend from mountainous regions. But a question naturally arises, How the more tranquil rivers of the valleys and plains, flowing on comparatively level ground, can remove the prodigious burden which is discharged into them by their numerous tributaries, and by what means they are enabled to convey the whole mass to the sea? If they had not this removing power, their channels would be annually choked up, and the valleys of the lower country, and plains at the base of mountain-chains, would be continually strewed over with fragments of rock and sterile sand. But this evil is prevented by a general law regulating the conduct of running water,—that two equal streams do not, when united, occupy a bed of double surface. Nay, the width of the principal river, after the junction of a tributary, sometimes remains the same as before, or is even lessened. The cause of this apparent paradox was long ago explained by the Italian writers, who had studied the confluence of the Po and its feeders in the plains of Lombardy.
The addition of a smaller river augments the velocity of the main stream, often in the same proportion as it does the quantity of water. Thus the Venetian branch of the Po swallowed up the Ferranese branch and that of Panaro without any enlargement of its own dimensions. The cause of the greater velocity is, first, that after the union of two rivers the water, in place of the friction of four shores, has only that of two to surmount; 2dly, because the main body of the stream being farther distant from the banks, flows on with less interruption; and lastly, because a greater quantity of water moving more swiftly, digs deeper into the river's bed. By this beautiful adjustment, the water which drains the interior country is made continually to occupy less room as it approaches the sea; and thus the most valuable part of our continents, the rich deltas and great alluvial plains, are prevented from being constantly under water.
River floods in Scotland, 1829.—Many remarkable illustrations of the power of running water in moving stones and heavy materials were afforded by the storm and floods which occurred on the 3d and 4th of August, 1829, in Aberdeenshire and other counties in Scotland. The elements during this storm assumed all the characters which mark the tropical hurricanes; the wind blowing in sudden gusts and whirlwinds, the lightning and thunder being such as is rarely witnessed in our climate, and heavy rain falling without intermission. The floods extended almost simultaneously, and with equal violence over that part of the northeast of Scotland which would be cut off by two lines drawn from the head of Lochrannoch, one towards Inverness and the other to Stonehaven. The united line of the different rivers which were flooded, could not be less than from five to six hundred miles in length; and the whole of their courses were marked by the destruction of bridges, roads, crops, and buildings. Sir T. D. Lauder has recorded the destruction of thirty-eight bridges, and the entire obliteration of a great number of farms and hamlets. On the Nairn, a fragment of sandstone, fourteen feet long by three feet wide and one foot thick, was carried above 200 yards down the river. Some new ravines were formed on the sides of mountains where no streams had previously flowed, and ancient river-channels, which had never been filled from time immemorial, gave passage to a copious flood.[270]
The bridge over the Dee at Ballater consisted of five arches, having upon the whole a water-way of 260 feet. The bed of the river, on which the piers rested, was composed of rolled pieces of granite and gneiss. The bridge was built of granite, and had stood uninjured for twenty years; but the different parts were swept away in succession by the flood, and the whole mass of masonry disappeared in the bed of the river. "The river Don," observes Mr. Farquharson, in his account of the inundations, "has upon my own premises forced a mass of four or five hundred tons of stones, many of them two or three hundred pounds' weight, up an inclined plane, rising six feet in eight or ten yards, and left them in a rectangular heap, about three feet deep on a flat ground:—the heap ends abruptly at its lower extremity."[271]
The power even of a small rivulet, when swollen by rain, in removing heavy bodies, was exemplified in August, 1827, in the College, a small stream which flows at a slight declivity from the eastern watershed of the Cheviot Hills. Several thousand tons' weight of gravel and sand were transported to the plain of the Till, and a bridge, then in progress of building, was carried away, some of the arch-stones of which, weighing from half to three quarters of a ton each, were propelled two miles down the rivulet. On the same occasion, the current tore away from the abutment of a mill-dam a large block of greenstone-porphyry, weighing nearly two tons, and transported it to the distance of a quarter of a mile. Instances are related as occurring repeatedly, in which from one to three thousand tons of gravel are, in like manner, removed by this streamlet to still greater distances in one day.[272]
Floods caused by landslips, 1826.—The power which running water may exert in the lapse of ages, in widening and deepening a valley, does not so much depend on the volume and velocity of the stream usually flowing in it, as on the number and magnitude of the obstructions which have, at different periods, opposed its free passage. If a torrent, however small, be effectually dammed up, the size of the valley above the barrier, and its declivity below, and not the dimensions of the torrent, will determine the violence of the débâcle. The most universal source of local deluges, are landslips, slides, or avalanches, as they are sometimes called, when great masses of rock and soil, or sometimes ice and snow, are precipitated into the bed of a river, the boundary cliffs of which have been thrown down by the shock of an earthquake, or undermined by springs or other causes. Volumes might be filled with the enumeration of instances on record of these terrific catastrophes; I shall therefore select a few examples of recent occurrence, the facts of which are well authenticated.
Two dry seasons in the White Mountains, in New Hampshire (United States), were followed by heavy rains on the 28th August, 1826, when from the steep and lofty declivities which rise abruptly on both sides of the river Saco, innumerable rocks and stones, many of sufficient size to fill a common apartment, were detached, and in their descent swept down before them, in one promiscuous and frightful ruin, forests, shrubs, and the earth which sustained them. Although there are numerous indications on the steep sides of these hills of former slides of the same kind, yet no tradition had been handed down of any similar catastrophe within the memory of man, and the growth of the forest on the very spots now devastated, clearly showed that for a long interval nothing similar had occurred. One of these moving masses was afterwards found to have slid three miles, with an average breadth of a quarter of a mile. The natural excavations commenced generally in a trench a few yards in depth and a few rods in width, and descended the mountains, widening and deepening till they became vast chasms. At the base of these hollow ravines was seen a confused mass of ruins, consisting of transported earth, gravel, rocks, and trees. Forests of spruce-fir and hemlock, a kind of fir somewhat resembling our yew in foliage, were prostrated with as much ease as if they had been fields of grain; for, where they disputed the ground, the torrent of mud and rock accumulated behind, till it gathered sufficient force to burst the temporary barrier.
The valleys of the Amonoosuck and Saco presented, for many miles, an uninterrupted scene of desolation; all the bridges being carried away, as well as those over their tributary streams. In some places, the road was excavated to the depth of from fifteen to twenty feet; in others, it was covered with earth, rocks, and trees, to as great a height. The water flowed for many weeks after the flood, as densely charged with earth as it could be without being changed into mud, and marks were seen in various localities of its having risen on either side of the valley to more than twenty-five feet above its ordinary level. Many sheep and cattle were swept away, and the Willey family, nine in number, who in alarm had deserted their house, were destroyed on the banks of the Saco; seven of their mangled bodies were afterwards found near the river, buried beneath drift-wood and mountain ruins.[273] Eleven years after the event, the deep channels worn by the avalanches of mud and stone, and the immense heaps of boulders and blocks of granite in the river channel, still formed, says Professor Hubbard, a picturesque feature in the scenery.[274]
When I visited the country in 1845, eight years after Professor Hubbard, I found the signs of devastation still very striking; I also particularly remarked that although the surface of the bare granitic rocks had been smoothed by the passage over them of so much mud and stone, there were no continuous parallel and rectilinear furrows, nor any of the fine scratches or striæ which characterize glacial action. The absence of these is nowhere more clearly exemplified than in the bare rocks over which passed the great "Willey slide" of 1826.[275]
But the catastrophes in the White Mountains are insignificant, when compared to those which are occasioned by earthquakes, when the boundary hills, for miles in length, are thrown down into the hollow of a valley. I shall have opportunities of alluding to inundations of this kind, when treating expressly of earthquakes, and shall content myself at present with selecting an example of a flood due to a different cause.
Flood in the valley of Bagnes, 1818.—The valley of Bagnes is one of the largest of the lateral embranchments of the main valley of the Rhone, above the Lake of Geneva. Its upper portion was, in 1818, converted into a lake by the damming up of a narrow pass, by avalanches of snow and ice, precipitated from an elevated glacier into the bed of the river Dranse. In the winter season, during continued frost, scarcely any water flows in the bed of this river to preserve an open channel, so that the ice barrier remained entire until the melting of the snows in spring, when a lake was formed above, about half a league in length, which finally attained in some parts a depth of about two hundred feet, and a width of about seven hundred feet. To prevent or lessen the mischief apprehended from the sudden bursting of the barrier, an artificial gallery, seven hundred feet in length, was cut through the ice, before the waters had risen to a great height. When at length they accumulated and flowed through this tunnel, they dissolved the ice, and thus deepened their channel, until nearly half of the whole contents of the lake were slowly drained off. But at length, on the approach of the hot season, the central portion of the remaining mass of ice gave way with a tremendous crash, and the residue of the lake was emptied in half an hour. In the course of its descent, the waters encountered several narrow gorges, and at each of these they rose to a great height, and then burst with new violence into the next basin, sweeping along rocks, forests, houses, bridges, and cultivated land. For the greater part of its course the flood resembled a moving mass of rock and mud, rather than of water. Some fragments of granitic rocks, of enormous magnitude, and which from their dimensions, might be compared without exaggeration to houses, were torn out of a more ancient alluvion, and borne down for a quarter of a mile. One of the fragments moved was sixty paces in circumference.[276] The velocity of the water, in the first part of its course, was thirty-three feet per second, which diminished to six feet before it reached the Lake of Geneva, where it arrived in six hours and a half, the distance being forty-five miles.[277]
This flood left behind it, on the plains of Martigny, thousands of trees torn up by the roots, together with the ruins of buildings. Some of the houses in that town were filled with mud up to the second story. After expanding in the plain of Martigny, it entered the Rhone, and did no farther damage; but some bodies of men, who had been drowned above Martigny, were afterwards found, at the distance of about thirty miles, floating on the farther side of the Lake of Geneva, near Vevay.
The waters, on escaping from the temporary lake, intermixed with mud and rock, swept along, for the first four miles, at the rate of above twenty miles an hour; and M. Escher, the engineer, calculated that the flood furnished 300,000 cubic feet of water every second—an efflux which is five times greater than that of the Rhine below Basle. Now, if part of the lake had not been gradually drained off, the flood would have been nearly double, approaching in volume to some of the largest rivers in Europe. It is evident, therefore, that when we are speculating on the excavating force which a river may have exerted in any particular valley, the most important question is, not the volume of the existing stream, nor the present levels of its channel, nor even the nature of the rocks, but the probability of a succession of floods at some period since the time when the valley may have been first elevated above the sea.
For several months after the débâcle of 1818, the Dranse, having no settled channel, shifted its position continually from one side to the other of the valley, carrying away newly-erected bridges, undermining houses, and continuing to be charged with as large a quantity of earthy matter as the fluid could hold in suspension. I visited this valley four months after the flood, and was witness to the sweeping away of a bridge, and the undermining of part of a house. The greater part of the ice-barrier was then standing, presenting vertical cliffs 150 feet high, like ravines in the lava-currents of Etna or Auvergne, where they are intersected by rivers.
Inundations, precisely similar, are recorded to have occurred at former periods in this district, and from the same cause. In 1595, for example, a lake burst, and the waters, descending with irresistible fury, destroyed the town of Martigny, where from sixty to eighty persons perished. In a similar flood, fifty years before, 140 persons were drowned.
Flood at Tivoli, 1826.—I shall conclude with one more example derived from a land of classic recollections, the ancient Tibur, and which, like all the other inundations above alluded to, occurred within the present century. The younger Pliny, it will be remembered, describes a flood on the Anio, which destroyed woods, rocks, and houses, with the most sumptuous villas and works of arts.[278] For four or five centuries consecutively, this "headlong stream," as Horace truly called it, has often remained within its bounds, and then, after so long an interval of rest, has at different periods inundated its banks again, and widened its channel. The last of these catastrophes happened 15th Nov. 1826, after heavy rains, such as produced the floods before alluded to in Scotland. The waters appear also to have been impeded by an artificial dike, by which they were separated into two parts, a short distance above Tivoli. They broke through this dike; and leaving the left trench dry, precipitated themselves, with their whole weight, on the right side. Here they undermined, in the course of a few hours, a high cliff, and widened the river's channel about fifteen paces. On this height stood the church of St. Lucia, and about thirty-six houses of the town of Tivoli, which were all carried away, presenting as they sank into the roaring flood, a terrific scene of destruction to the spectators on the opposite bank. As the foundations were gradually removed, each building, some of them edifices of considerable height, was first traversed with numerous rents, which soon widened into large fissures, until at length the roofs fell in with a crash, and then the walls sunk into the river, and were hurled down the cataract below.[279]
The destroying agency of the flood came within two hundred yards of the precipice on which the beautiful temple of Vesta stands; but fortunately this precious relic of antiquity was spared, while the wreck of modern structures was hurled down the abyss. Vesta, it will be remembered, in the heathen mythology, personified the stability of the earth; and when the Samian astronomer, Aristarchus, first taught that the earth revolved on its axis, and round the sun, he was publicly accused of impiety, "for removing the everlasting Vesta from her place." Playfair observed, that when Hutton ascribed instability to the earth's surface, and represented the continents which we inhabit as the theatre of incessant change and movement, his antagonists, who regarded them as unalterable, assailed him in a similar manner with accusations founded on religious prejudices.[280] We might appeal to the excavating power of the Anio as corroborative of one of the most controverted parts of the Huttonian theory; and if the days of omens had not gone by, the geologists who now worship Vesta might regard the late catastrophe as portentous. We may, at least, recommend the modern votaries of the goddess to lose no time in making a pilgrimage to her shrine, for the next flood may not respect the temple.
Excavation of rocks by running water.—The rapidity with which even the smallest streams hollow out deep channels in soft and destructible soils is remarkably exemplified in volcanic countries, where the sand and half-consolidated tuffs opposed but a slight resistance to the torrents which descend the mountain-side. After the heavy rains which followed the eruption of Vesuvius in 1824, the water flowing from the Atrio del Cavallo cut, in three days, a new chasm through strata of tuff and ejected volcanic matter, to the depth of twenty-five feet. I found the old mule-road, in 1828, intersected by this new ravine.
The gradual erosion of deep chasms through some of the hardest rocks, by the constant passage of running water, charged with foreign matter, is another phenomenon of which striking examples may be adduced. Illustrations of this excavating power are presented by many valleys in central France where the channels of rivers have been barred up by solid currents of lava, through which the streams have re-excavated a passage, to the depth of from twenty to seventy feet and upwards, and often of great width. In these cases there are decisive proofs that neither the sea, nor any denuding wave or extraordinary body of water, has passed over the spot since the melted lava was consolidated. Every hypothesis of the intervention of sudden and violent agency is entirely excluded, because the cones of loose scoriæ, out of which the lavas flowed, are oftentimes at no great elevation above the rivers, and have remained undisturbed during the whole period which has been sufficient for the hollowing out of such enormous ravines.
Recent excavation by the Simeto.—But I shall at present confine myself to examples derived from events which have happened since the time of history.
Fig. 16.
Recent excavation of lava at the foot of Etna by the river Simeto.
At the western base of Etna, a current of lava (A A, [fig. 16]), descending from near the summit of the great volcano, has flowed to the distance of five or six miles, and then reached the alluvial plain of the Simeto, the largest of the Sicilian rivers, which skirts the base of Etna, and falls into the sea a few miles south of Catania. The lava entered the river about three miles above the town of Aderno, and not only occupied its channel for some distance, but, crossing to the opposite side of the valley, accumulated there in a rocky mass. Gemmellaro gives the year 1603 as the date of the eruption.[281] The appearance of the current clearly proves, that it is one of the most modern of those of Etna; for it has not been covered or crossed by subsequent streams or ejections, and the olives which had been planted on its surface were all of small size, when I examined the spot in 1828, yet they were older than the natural wood on the same lava. In the course, therefore, of about two centuries, the Simeto has eroded a passage from fifty to several hundred feet wide, and in some parts from forty to fifty feet deep.
The portion of lava cut through is in no part porous or scoriaceous, but consists of a compact homogeneous mass of hard blue rock, somewhat inferior in weight to ordinary basalt, and containing crystals of olivine and glassy felspar. The general declivity of this part of the bed of the Simeto is not considerable; but, in consequence of the unequal waste of the lava, two water-falls occur at Passo Manzanelli, each about six feet in height. Here the chasm (B, [fig. 16]) is about forty feet deep, and only fifty broad.
The sand and pebbles in the river-bed consist chiefly of a brown quartzose sandstone, derived from the upper country; but the materials of the volcanic rock itself must have greatly assisted the attrition. This river, like the Caltabiano on the eastern side of Etna, has not yet cut down to the ancient bed of which it was dispossessed, and of which the probable position is indicated in the annexed diagram (C, [fig. 16]).
On entering the narrow ravine where the water foams down the two cataracts, we are entirely shut out from all view of the surrounding country; and a geologist who is accustomed to associate the characteristic features of the landscape with the relative age of certain rocks, can scarcely dissuade himself from the belief that he is contemplating a scene in some rocky gorge of a primary district. The external forms of the hard blue lava are as massive as any of the most ancient trap-rocks of Scotland. The solid surface is in some parts smoothed and almost polished by attrition, and covered in others with a white lichen, which imparts to it an air of extreme antiquity, so as greatly to heighten the delusion. But the moment we reascend the cliff the spell is broken; for we scarcely recede a few paces, before the ravine and river disappear, and we stand on the black and rugged surface of a vast current of lava, which seems unbroken, and which we can trace up nearly to the distant summit of that majestic cone which Pindar called "the pillar of heaven," and which still continues to send forth a fleecy wreath of vapor, reminding us that its fires are not extinct, and that it may again give out a rocky stream, wherein other scenes like that now described may present themselves to future observers.
Falls of Niagara.—The falls of Niagara afford a magnificent example of the progressive excavation of a deep valley in solid rock. That river flows over a flat table-land, in a depression of which Lake Erie is situated. Where it issues from the lake, it is nearly a mile in width, and 330 feet above Lake Ontario, which is about 30 miles distant. For the first fifteen miles below Lake Erie the surrounding country, comprising Upper Canada on the west, and the state of New York on the east, is almost on a level with its banks, and nowhere more than thirty or forty feet above them.[282] (See [fig. 17].) The river being occasionally interspersed with low wooded islands, and having sometimes a width of three miles, glides along at first with a clear, smooth, and tranquil current, falling only fifteen feet in as many miles, and in this part of its course resembling an arm of Lake Erie. But its character is afterwards entirely changed, on approaching the Rapids, where it begins to rush and foam over a rocky and uneven limestone bottom, for the space of nearly a mile, till at length it is thrown down perpendicularly 165 feet at the Falls. Here the river is divided into two sheets of water by an island, the largest cataract being more than a third of a mile broad, the smaller one having a breadth of six hundred feet. When the water has precipitated itself into an unfathomable pool, it rushes with great velocity down the sloping bottom of a narrow chasm, for a distance of seven miles. This ravine varies from 200 to 400 yards in width from cliff to cliff; contrasting, therefore, strongly in its breadth with that of the river above. Its depth is from 200 to 300 feet, and it intersects for about seven miles the table-land before described, which terminates suddenly at Queenstown in an escarpment or long line of inland cliff facing northwards, towards Lake Ontario. The Niagara, on reaching the escarpment and issuing from the gorge, enters the flat country, which is so nearly on a level with Lake Ontario, that there is only a fall of about four feet in the seven additional miles which intervene between Queenstown and the shores of that lake.
It has long been the popular belief that the Niagara once flowed in a shallow valley across the whole platform, from the present site of the Falls to the escarpment (called the Queenstown heights), where it is supposed that the cataract was first situated, and that the river has been slowly eating its way backwards through the rocks for the distance of seven miles. This hypothesis naturally suggests itself to every observer, who sees the narrowness of the gorge at its termination, and throughout its whole course, as far up as the Falls, above which point the river expands as before stated. The boundary cliffs of the ravine are usually perpendicular, and in many places undermined on one side by the impetuous stream. The uppermost rock of the table-land at the Falls consists of hard limestone (a member of the Silurian series), about ninety feet thick, beneath which lie soft shales of equal thickness, continually undermined by the action of the spray, which rises from the pool into which so large a body of water is projected, and is driven violently by gusts of wind against the base of the precipice. In consequence of this action, and that of frost, the shale disintegrates and crumbles away, and portions of the incumbent rock overhang 40 feet, and often when unsupported tumble down, so that the Falls do not remain absolutely stationary at the same spot, even for half a century. Accounts have come down to us, from the earliest period of observation, of the frequent destruction of these rocks, and the sudden descent of huge fragments in 1818 and 1828, are said to have shaken the adjacent country like an earthquake. The earliest travellers, Hennepin and Kalm, who in 1678 and 1751 visited the Falls, and published views of them, attest the fact, that the rocks have been suffering from dilapidation for more than a century and a half, and that some slight changes, even in the scenery of the cataract have been brought about within that time. The idea, therefore, of perpetual and progressive waste is constantly present to the mind of every beholder; and as that part of the chasm, which has been the work of the last hundred and fifty years resembles precisely, in depth, width, and character, the rest of the gorge which extends seven miles below, it is most natural to infer, that the entire ravine has been hollowed out in the same manner, by the recession of the cataract.
It must at least be conceded, that the river supplies an adequate cause for executing the whole task thus assigned to it, provided we grant sufficient time for its completion. As this part of the country was a wilderness till near the end of the last century, we can obtain no accurate data for estimating the exact rate at which the cataract has been receding. Mr. Bakewell, son of the eminent geologist of that name, who visited the Niagara in 1829, made the first attempt to calculate from the observations of one who had lived forty years at the Falls, and who had been the first settler there, that the cataract had during that period gone back about a yard annually. But after the most careful inquiries which I was able to make, during my visit to the spot in 1841-2, I came to the conclusion that the average of one foot a year would be a much more probable conjecture. In that case, it would have required thirty-five thousand years for the retreat of the Falls, from the escarpment of Queenstown to their present site. It seems by no means improbable that such a result would be no exaggeration of the truth, although we cannot assume that the retrograde movement has been uniform. An examination of the geological structure of the district, as laid open in the ravine, shows that at every step in the process of excavation, the height of the precipice, the hardness of the materials at its base, and the quantity of fallen matter to be removed, must have varied. At some points it may have receded much faster than at present, but in general its progress was probably slower, because the cataract, when it began to recede, must have had nearly twice its present height.
From observations made by me in 1841, when I had the advantage of being accompanied by Mr. Hall, state geologist of New York, and in 1842, when I re-examined the Niagara district, I obtained geological evidence of the former existence of an old river-bed, which, I have no doubt, indicates the original channel through which the waters once flowed from the Falls to Queenstown, at the height of nearly three hundred feet above the bottom of the present gorge. The geological monuments alluded to, consist of patches of sand and gravel, forty feet thick, containing fluviatile shells of the genera Unio, Cyclas, Melania, &c., such as now inhabit the waters of the Niagara above the Falls. The identity of the fossil species with the recent is unquestionable, and these freshwater deposits occur at the edge of the cliffs bounding the ravine, so that they prove the former extension of an elevated shallow valley, four miles below the falls, a distinct prolongation of that now occupied by the Niagara, in the elevated region intervening between Lake Erie and the Falls. Whatever theory be framed for the hollowing out of the ravine further down, or for the three miles which intervene between the whirlpool and Queenstown, it will always be necessary to suppose the former existence of a barrier of rock, not of loose and destructible materials, such as those composing the drift in this district, somewhere immediately below the whirlpool. By that barrier the waters were held back for ages, when the fluviatile deposit, 40 feet in thickness, and 250 feet above the present channel of the river, originated. If we are led by this evidence to admit that the cataract has cut back its way for four miles, we can have little hesitation in referring the excavation of the remaining three miles below to a like agency, the shape of the chasm being precisely similar.
There have been many speculations respecting the future recession of the Falls, and the deluge that might be occasioned by the sudden escape of the waters of Lake Erie, if the ravine should ever be prolonged 16 miles backwards. But a more accurate knowledge of the geological succession of the rocks, brought to light by the State Survey, has satisfied every geologist that the Falls would diminish gradually in height before they travelled back two miles, and in consequence of a gentle dip of the strata to the south, the massive limestone now at the top would then be at their base, and would retard, and perhaps put an effectual stop to, the excavating process.
CHAPTER XV.
TRANSPORTATION OF SOLID MATTER BY ICE.
Carrying power of river-ice—Rocks annually conveyed into the St. Lawrence by its tributaries—Ground-ice; its origin and transporting power—Glaciers—Theory of their downward movement—Smoothed and grooved rocks—The moraine unstratified—Icebergs covered with mud and stones—Limits of glaciers and icebergs—Their effects on the bottom when they run aground—Packing of coast-ice—Boulders drifted by ice on coast of Labrador—Blocks moved by ice in the Baltic.
The power of running water to carry sand, gravel, and fragments of rock to considerable distances is greatly augmented in those regions where, during some part of the year, the frost is of sufficient intensity to convert the water, either at the surface or bottom of rivers, into ice.
This subject may be considered under three different heads:—first, the effect of surface-ice and ground-ice in enabling streams to remove gravel and stones to a distance; secondly, the action of glaciers in the transport of boulders, and in the polishing and scratching of rocks; thirdly, the floating off of glaciers charged with solid matter into the sea, and the drifting of icebergs and coast-ice.
River-ice.—Pebbles and small pieces of rock may be seen entangled in ice, and floating annually down the Tay in Scotland, as far as the mouth of that river. Similar observations might doubtless be made respecting almost all the larger rivers of England and Scotland; but there seems reason to suspect that the principal transfer from place to place of pebbles and stones adhering to ice goes on unseen by us under water. For although the specific gravity of the compound mass may cause it to sink, it may still be very buoyant, and easily borne along by a feeble current. The ice, moreover, melts very slowly at the bottom of running streams in winter, as the water there is often nearly at the freezing point, as will be seen from what will be said in the sequel of ground-ice.
As we traverse Europe in the latitudes of Great Britain, we find the winters more severe, and the rivers more regularly frozen over. M. Lariviere relates that, being at Memel on the Baltic in 1821, when the ice of the river Niemen broke up, he saw a mass of ice thirty feet long which had descended the stream, and had been thrown ashore. In the middle of it was a triangular piece of granite, about a yard in diameter, resembling in composition the red granite of Finland.[283]
When rivers in the northern hemisphere flow from south to north, the ice first breaks up in the higher part of their course, and the flooded waters, bearing along large icy fragments, often arrive at parts of the stream which are still firmly frozen over. Great inundations are thus frequently occasioned by the obstructions thrown in the way of the descending waters, as in the case of the Mackenzie in North America, and the Irtish, Obi, Yenesei, Lena, and other rivers of Siberia. (See map, [fig. 1], p. 79.) A partial stoppage of this kind lately occurred (Jan. 31, 1840) in the Vistula, about a mile and a half above the city of Dantzic, where the river, choked up by packed ice, was made to take a new course over its right bank, so that it hollowed out in a few days a deep and broad channel, many leagues in length, through a tract of sand-hills which were from 40 to 60 feet high.
In Canada, where the winter's cold is intense, in a latitude corresponding to that of central France, several tributaries of the St. Lawrence begin to thaw in their upper course, while they remain frozen over lower down, and thus large slabs of ice are set free and thrown upon the unbroken sheet of ice below. Then begins what is called the packing of the drifted fragments; that is to say, one slab is made to slide over another, until a vast pile is built up, and the whole being frozen together, is urged onwards by the force of the dammed up waters and drift-ice. Thus propelled, it not only forces along boulders, but breaks off from cliffs, which border the rivers, huge pieces of projecting rock. By this means several buttresses of solid masonry, which, up to the year 1836, supported a wooden bridge on the St. Maurice, which falls into the St. Lawrence, near the town of Trois Rivières, lat. 46° 20', were thrown down, and conveyed by the ice into the main river; and instances have occurred at Montreal of wharfs and stone-buildings, from 30 to 50 feet square, having been removed in a similar manner. We learn from Captain Bayfield that anchors laid down within high-water mark, to secure vessels hauled on shore for the winter, must be cut out of the ice on the approach of spring, or they would be carried away. In 1834, the Gulnare's bower-anchor, weighing half a ton, was transported some yards by the ice, and so firmly was it fixed, that the force of the moving ice broke a chain-cable suited for a 10-gun brig, and which had rode the Gulnare during the heaviest gales in the gulf. Had not this anchor been cut out of the ice, it would have been earned into deep water and lost.[284]
PLATE II.
BOULDERS DRIFTED BY ICE ON SHORES OF THE ST. LAWRENCE
View taken by Lieut. Bowen, from the N. E., in the Spring of 1835, at Richelieu Rapid, lat. 46° N.
The scene represented in the annexed plate (pl. 2), from a drawing by Lieutenant Bowen, R. N., will enable the reader to comprehend the incessant changes which the transport of boulders produces annually on the low islands, shores, and bed of the St. Lawrence above Quebec. The fundamental rocks at Richelieu Rapid, situated in lat. 46° N., are limestone and slate, which are seen at low-water to be covered with boulders of granite. These boulders owe their spheroidal form chiefly to weathering, or action of frost, which causes the surface to exfoliate in concentric plates, so that all the more prominent angles are removed. At the point a is a cavity in the mud or sand of the beach, now filled with water, which was occupied during the preceding winter (1835) by the huge erratic b, a mass of granite, 70 tons' weight, found in the spring following (1836) at a distance of several feet from its former position. Many small islands are seen on the river, such as c d, which afford still more striking proofs of the carrying and propelling power of ice. These islets are never under water, yet every winter ice is thrown upon them in such abundance, that it packs to the height of 20, and even 30 feet, bringing with it a continual supply of large stones or boulders, and carrying away others; the greatest number being deposited, according to Lieutenant Bowen, on the edge of deep water. On the island d, on the left of the accompanying view, a lighthouse is represented, consisting of a square wooden building, which having no other foundation than the boulders, requires to be taken down every winter, and rebuilt on the reopening of the river.
These effects of frost, which are so striking on the St. Lawrence above Quebec, are by no means displayed on a smaller scale below that city, where the gulf rises and falls with the tide. On the contrary; it is in the estuary, between the latitudes 47° and 49°, that the greatest quantity of gravel and boulders of large dimensions are carried down annually towards the sea. Here the frost is so intense, that a dense sheet of ice is formed at low water, which, on the rise of the tide, is lifted up, broken, and thrown in heaps on the extensive shoals which border the estuary. When the tide recedes, this packed ice is exposed to a temperature sometimes 30° below zero, which freezes together all the loose pieces of ice, as well as the granitic and other boulders. The whole of these are often swept away by a high tide, or when the river is swollen by the melting of the snow in Spring. One huge block of granite, 15 feet long by 10 feet both in width and height, and estimated to contain 1500 cubic feet, was conveyed in this manner to some distance in the year 1837, its previous position being well known, as up to that time it had been used by Captain Bayfield as a mark for the surveying station.
Ground-ice.—When a current of cold air passes over the surface of a lake or stream it abstracts from it a quantity of heat, and the specific gravity of the water being thereby increased, the cooled portion sinks. This circulation may continue until the whole body of fluid has been cooled down to the temperature of 40° F., after which, if the cold increase, the vertical movement ceases, the water which is uppermost expands and floats over the heavier fluid below, and when it has attained a temperature of 32° Fahr. it sets into a sheet of ice. It should seem therefore impossible, according to this law of congelation, that ice should ever form at the bottom of a river; and yet such is the fact, and many speculations have been hazarded to account for so singular a phenomenon. M. Arago is of opinion that the mechanical action of a running stream produces a circulation by which the entire body of water is mixed up together, and cooled alike, and the whole being thus reduced to the freezing point, ice begins to form at the bottom for two reasons, first, because there is less motion there, and secondly, because the water is in contact with solid rock or pebbles which have a cold surface.[285] Whatever explanation we adopt, there is no doubt of the fact, that in countries where the intensity and duration of the cold is great, rivers and torrents acquire an increase of carrying power by the formation of what is called ground-ice. Even in the Thames we learn from Dr. Plott that pieces of this kind of ice, having gravel frozen on to their under side, rise up from the bottom in winter, and float on the surface. In the Siberian rivers, Weitz describes large stones as having been brought up from the river's bed in the same manner, and made to float.[286]
Glaciers.—In the temperate zone, the snow lies for months in winter on the summit of every high mountain, while in the arctic regions, a long summer's day of half a year's duration is insufficient to melt the snow, even on land just raised above the level of the sea. It is therefore not surprising, since the atmosphere becomes colder in proportion as we ascend in it, that there should be heights, even in tropical countries, where the snow never melts. The lowest limit to which the perpetual snow extends downwards, from the tops of mountains at the equator, is an elevation of not less than 16,000 feet above the sea; while in the Swiss Alps, in lat. 46° N. it reaches as low as 8,500 feet above the same level, the loftier peaks of the Alpine chain being from 12,000 to 15,000 feet high. The frozen mass augmenting from year to year would add indefinitely to the altitude of alpine summits, were it not relieved by its descent through the larger and deeper valleys to regions far below the general snow-line. To these it slowly finds its way in the form of rivers of ice, called glaciers, the consolidation of which is produced by pressure, and by the congelation of water infiltered into the porous mass, which is always undergoing partial liquefaction, and receiving in summer occasional showers of rain on its surface. In a day of hot sunshine, or mild rain, innumerable rills of pure and sparkling water run in icy channels along the surface of the glaciers, which in the night shrink, and come to nothing. They are often precipitated in bold cascades into deep fissures in the ice, and contribute together with springs to form torrents, which flow in tunnels at the bottom of the glaciers for many a league, and at length issue at their extremities, from beneath beautiful caverns or arches. The waters of these streams are always densely charged with the finest mud, produced by the grinding of rock and sand under the weight of the moving mass. (See [fig. 18].)
Glacier with medial and lateral moraines and with terminal cave
The length of the Swiss glaciers is sometimes twenty miles, their width in the middle portion, where they are broadest, occasionally two or three miles; their depth or thickness sometimes more than 600 feet. When they descend steep slopes, and precipices, or are forced through narrow gorges, the ice is broken up, and assumes the most fantastic and picturesque forms, with lofty peaks and pinnacles, projecting above the general level. These snow-white masses are often relieved by a dark background of pines, as in the valley of Chamouni; and are not only surrounded with abundance of the wild rhododendron in full flower, but encroach still lower into the region of cultivation, and trespass on fields where the tobacco-plant is flourishing by the side of the peasant's hut.
The cause of glacier motion has of late been a subject of careful investigation and much keen controversy. Although a question of physics, rather than of geology, it is too interesting to allow me to pass it by without some brief mention. De Saussure, whose travels in the Alps are full of original observations, as well as sound and comprehensive general views, conceived that the weight of the ice might be sufficient to urge it down the slope of the valley, if the sliding motion were aided by the water flowing at the bottom. For this "gravitation theory" Charpentier, followed by Agassiz, substituted the hypothesis of dilatation. The most solid ice is always permeable to water, and penetrated by innumerable fissures and capillary tubes, often extremely minute. These tubes imbibe the aqueous fluid during the day, which freezes, it is said, in the cold of the night, and expands while in the act of congelation. The distension of the whole mass exerts an immense force, tending to propel the glacier in the direction of least resistance—"in other words, down the valley." This theory was opposed by Mr. Hopkins on mathematical and mechanical grounds, in several able papers. Among other objections, he pointed out that the friction of so enormous a body as a glacier on its bed is so great, that the vertical direction would always be that of least resistance, and if a considerable distension of the mass should take place, by the action of freezing, it would tend to increase its thickness, rather than accelerate its downward progress. He also contended (and his arguments were illustrated by many ingenious experiments), that a glacier can move along an extremely slight slope, solely by the influence of gravitation, owing to the constant dissolution of ice in contact with the rocky bottom, and the number of separate fragments into which the glacier is divided by fissures, so that freedom of motion is imparted to its several parts somewhat resembling that of an imperfect fluid. To this view Professor James Forbes objected, that gravitation would not supply an adequate cause for the sliding of solid ice down slopes having an inclination of no more than four or five degrees, still less would it explain how the glacier advances where the channel expands and contracts. The Mer de Glace in Chamouni, for example, after being 2000 yards wide, passes through a strait only 900 yards in width. Such a gorge, it is contended, would be choked up by the advance of any solid mass, even if it be broken up into numerous fragments. The same acute observer remarked, that water in the fissures and pores of glaciers cannot, and does not part with its latent heat, so as to freeze every night to a great depth, or far in the interior of the mass. Had the dilatation theory been true, the chief motion of the glacier would have occurred about sunset, when the freezing of the water must be greatest, and it had, in fact, been at first assumed by those who favored that hypothesis, that the mass moved faster at the sides, where the melting of ice was promoted by the sun's heat, reflected from boundary precipices.
Agassiz appears to have been the first to commence, in 1841, aided by a skilful engineer, M. Escher de la Linth, a series of exact measurements to ascertain the laws of glacier motion, and he soon discovered, contrary to his preconceived notions, that the stream of ice moved more slowly at the sides than at the centre, and faster in the middle region of the glacier than at its extremity.[287] Professor James Forbes, who had joined Mr. Agassiz during his earlier investigations in the Alps, undertook himself an independent series of experiments, which he followed up with great perseverance, to determine the laws of glacier motion. These he found to agree very closely with the laws governing the course of rivers, their progress being greater in the centre than at the sides, and more rapid at the surface than at the bottom. This fact was verified by carefully fixing a great number of marks in the ice, arranged in a straight line, which gradually assumed a beautiful curve, the middle part pointing down the glacier, and showing a velocity there, double or treble that of the lateral parts.[288] He ascertained that the rate of advance by night was nearly the same as by day, and that even the hourly march of the icy stream could be detected, although the progress might not amount to more than six or seven inches in twelve hours. By the incessant though invisible advance of the marks placed on the ice, "time," says Mr. Forbes, "was marked out as by a shadow on a dial, and the unequivocal evidence which I obtained, that even while walking on a glacier we are, day by day, and hour by hour, imperceptibly carried on by the resistless flow of the icy stream, filled me with admiration." (Travels in the Alps, p. 133.) In order to explain this remarkable regularity of motion, and its obedience to laws so strictly analogous to those of fluids, the same writer proposed the theory that the ice, instead of being solid and compact, is a viscous or plastic body, capable of yielding to great pressure, and the more so in proportion as its temperature is higher, and as it approaches more nearly to the melting point. He endeavors to show that this hypothesis will account for many complicated phenomena, especially for a ribboned or veined structure which is everywhere observable in the ice, and might be produced by lines of discontinuity, arising from the different rates at which the various portions of the semi-rigid glacier advance and pass each other. Many examples are adduced to prove that a glacier can model itself to the form of the ground over which it is forced, exactly as would happen if it possessed a certain ductility, and this power of yielding under intense pressure, is shown not to be irreconcilable with the idea of the ice being sufficiently compact to break into fragments, when the strain upon its parts is excessive; as where the glacier turns a sharp angle, or descends upon a rapid or convex slope. The increased velocity in summer is attributed partly to the greater plasticity of the ice, when not exposed to intense cold, and partly to the hydrostatic pressure of the water in the capillary tubes, which imbibe more of this liquid in the hot season.
On the assumption of the ice being a rigid mass, Mr. Hopkins attributed the more rapid motions in the centre to the unequal rate at which the broad stripes of ice, intervening between longitudinal fissures, advance; but besides that there are parts of the glacier where no such fissures exist, such a mode of progression, says Mr. Forbes, would cause the borders of large transverse rents or "crevasses," to be jagged like a saw, instead of being perfectly even and straight-edged.[289] An experiment recently made by Mr. Christie, secretary to the Royal Society, appears to demonstrate that ice, under great pressure, possesses a sufficient degree of moulding and self-adapting power to allow it to be acted upon, as if it were a pasty substance. A hollow shell of iron an inch and a half thick, the interior being ten inches in diameter, was filled with water, in the course of a severe winter, and exposed to the frost, with the fuze-hole uppermost. A portion of the water expanded in freezing, so as to protrude a cylinder of ice from the fuze-hole; and this cylinder continued to grow inch by inch in proportion as the central nucleus of water froze. As we cannot doubt that an outer shell of ice is first formed, and then another within, the continued rise of the column through the fuze-hole must proceed from the squeezing of successive shells of ice concentrically formed, through the narrow orifice; and yet the protruded cylinder consisted of entire, and not fragmentary ice.[290]
The agency of glaciers in producing permanent geological changes consists partly in their power of transporting gravel, sand, and huge stones to great distances, and partly in the smoothing, polishing, and scoring of their rocky channels, and the boundary walls of the valleys through which they pass. At the foot of every steep cliff or precipice in high Alpine regions, a talus is seen of rocky fragments detached by the alternate action of frost and thaw. If these loose masses, instead of accumulating on a stationary base, happen to fall upon a glacier, they will move along with it, and, in place of a single heap, they will form in the course of years a long stream of blocks. If a glacier be 20 miles long, and its annual progression about 500 feet, it will require about two centuries for a block thus lodged upon its surface to travel down from the higher to the lower regions, or to the extremity of the icy mass. This terminal point remains usually unchanged from year to year, although every part of the ice is in motion, because the liquefaction by heat is just sufficient to balance the onward movement of the glacier, which may be compared to an endless file of soldiers, pouring into a breach, and shot down as fast as they advance.
The stones carried along on the ice are called in Switzerland the "moraines" of the glacier. There is always one line of blocks on each side or edge of the icy stream, and often several in the middle, where they are arranged in long ridges or mounds, often several yards high. (See [fig. 18], p. 223.) The cause of these "medial moraines" was first explained by Agassiz, who referred them to the confluence of tributary glaciers.[291] Upon the union of two streams of ice, the right lateral moraine of one of the streams comes in contact with the left lateral moraine of the other, and they afterwards move on together, in the centre, if the confluent glaciers are equal in size, or nearer to one side if unequal.
All sand and fragments of soft stone which fall through fissures and reach the bottom of the glaciers, or which are interposed between the glacier and the steep sides of the valley, are pushed along, and ground down into mud, while the larger and harder fragments have their angles worn off. At the same time the fundamental and boundary rocks are smoothed and polished, and often scored with parallel furrows, or with lines and scratches produced by hard minerals, such as crystals of quartz, which act like the diamond upon glass.[292] This effect is perfectly different from that caused by the action of water, or a muddy torrent forcing along heavy fragments; for when stones are fixed firmly in the ice, and pushed along by it under great pressure, in straight lines, they scoop out long rectilinear furrows or grooves parallel to each other.[293] The discovery of such markings at various heights far above the surface of the existing glaciers and for miles beyond their present terminations, affords geological evidence of the former extension of the ice beyond its present limits in Switzerland and other countries.
The moraine of the glacier, observes Charpentier, is entirely devoid of stratification, for there has been no sorting of the materials, as in the case of sand, mud, and pebbles, when deposited by running water. The ice transports indifferently, and to the same spots, the heaviest blocks and the finest particles, mingling all together, and leaving them in one confused and promiscuous heap wherever it melts.[294]
Icebergs.—In countries situated in high northern latitudes, like Spitzbergen, between 70° and 80° N., glaciers, loaded with mud and rock, descend to the sea, and there huge fragments of them float off and become icebergs. Scoresby counted 500 of these bergs drifting along in latitudes 69° and 70° N., which rose above the surface from the height of 100 to 200 feet, and measured from a few yards to a mile in circumference.[295] Many of them were loaded with beds of earth and rock of such thickness, that the weight was conjectured to be from 50,000 to 100,000 tons. Specimens of the rocks were obtained, and among them were granite, gneiss, mica-schist, clay-slate, granular felspar, and greenstone. Such bergs must be of great magnitude; because the mass of ice below the level of the water is about eight times greater than that above. Wherever they are dissolved, it is evident that the "moraine" will fall to the bottom of the sea. In this manner may submarine valleys, mountains, and platforms become strewed over with gravel, sand, mud, and scattered blocks of foreign rock, of a nature perfectly dissimilar from all in the vicinity, and which may have been transported across unfathomable abysses. If the bergs happen to melt in still water, so that the earthy and stony materials may fall tranquilly to the bottom, the deposit will probably be unstratified, like the terminal moraine of a glacier; but whenever the materials are under the influence of a current of water as they fall, they will be sorted and arranged according to their relative weight and size, and therefore more or less perfectly stratified.
In a former chapter it was stated that some ice islands have been known to drift from Baffin's Bay to the Azores, and from the South Pole to the immediate neighborhood of the Cape of Good Hope, so that the area over which the effects of moving ice may be experienced, comprehends a large portion of the globe.
We learn from Von Buch that the most southern point on the continent of Europe at which a glacier comes down to the sea is in Norway, in lat. 67° N.[296] But Mr. Darwin has shown, that they extend to the sea, in South America, in latitudes more than 20° nearer the equator than in Europe; as, for example, in Chili, where, in the Gulf of Penas, lat. 46° 40' S., or the latitude of central France; and in Sir George Eyre's Sound, in the latitude of Paris, they give origin to icebergs, which were seen in 1834 carrying angular pieces of granite, and stranding them in fiords, where the shores were composed of clay-slate.[297] A large proportion, however, of the ice-islands seen floating both in the northern and southern hemispheres, are probably not generated by glaciers, but rather by the accumulation of coast ice. When the sea freezes at the base of a lofty precipice, the sheet of ice is prevented from adhering to the land by the rise and fall of the tide. Nevertheless, it often continues on the shore at the foot of the cliff, and receives accessions of drift snow blown from the land. Under the weight of this snow the ice sinks slowly if the water be deep, and the snow is gradually converted into ice by partial liquefaction and re-congelation. In this manner, islands of ice of great thickness and many leagues in length, originate, and are eventually blown out to sea by off-shore winds. In their interior are inclosed many fragments of stone which had fallen upon them from overhanging cliffs during their formation. Such floating icebergs are commonly flat-topped, but their lower portions are liable to melt in latitudes where the ocean at a moderate depth is usually warmer than the surface water and the air. Hence their centre of gravity changes continually, and they turn over and assume very irregular shapes.
In a voyage of discovery made in the antarctic regions in 1839, a dark-colored angular mass of rock was seen imbedded in an iceberg, drifting along in mid-ocean in lat. 61° S. That part of the rock which was visible was about 12 feet in height, and from 5 to 6 in width, but the dark color of the surrounding ice indicated that much more of the stone was concealed. A sketch made by Mr. Macnab, when the vessel was within a quarter of a mile of it, is now published.[298] This iceberg, one of many observed at sea on the same day, was between 250 and 300 feet high, and was no less than 1400 miles from any certainly known land. It is exceedingly improbable, says Mr. Darwin, in his notice of this phenomenon, that any land will hereafter be discovered within 100 miles of the spot, and it must be remembered that the erratic was still firmly fixed in the ice, and may have sailed for many a league farther before it dropped to the bottom.[299]
Captain Sir James Ross, in his antarctic voyage in 1841, 42, and 43, saw multitudes of icebergs transporting stones and rocks of various sizes, with frozen mud, in high southern latitudes. His companion, Dr. J. Hooker, informs me that he came to the conclusion that most of the southern icebergs have stones in them, although they are usually concealed from view by the quantity of snow which falls upon them.
In the account given by Messrs. Dease and Simpson, of their recent arctic discoveries, we learn that in lat. 71° N., long. 156° W., they found "a long low spit, named Point Barrow, composed of gravel and coarse sand, in some parts more than a quarter of a mile broad, which the pressure of the ice had forced up into numerous mounds, that, viewed from a distance, assumed the appearance of huge boulder rocks."[300]
This fact is important, as showing how masses of drift ice, when stranding on submarine banks, may exert a lateral pressure capable of bending and dislocating any yielding strata of gravel, sand, or mud. The banks on which icebergs occasionally run aground between Baffin's Bay and Newfoundland, are many hundred feet under water, and the force with which they are struck will depend not so much on the velocity as the momentum of the floating ice-islands. The same berg is often carried away by a change of wind, and then driven back again upon the same bank, or it is made to rise and fall by the waves of the ocean, so that it may alternately strike the bottom with its whole weight, and then be lifted up again until it has deranged the superficial beds over a wide area. In this manner the geologist may account, perhaps, for the circumstance that in Scandinavia, Scotland, and other countries where erratics are met with, the beds of sand, loam, and gravel are often vertical, bent, and contorted into the most complicated folds, while the underlying strata, although composed of equally pliant materials, are horizontal. But some of these curvatures of loose strata may also have been due to repeated alternations of layers of gravel and sand, ice and snow, the melting of the latter having caused the intercalated beds of indestructible matter to assume their present anomalous position.
There can be little doubt that icebergs must often break off the peaks and projecting points of submarine mountains, and must grate upon and polish their surface, furrowing or scratching them in precisely the same way as we have seen that glaciers act on the solid rocks over which they are propelled.[301]
To conclude: it appears that large stones, mud, and gravel are carried down by the ice of rivers, estuaries, and glaciers, into the sea, where the tides and currents of the ocean, aided by the wind, cause them to drift for hundreds of miles from the place of their origin. Although it will belong more properly to the seventh and eighth chapters to treat of the transportation of solid matter by the movements of the ocean, I shall add here what I have farther to say on this subject in connection with ice.
The saline matter which sea-water holds in solution, prevents its congelation, except where the most intense cold prevails. But the drifting of the snow from the land often renders the surface-water brackish near the coast, so that a sheet of ice is readily formed there, and by this means a large quantity of gravel is frequently conveyed from place to place, and heavy boulders also, when the coast-ice is packed into dense masses. Both the large and small stones thus conveyed usually travel in one direction like shingle-beaches, and this was observed to take place on the coast of Labrador and Gulf of St. Lawrence, between the latitudes 50° and 60° N., by Capt. Bayfield, during his late survey. The line of coast alluded to is strewed over for a distance of 700 miles with ice-borne boulders, often 6 feet in diameter, which are for the most part on their way from north to south, or in the direction of the prevailing current. Some points on this coast have been observed to be occasionally deserted, and then again at another season thickly bestrewed with erratics.
Boulders, chiefly of granite, stranded by ice on the coast of Labrador, between lat. 50° and 60° N. (Lieut. Bowen, R. N.)
The accompanying drawing ([fig. 19]), for which I am indebted to Lieut. Bowen, R. N., represents the ordinary appearance of the Labrador coast, between the latitudes of 50° and 60° N. Countless blocks, chiefly granitic, and of various sizes, are seen lying between high and low-water mark. Capt. Bayfield saw similar masses carried by ice through the Straits of Belle Isle, between Newfoundland and the American continent, which he conceives may have travelled in the course of years from Baffin's Bay, a distance which may be compared in our hemisphere to the drifting of erratics from Lapland and Iceland as far south as Germany, France, and England.
It may be asked in what manner have these blocks been originally detached? We may answer that some have fallen from precipitous cliffs, others have been lifted up from the bottom of the sea, adhering by their tops to the ice, while others have been brought down by rivers and glaciers.
The erratics of North America are sometimes angular, but most of them have been rounded either by friction or decomposition. The granite of Canada, as before remarked (p. 221 ), has a tendency to concentric exfoliation, and scales off in spheroidal coats when exposed to the spray of the sea during severe frosts. The range of the thermometer in that country usually exceeds, in the course of the year, 100°, and sometimes 120° F.; and, to prevent the granite used in the buildings of Quebec from peeling off in winter, it is necessary to oil and paint the squared stones.
In parts of the Baltic, such as the Gulf of Bothnia, where the quantity of salt in the water amounts in general to one fourth only of that in the ocean, the entire surface freezes over in winter to the depth of 5 or 6 feet. Stones are thus frozen in, and afterwards lifted up about 3 feet perpendicularly on the melting of the snow in summer, and then carried by floating ice-islands to great distances. Professor Von Baer states, in a communication on this subject to the Academy of St. Petersburg, that a block of granite, weighing a million of pounds, was carried by ice during the winter of 1837-8 from Finland to the island of Hockland, and two other huge blocks were transported about the years 1806 and 1814 by packed ice on the south coast of Finland, according to the testimony of the pilots and inhabitants, one block having travelled about a quarter of a mile, and lying about 18 feet above the level of the sea.[302]
More recently Dr. Forchhammer has shown that in the Sound, the Great Belt, and other places near the entrance of the Baltic, ground-ice forms plentifully at the bottom and then rises to the surface, charged with sand and gravel, stones and sea-weed. Sheets of ice, also, with included boulders, are driven up on the coast during storms, and "packed" to a height of 50 feet. To the motion of such masses, but still more to that of the ground-ice, the Danish professor attributes the striation of rocky surfaces, forming the shores and bed of the sea, and he relates a striking fact to prove that large quantities of rocky fragments are annually carried by ice out of the Baltic. "In the year 1807," he says, "at the time of the bombardment of the Danish fleet, an English sloop-of-war, riding at anchor in the roads at Copenhagen, blew up. In 1844, or thirty-seven years afterwards, one of our divers, known to be a trustworthy man, went down to save whatever might yet remain in the shipwrecked vessel. He found the space between decks entire, but covered with blocks from 6 to 8 cubic feet in size, and some of them heaped one upon the other. He also affirmed, that all the sunk ships which he had visited in the Sound, were in like manner strewed over with blocks."
Dr. Forchhammer also informs us, that during an intense frost in February, 1844, the Sound was suddenly frozen over, and sheets of ice, driven by a storm, were heaped up at the bottom of the Bay of Täarbeijk, threatening to destroy a fishing-village on the shore. The whole was soon frozen together into one mass, and forced up on the beach, forming a mound more than 16 feet high, which threw down the walls of several buildings. "When I visited the spot next day, I saw ridges of ice, sand, and pebbles, not only on the shore, but extending far out into the bottom of the sea, showing how greatly its bed had been changed, and how easily, where it is composed of rock, it may be furrowed and streaked by stones firmly fixed in the moving ice."[303]
CHAPTER XVI.
PHENOMENA OF SPRINGS.
Origin of Springs—Artesian wells—Borings at Paris—Distinct causes by which mineral and thermal waters may be raised to the surface—Their connection with volcanic agency—Calcareous springs—Travertin of the Elsa—Baths of San Vignone and of San Filippo, near Radicofani—Spheroidal structure in travertin—Lake of the Solfatara, near Rome—Travertin at Cascade of Tivoli—Gypseous, siliceous, and ferruginous springs—Brine springs—Carbonated springs—Disintegration of granite in Auvergne—Petroleum springs—Pitch lake of Trinidad.
Origin of springs.—The action of running water on the surface of the land having been considered, we may next turn our attention to what may be termed "the subterranean drainage," or the phenomena of springs. Every one is familiar with the fact, that certain porous soils, such as loose sand and gravel, absorb water with rapidity, and that the ground composed of them soon dries up after heavy showers. If a well be sunk in such soils, we often penetrate to considerable depths before we meet with water; but this is usually found on our approaching the lower parts of the formation, where it rests on some impervious bed; for here the water, unable to make its way downwards in a direct line, accumulates as in a reservoir, and is ready to ooze out into any opening which may be made, in the same manner as we see the salt water flow into, and fill, any hollow which we dig in the sands of the shore at low tide.
The facility with which water can percolate loose and gravelly soils is clearly illustrated by the effect of the tides in the Thames between Richmond and London. The river, in this part of its course, flows through a bed of gravel overlying clay, and the porous superstratum is alternately saturated by the water of the Thames as the tide rises, and then drained again to the distance of several hundred feet from the banks when the tide falls, so that the wells in this tract regularly ebb and flow.
If the transmission of water through a porous medium be so rapid, we cannot be surprised that springs should be thrown out on the side of a hill, where the upper set of strata consist of chalk, sand, or other permeable substances, while the subjacent are composed of clay or other retentive soils. The only difficulty, indeed, is to explain why the water does not ooze out everywhere along the line of junction of the two formations, so as to form one continuous land-soak, instead of a few springs only, and these far distant from each other. The principal cause of this concentration of the waters at a few points is, first, the frequency of rents and fissures, which act as natural drains; secondly, the existence of inequalities in the upper surface of the impermeable stratum, which lead the water, as valleys do on the external surface of a country, into certain low levels and channels.
That the generality of springs owe their supply to the atmosphere is evident from this, that they become languid, or entirely cease to flow, after long droughts, and are again replenished after a continuance of rain. Many of them are probably indebted for the constancy and uniformity of their volume to the great extent of the subterranean reservoirs with which they communicate, and the time required for these to empty themselves by percolation. Such a gradual and regulated discharge is exhibited, though in a less perfect degree, in every great lake which is not sensibly affected in its level by sudden showers, but only slightly raised; so that its channel of efflux, instead of being swollen suddenly like the bed of a torrent, is enabled to carry off the surplus water gradually.
Much light has been thrown, of late years, on the theory of springs, by the boring of what are called by the French "Artesian wells," because the method has long been known and practised in Artois; and it is now demonstrated that there are sheets, and in some places currents of fresh water, at various depths in the earth. The instrument employed in excavating these wells is a large augur, and the cavity bored is usually from three to four inches in diameter. If a hard rock is met with, it is first triturated by an iron rod, and the materials being thus reduced to small fragments or powder, are readily extracted. To hinder the sides of the well from falling in, as also to prevent the spreading of the ascending water in the surrounding soil, a jointed pipe is introduced, formed of wood in Artois, but in other countries more commonly of metal. It frequently happens that, after passing through hundreds of feet of retentive soils, a water-bearing stratum is at length pierced, when the fluid immediately ascends to the surface, and flows over. The first rush of the water up the tube is often violent, so that for a time the water plays like a fountain, and then, sinking, continues to flow over tranquilly, or sometimes remains stationary at a certain depth below the orifice of the well. This spouting of the water in the first instance is probably owing to the disengagement of air and carbonic acid gas, for both of these have been seen to bubble up with the water.[304]
At Sheerness, at the mouth of the Thames, a well was bored on a low tongue of land near the sea, through 300 feet of the blue clay of London, below which a bed of sand and pebbles was entered, belonging, doubtless, to the plastic clay formation; when this stratum was pierced, the water burst up with impetuosity, and filled the well. By another perforation at the same place, the water was found at the depth of 328 feet below the surface clay; it first rose rapidly to the height of 189 feet, and then, in the course of a few hours, ascended to an elevation of eight feet above the level of the ground. In 1824 a well was dug at Fulham, near the Thames, at the Bishop of London's, to the depth of 317 feet, which, after traversing the tertiary strata, was continued through 67 feet of chalk. The water immediately rose to the surface, and the discharge was about 50 gallons per minute. In the garden of the Horticultural Society at Chiswick, the borings passed through 19 feet of gravel, 242½ feet of clay and loam, and 67½ feet of chalk, and the water then rose to the surface from a depth of 329 feet.[305] At the Duke of Northumberland's, above Chiswick, the borings were carried to the extraordinary depth of 620 feet, so as to enter the chalk, when a considerable volume of water was obtained, which rose four feet above the surface of the ground. In a well of Mr. Brooks, at Hammersmith, the rush of water from a depth of 360 feet was so great, as to inundate several buildings and do considerable damage; and at Tooting, a sufficient stream was obtained to turn a wheel, and raise the water to the upper stories of the houses.[306] In 1838, the total supply obtained from the chalk near London was estimated at six million gallons a day, and, in 1851, at nearly double that amount, the increase being accompanied by an average fall of no less than two feet a year in the level to which the water rose. The water stood commonly, in 1822, at high-water mark, and had sunk in 1851 to 45, and in some wells to 65 feet below high-water mark.[307] This fact shows the limited capacity of the subterranean reservoir. In the last of three wells bored through the chalk at Tours, to the depth of several hundred feet, the water rose 32 feet above the level of the soil, and the discharge amounted to 300 cubic yards of water every twenty-four hours.[308]
By way of experiment, the sinking of a well was commenced at Paris in 1834, which had reached, in November, 1839, a depth of more than 1600 English feet, and yet no water ascended to the surface. The government were persuaded by M. Arago to persevere, if necessary, to the depth of more than 2000 feet; but when they had descended above 1800 English feet below the surface, the water rose through the tube (which was about ten inches in diameter), so as to discharge half a million of gallons of limpid water every twenty-four hours. The temperature of the water increased at the rate of 1·8° F. for every 101 English feet, as they went down, the result agreeing very closely with the anticipations of the scientific advisers of this most spirited undertaking.
Mr. Briggs, the British consul in Egypt, obtained water between Cairo and Suez, in a calcareous sand, at the depth of thirty feet; but it did not rise in the well.[309] But other borings in the same desert, of variable depth, between 50 and 300 feet, and which passed through alternations of sand, clay, and siliceous rock, yielded water at the surface.[310]
The rise and overflow of the water in Artesian wells is generally referred, and apparently with reason, to the same principle as the play of an artificial fountain. Let the porous stratum or set of strata, a a, rest on the impermeable rock d, and be covered by another mass of an impermeable nature. The whole mass a a may easily, in such a position, become saturated with water, which may descend from its higher and exposed parts—a hilly region to which clouds are attracted, and where rain falls in abundance. Suppose that at some point, as at b, an opening be made, which gives a free passage upwards to the waters confined in a a, at so low a level that they are subjected to the pressure of a considerable column of water collected in the more elevated portion of the same stratum. The water will then rush out, just as the liquid from a large barrel which is tapped, and it will rise to a height corresponding to the level of its point of departure, or, rather, to a height which balances the pressure previously exerted by the confined waters against the roof and sides of the stratum or reservoir a a. In like manner, if there happen to be a natural fissure c, a spring will be produced at the surface on precisely the same principle.
Among the causes of the failure of Artesian wells, we may mention those numerous rents and faults which abound in some rocks, and the deep ravines and valleys by which many countries are traversed; for, when these natural lines of drainage exist, there remains a small quantity only of water to escape by artificial issues. We are also liable to be baffled by the great thickness either of porous or impervious strata, or by the dip of the beds, which may carry off the waters from the adjoining high lands to some trough in an opposite direction, as when the borings are made at the foot of an escarpment where the strata incline inwards, or in a direction opposite to the face of the cliffs.
The mere distance of hills or mountains need not discourage us from making trials; for the waters which fall on these higher lands readily penetrate to great depths through highly inclined or vertical strata, or through the fissures of shattered rocks, and after flowing for a great distance, must often reascend and be brought up again by other fissures, so as to approach the surface in the lower country. Here they may be concealed beneath the covering of undisturbed horizontal beds, which it may be necessary to pierce in order to reach them. It should be remembered, that the course of waters flowing under ground bears but a remote resemblance to that of rivers on the surface, there being, in the one case, a constant descent from a higher to a lower level from the source of the stream to the sea; whereas, in the other, the water may at one time sink far below the level of the ocean, and afterwards rise again high above it.
Among other curious facts ascertained by aid of the borer, it is proved that in strata of different ages and compositions, there are often open passages by which the subterranean waters circulate. Thus, at St. Ouen, in France, five distinct sheets of water were intersected in a well, and from each of these a supply obtained. In the third waterbearing stratum, at the depth of 150 feet, a cavity was found in which the borer fell suddenly about a foot, and thence the water ascended in great volume.[311] The same falling of the instrument, as in a hollow space, has been remarked in England and other countries. At Tours, in 1830, a well was perforated quite through the chalk, when the water suddenly brought up, from a depth of 364 feet, a great quantity of fine sand, with much vegetable matter and shells. Branches of a thorn several inches long, much blackened by their stay in the water, were recognized, as also the stems of marsh plants, and some of their roots, which were still white, together with the seeds of the same in a state of preservation, which showed that they had not remained more than three or four months in the water. Among the seeds were those of the marsh plant Galium uliginosum; and among the shells, a freshwater species (Planorbis marginatus), and some land species, as Helix rotundata, and H. striata. M. Dujardin, who, with others, observed this phenomenon, supposes that the waters had flowed from some valleys of Auvergne or the Vivarais since the preceding autumn.[312]
An analogous phenomenon is recorded at Reimke, near Bochum in Westphalia, where the water of an Artesian well brought up, from a depth of 156 feet, several small fish, three or four inches long, the nearest streams in the country being at a distance of some leagues.[313]
In both cases it is evident that water had penetrated to great depths, not simply by filtering through a porous mass, for then it would have left behind the shells, fish, and fragments of plants, but by flowing through some open channels in the earth. Such examples may suggest the idea that the leaky beds of rivers are often the feeders of springs.
MINERAL AND THERMAL SPRINGS.
Almost all springs, even those which we consider the purest, are impregnated with some foreign ingredients, which, being in a state of chemical solution, are so intimately blended with the water as not to affect its clearness, while they render it, in general, more agreeable to our taste, and more nutritious than simple rain-water. But the springs called mineral contain an unusual abundance of earthy matter in solution, and the substances with which they are impregnated correspond remarkably with those evolved in a gaseous form by volcanoes. Many of these springs are thermal, i. e., their temperature is above the mean temperature of the place, and they rise up through all kinds of rock; as, for example, through granite, gneiss, limestone, or lava, but are most frequent in volcanic regions, or where violent earthquakes have occurred at eras comparatively modern.
The water given out by hot springs is generally more voluminous and less variable in quantity at different seasons than that proceeding from any others. In many volcanic regions, jets of steam, called by the Italians "stufas," issue from fissures, at a temperature high above the boiling point, as in the neighborhood of Naples, and in the Lipari Isles, and are disengaged unceasingly for ages. Now, if such columns of steam, which are often mixed with other gases, should be condensed before reaching the surface by coming in contact with strata filled with cold water, they may give rise to thermal and mineral springs of every degree of temperature. It is, indeed, by this means only, and not by hydrostatic pressure, that we can account for the rise of such bodies of water from great depths; nor can we hesitate to admit the adequacy of the cause, if we suppose the expansion of the same elastic fluids to be sufficient to raise columns of lava to the lofty summits of volcanic mountains. Several gases, the carbonic acid in particular, are disengaged in a free state from the soil in many districts, especially in the regions of active or extinct volcanoes; and the same are found more or less intimately combined with the waters of all mineral springs, both cold and thermal. Dr. Daubeny and other writers have remarked, not only that these springs are most abundant in volcanic regions, but that when remote from them, their site usually coincides with the position of some great derangement in the strata; a fault, for example, or great fissure, indicating that a channel of communication has been opened with the interior of the earth at some former period of local convulsion. It is also ascertained that at great heights in the Pyrenees and Himalaya mountains hot springs burst out from granitic rocks, and they are abundant in the Alps also, these chains having all been disturbed and dislocated at times comparatively modern, as can be shown by independent geological evidence.
The small area of volcanic regions may appear, at first view, to present an objection to these views, but not so when we include earthquakes among the effects of igneous agency. A large proportion of the land hitherto explored by geologists can be shown to have been rent or shaken by subterranean movements since the oldest tertiary strata were formed. It will also be seen, in the sequel, that new springs have burst out, and others have had the volume of their waters augmented, and their temperature suddenly raised after earthquakes, so that the description of these springs might almost with equal propriety have been given under the head of "igneous causes," as they are agents of a mixed nature, being at once igneous and aqueous.
But how, it will be asked, can the regions of volcanic heat send forth such inexhaustible supplies of water? The difficulty of solving this problem would, in truth, be insurmountable, if we believed that all the atmospheric waters found their way into the basin of the ocean; but in boring near the shore we often meet with streams of fresh water at the depth of several hundred feet below the sea level; and these probably descend, in many cases, far beneath the bottom of the sea, when not artificially intercepted in their course. Yet, how much greater may be the quantity of salt water which sinks beneath the floor of the ocean, through the porous strata of which it is often composed, or through fissures rent in it by earthquakes. After penetrating to a considerable depth, this water may encounter a heat of sufficient intensity to convert it into vapor, even under the high pressure to which it would then be subjected. This heat would probably be nearest the surface in volcanic countries, and farthest from it in those districts which have been longest free from eruptions or earthquakes.
It would follow from the views above explained, that there must be a twofold circulation of terrestrial waters; one caused by solar heat, and the other by heat generated in the interior of our planet. We know that the land would be unfit for vegetation, if deprived of the waters raised into the atmosphere by the sun; but it is also true that mineral springs are powerful instruments in rendering the surface subservient to the support of animal and vegetable life. Their heat is said to promote the development of the aquatic tribes in many parts of the ocean, and the substances which they carry up from the bowels of the earth to the habitable surface, are of a nature and in a form which adapts them peculiarly for the nutrition of animals and plants.
As these springs derive their chief importance to the geologist from the quantity and quality of the earthy materials which, like volcanoes, they convey from below upwards, they may properly be considered in reference to the ingredients which they hold in solution. These consist of a great variety of substances; but chiefly salts with bases of lime, magnesia, alumine, and iron, combined with carbonic, sulphuric, and muriatic acids. Muriate of soda, silica, and free carbonic acid are frequently present; also springs of petroleum, or liquid bitumen, and of naphtha.
Calcareous springs.—Our first attention is naturally directed to springs which are highly charged with calcareous matter, for these produce a variety of phenomena of much interest in geology. It is known that rain-water collecting carbonic acid from the atmosphere has the property of dissolving the calcareous rocks over which it flows, and thus, in the smallest ponds and rivulets, matter is often supplied for the earthy secretions of testacea, and for the growth of certain plants on which they feed. But many springs hold so much carbonic acid in solution, that they are enabled to dissolve a much larger quantity of calcareous matter than rain-water; and when the acid is dissipated in the atmosphere, the mineral ingredients are thrown down, in the form of porous tufa or of more compact travertin.[314]
Auvergne.—Calcareous springs, although most abundant in limestone districts, are by no means confined to them, but flow out indiscriminately from all rock formations. In central France, a district where the primary rocks are unusually destitute of limestone, springs copiously charged with carbonate of lime rise up through the granite and gneiss. Some of these are thermal, and probably derive their origin from the deep source of volcanic heat, once so active in that region. One of these springs, at the northern base of the hill upon which Claremont is built, issues from volcanic peperino, which rests on granite. It has formed, by its incrustations, an elevated mound of travertin, or white concretionary limestone, 240 feet in length, and, at its termination, sixteen feet high and twelve wide. Another encrusting spring in the same department, situated at Chaluzet, near Pont Gibaud, rises in a gneiss country, at the foot of a regular volcanic cone, at least twenty miles from any calcareous rock. Some masses of tufaceous deposit, produced by this spring, have an oolitic texture.
Valley of the Elsa.—If we pass from the volcanic district of France to that which skirts the Apennines in the Italian peninsula, we meet with innumerable springs which have precipitated so much calcareous matter, that the whole ground in some parts of Tuscany is coated over with tufa and travertin, and sounds hollow beneath the foot.
In other places in the same country, compact rocks are seen descending the slanting sides of hills, very much in the manner of lava currents, except that they are of a white color and terminate abruptly when they reach the course of a river. These consist of a calcareous precipitate from springs, some of which are still flowing, while others have disappeared or changed their position. Such masses are frequent on the slope of the hills which bound the valley of the Elsa, one of the tributaries of the Arno, which flows near Colle, through a valley several hundred feet deep, shaped out of a lacustrine formation, containing fossil shells of existing species. I observed here that the travertin was unconformable to the lacustrine beds, its inclination according with the slope of the sides of the valley. One of the finest examples which I saw was at the Molino delle Caldane, near Colle. The Senà, and several other small rivulets which feed the Elsa, have the property of encrusting wood and herbs with calcareous stone. In the bed of the Elsa itself, aquatic plants, such as Charæ, which absorb large quantities of carbonate of lime, are very abundant.
Section of travertin, San Vignone.
Baths of San Vignone.—Those persons who have merely seen the action of petrifying waters in England, will not easily form an adequate conception of the scale on which the same process is exhibited in those regions which lie nearer to the active centres of volcanic disturbance. One of the most striking examples of the rapid precipitation of carbonate of lime from thermal waters, occurs in the hill of San Vignone in Tuscany, at a short distance from Radicofani, and only a few hundred yards from the high road between Sienna and Rome. The spring issues from near the summit of a rocky hill, about 100 feet in height. The top of the hill stretches in a gently inclined platform to the foot of Mount Amiata, a lofty eminence, which consists in great part of volcanic products. The fundamental rock, from which the spring issues, is a black slate, with serpentine (b b, [fig. 21]), belonging to the older Apennine formation. The water is hot, has a strong taste, and, when not in very small quantity, is of a bright green color. So rapid is the deposition near the source, that in the bottom of a conduit-pipe for carrying off the water to the baths, and which is inclined at an angle of 30°, half a foot of solid travertin is formed every year. A more compact rock is produced where the water flows slowly; and the precipitation in winter, when there is least evaporation, is said to be more solid, but less in quantity by one-fourth, than in summer. The rock is generally white; some parts of it are compact, and ring to the hammer; others are cellular, and with such cavities as are seen in the carious part of bone or the siliceous millstone of the Paris basin. A portion of it also below the village of San Vignone consists of incrustations of long vegetable tubes, and may be called tufa. Sometimes the travertin assumes precisely the botryoidal and mammillary forms, common to similar deposits in Auvergne, of a much older date; and, like them, it often scales off in thin, slightly undulating layers.
A large mass of travertin (c, [fig. 21]) descends the hill from the point where the spring issues, and reaches to the distance of about half a mile east of San Vignone. The beds take the slope of the hill at about an angle of 6°, and the planes of stratification are perfectly parallel. One stratum, composed of many layers, is of a compact nature, and fifteen feet thick; it serves as an excellent building stone, and a mass of fifteen feet in length was, in 1828, cut out for the new bridge over the Orcia. Another branch of it (a, [fig. 21]) descends to the west, for 250 feet in length, of varying thickness, but sometimes 200 feet deep; it is then cut off by the small river Orcia, as some glaciers in Switzerland descend into a valley till their progress is suddenly arrested by a transverse stream of water.
The abrupt termination of the mass of rock at the river, where its thickness is undiminished, clearly shows that it would proceed much farther if not arrested by the stream, over which it impends slightly. But it cannot encroach upon the channel of the Orcia, being constantly undermined, so that its solid fragments are seen strewed amongst the alluvial gravel. However enormous, therefore, the mass of solid rock may appear which has been given out by this single spring, we may feel assured that it is insignificant in volume when compared to that which has been carried to the sea since the time when it began to flow. What may have been the length of that period of time we have no data for conjecturing. In quarrying the travertin, Roman tiles have been sometimes found at the depth of five or six feet.
Baths of San Filippo.—On another hill, not many miles from that last mentioned, and also connected with Mount Amiata, the summit of which is about three miles distant, are the celebrated baths of San Filippo. The subjacent rocks consist of alternations of black slate, limestone, and serpentine. There are three warm springs containing carbonate and sulphate of lime, and sulphate of magnesia. The water which supplies the baths falls into a pond, where it has been known to deposit a solid mass thirty feet thick in about twenty years.[315] A manufactory of medallions in basso-relievo is carried on at these baths. The water is conducted by canals into several pits, in which it deposits travertin and crystals of sulphate of lime. After being thus freed from its grosser parts, it is conveyed by a tube to the summit of a small chamber, and made to fall through a space of ten or twelve feet. The current is broken in its descent by numerous crossed sticks, by which the spray is dispersed around upon certain moulds, which are rubbed lightly over with a solution of soap, and a deposition of solid matter like marble is the result, yielding a beautiful cast of the figures formed in the mould. The geologist may derive from these experiments considerable light, in regard to the high slope of the strata at which some semi-crystalline precipitations can be formed; for some of the moulds are disposed almost perpendicularly, yet the deposition is nearly equal in all parts.
A hard stratum of stone, about a foot in thickness, is obtained from the waters of San Filippo in four months; and, as the springs are powerful, and almost uniform in the quantity given out, we are at no loss to comprehend the magnitude of the mass which descends the hill, which is a mile and a quarter in length and the third of a mile in breadth, in some places attaining a thickness of 250 feet at least. To what length it might have reached it is impossible to conjecture, as it is cut off, like the travertin of San Vignone, by a small stream, where it terminates abruptly. The remainder of the matter held in solution is carried on probably to the sea.
Spheroidal structure in travertin.—But what renders this recent limestone of peculiar interest to the geologist, is the spheroidal form which it assumes, analogous to that of the cascade of Tivoli, afterwards to be described. (See [fig. 22], p. 244.) The lamination of some of the concentric masses is so minute that sixty may be counted in the thickness of an inch, yet, notwithstanding these marks of gradual and successive deposition, sections are sometimes exhibited of what might seem to be perfect spheres. This tendency to a mammillary and globular structure arises from the facility with which the calcareous matter is precipitated in nearly equal quantities on all sides of any fragment of shell or wood or any inequality of the surface over which the mineral water flows, the form of the nucleus being readily transmitted through any number of successive envelopes. But these masses can never be perfect spheres, although they often appear such when a transverse section is made in any line not in the direction of the point of attachment. There are, indeed, occasionally seen small oolitic and pisolitic grains, of which the form is globular; for the nucleus, having been for a time in motion in the water, has received fresh accessions of matter on all sides.
In the same manner I have seen, on the vertical walls of large steam-boilers, the heads of nails or rivets covered by a series of enveloping crusts of calcareous matter, usually sulphate of lime; so that a concretionary nodule is formed, preserving a nearly globular shape, when increased to a mass several inches in diameter. In these, as in many travertins, there is often a combination of the concentric and radiated structure.
Campagna di Roma.—The country around Rome, like many parts of the Tuscan States already referred to, has been at some former period the site of numerous volcanic eruptions; and the springs are still copiously impregnated with lime, carbonic acid, and sulphuretted hydrogen. A hot spring was discovered about 1827, near Civita Vecchia, by Signor Riccioli, which deposits alternate beds of a yellowish travertin, and a white granular rock, not distinguishable, in hand specimens, either in grain, color, or composition, from statuary marble. There is a passage between this and ordinary travertin. The mass accumulated near the spring is in some places about six feet thick.
Lake of the Solfatara.—In the Campagna, between Rome and Tivoli, is the Lake of the Solfatara, called also Lago di Zolfo (lacus albula), into which flows continually a stream of tepid water from a smaller lake, situated a few yards above it. The water is a saturated solution of carbonic acid gas, which escapes from it in such quantities in some parts of its surface, that it has the appearance of being actually in ebullition. "I have found by experiment," says Sir Humphry Davy, "that the water taken from the most tranquil part of the lake, even after being agitated and exposed to the air, contained in solution more than its own volume of carbonic acid gas, with a very small quantity of sulphuretted hydrogen. Its high temperature, which is pretty constant at 80° of Fahr., and the quantity of carbonic acid that it contains, render it peculiarly fitted to afford nourishment to vegetable life. The banks of travertin are everywhere covered with reeds, lichen, confervæ, and various kinds of aquatic vegetables; and at the same time that the process of vegetable life is going on, the crystallizations of the calcareous matter, which is everywhere deposited, in consequence of the escape of carbonic acid, likewise proceed. There is, I believe, no place in the world where there is a more striking example of the opposition or contrast of the laws of animate and inanimate nature, of the forces of inorganic chemical affinity, and those of the powers of life."[316]
The same observer informs us that he fixed a stick in a mass of travertin covered by the water in the month of May, and in April following he had some difficulty in breaking, with a sharp-pointed hammer, the mass which adhered to the stick, and which was several inches in thickness. The upper part was a mixture of light tufa and the leaves of confervæ; below this was a darker and more solid travertin, containing black and decomposed masses of confervæ; in the inferior part the travertin was more solid, and of a gray color, but with cavities probably produced by the decomposition of vegetable matter.[317]
The stream which flows out of this lake fills a canal about nine feet broad and four deep, and is conspicuous in the landscape by a line of vapor which rises from it. It deposits calcareous tufa in this channel, and the Tiber probably receives from it, as well as from numerous other streams, much carbonate of lime in solution, which may contribute to the rapid growth of its delta. A large proportion of the most splendid edifices of ancient and modern Rome are built of travertin, derived from the quarries of Ponte Lucano, where there has evidently been a lake at a remote period, on the same plain as that already described.
Section of spheroidal concretionary Travertin under the Cascade of Tivoli.
Travertin of Tivoli.—In the same neighborhood the calcareous waters of the Anio incrust the reeds which grow on its banks, and the foam of the cataract of Tivoli forms beautiful pendant stalactites. On the sides of the deep chasm into which the cascade throws itself, there is seen an extraordinary accumulation of horizontal beds of tufa and travertin, from four to five hundred feet in thickness. The section immediately under the temples of Vesta and the Sibyl, displays, in a precipice about four hundred feet high, some spheroids which are from six to eight feet in diameter, each concentric layer being about the eighth of an inch in thickness. The preceding diagram exhibits about fourteen feet of this immense mass, as seen in the path cut out of the rock in descending from the temple of Vesta to the Grotto di Nettuno. I have not attempted to express in this drawing the innumerable thin layers of which these magnificent spheroids are composed, but the lines given mark some of the natural divisions into which they are separated by minute variations in the size or color of the laminæ. The undulations also are much smaller in proportion to the whole circumference than in the drawing. The beds (a a) are of hard travertin and soft tufa; below them is a pisolite (b), the globules being of different sizes: underneath this appears a mass of concretionary travertin (c c), some of the spheroids being of the above-mentioned extraordinary size. In some places (as at d) there is a mass of amorphous limestone, or tufa, surrounded by concentric layers. At the bottom is another bed of pisolite (b), in which the small nodules are about the size and shape of beans, and some of them of filberts, intermixed with some smaller oolitic grains. In the tufaceous strata, wood is seen converted into a light tufa.
There can be little doubt that the whole of this deposit was formed in an extensive lake which existed when the external configuration of this country varied greatly from that now observed. The Anio throws itself into a ravine excavated in the ancient travertin, and its waters give rise to masses of calcareous stone, scarcely if at all distinguishable from the older rock. I was shown, in 1828, in the upper part of the travertin, the hollow left by a cart-wheel, in which the outer circle and the spokes had been decomposed, and the spaces which they filled left void. It seemed to me at the time impossible to explain the position of this mould without supposing that the wheel was imbedded before the lake was drained; but Sir R. Murchison suggests that it may have been washed down by a flood into the gorge in modern times, and then incrusted with calcareous tufa in the same manner as the wooden beam of the church of St. Lucia was swept down in 1826, and stuck fast in the Grotto of the Syren, where it still remains, and will eventually be quite imbedded in travertin.
I have already endeavored to explain (p. 241), when speaking of the travertin of San Filippo, how the spheroidal masses represented in figure 22 may have been formed.
Sulphureous and gypseus springs.—The quantity of other mineral ingredients wherewith springs in general are impregnated, is insignificant in comparison to lime, and this earth is most frequently combined with carbonic acid. But as sulphuric acid, and sulphuretted hydrogen are very frequently supplied by springs, gypsum may, perhaps, be deposited largely in certain seas and lakes. Among other gypseous precipitates at present known on the land, I may mention those of Baden, near Vienna, which feed the public bath. Some of these supply singly from 600 to 1000 cubic feet of water per hour, and deposit a fine powder, composed of a mixture of sulphate of lime with sulphur and muriate of lime.[318] The thermal waters of Aix, in Savoy, in passing through strata of Jurassic limestone, turn them into gypsum or sulphate of lime. In the Andes, at the Puenta del Inca, Lieutenant Brand found a thermal spring at the temperature of 91° Fahr., containing a large proportion of gypsum with carbonate of lime and other ingredients. [319] Many of the mineral springs of Iceland, says Mr. R. Bunsen, deposit gypsum.[320] and sulphureous acid gas escapes plentifully from them as from the volcanoes of the same island. It may, indeed, be laid down as a general rule, that the mineral substances dissolved in hot springs agree very closely with those which are disengaged in a gaseous form from the craters of active volcanoes.
Siliceous springs.—Azores.—In order that water should hold a very large quantity of silica in solution, it seems necessary that it should be raised to a high temperature.[321] The hot springs of the Valle das Fernas, in the island of St. Michael, rising through volcanic rocks, precipitate vast quantities of siliceous sinter. Around the circular basin of the largest spring, which is between twenty and thirty feet in diameter, alternate layers are seen of a coarser variety of sinter mixed with clay, including grass, ferns, and reeds, in different states of petrifaction. In some instances, alumina, which is likewise deposited from the hot waters, is the mineralizing material. Branches of the same ferns which now flourish in the island are found completely petrified, preserving the same appearance as when vegetating, except that they acquire an ash-gray color. Fragments of wood, and one entire bed from three to five feet in depth, composed of reeds now common in the island, have become completely mineralized.
The most abundant variety of siliceous sinter occurs in layers, from a quarter to half an inch in thickness, accumulated on each other often to the height of a foot and upwards, and constituting parallel, and for the most part horizontal, strata many yards in extent. This sinter has often a beautiful semi-opalescent lustre. A recent breccia is also in the act of forming, composed of obsidian, pumice, and scoriæ, cemented by siliceous sinter.[322]
Geysers of Iceland.—But the hot springs in various parts of Iceland, particularly the celebrated geysers, afford the most remarkable example of the deposition of silex.[323] The circular reservoirs into which the geysers fall, are lined in the interior with a variety of opal, and round the edges with sinter. The plants incrusted with the latter substance have much the same appearance as those incrusted with calcareous tufa in our own country. They consist of various grasses, the horse-tail (Equisetum), and leaves of the birch-tree, which are the most common of all, though no trees of this species now exist in the surrounding country. The petrified stems also of the birch occur in a state much resembling agatized wood.[324]
By analysis of the water, Mr. Faraday has ascertained that the solution of the silex is promoted by the presence of the alkali, soda. He suggests that the deposition of silica in an insoluble state takes place partly because the water when cooled by exposure to the air is unable to retain as much silica as when it issues from the earth at a temperature of 180° or 190° Fahr.; and partly because the evaporation of the water decomposes the compound of silica and soda which previously existed. This last change is probably hastened by the carbonic acid of the atmosphere uniting with the soda. The alkali, when disunited from the silica, would readily be dissolved in and removed by running water.[325]
Mineral waters, even when charged with a small proportion of silica, as those of Ischia, may supply certain species of corals, sponges, and infusoria, with matter for their siliceous secretions; but there is little doubt that rivers obtain silex in solution from another and far more general source, namely, the decomposition of felspar. When this mineral, which is so abundant an ingredient in the hypogene and trappean rocks, has disintegrated, it is found that the residue, called porcelain clay, contains a small proportion only of the silica which existed in the original felspar, the other part having been dissolved and removed by water.[326]
Ferruginous springs.—The waters of almost all springs contain some iron in solution; and it is a fact familiar to all, that many of them are so copiously impregnated with this metal, as to stain the rocks or herbage through which they pass, and to bind together sand and gravel into solid masses. We may naturally, then, conclude that this iron, which is constantly conveyed from the interior of the earth into lakes and seas, and which does not escape again from them into the atmosphere by evaporation, must act as a coloring and cementing principle in the subaqueous deposits now in progress. Geologists are aware that many ancient sandstones and conglomerates are bound together or colored by iron.
Brine springs.—So great is the quantity of muriate of soda in some springs, that they yield one-fourth of their weight in salt. They are rarely, however, so saturated, and generally contain, intermixed with salt, carbonate and sulphate of lime, magnesia, and other mineral ingredients. The brine springs of Cheshire are the richest in our country; those of Northwich being almost saturated. Those of Barton also, in Lancashire, and Droitwich in Worcestershire, are extremely rich.[327] They are known to have flowed for more than 1000 years, and the quantity of salt which they have carried into the Severn and Mersey must be enormous. These brine springs rise up through strata of sandstone and red marl, which contain large beds of rock salt. The origin of the brine, therefore, may be derived in this and many other instances from beds of fossil salt; but as muriate of soda is one of the products of volcanic emanations and of springs in volcanic regions, the original source of salt may be as deep seated as that of lava.
Many springs in Sicily contain muriate of soda, and the "fiume salso," in particular, is impregnated with so large a quantity, that cattle refuse to drink of it. A hot spring, rising through granite, at Saint Nectaire, in Auvergne, may be mentioned as one of many, containing a large proportion of muriate of soda, together with magnesia and other ingredients.[328]
Carbonated springs.—Auvergne.—Carbonic acid gas is very plentifully disengaged from springs in almost all countries, but particularly near active or extinct volcanoes. This elastic fluid has the property of decomposing many of the hardest rocks with which it comes in contact, particularly that numerous class in whose composition felspar is an ingredient. It renders the oxide of iron soluble in water, and contributes, as was before stated, to the solution of calcareous matter. In volcanic districts these gaseous emanations are not confined to springs, but rise up in the state of pure gas from the soil in various places. The Grotto del Cane, near Naples, affords an example, and prodigious quantities are now annually disengaged from every part of the Limagne d'Auvergne, where it appears to have been developed in equal quantity from time immemorial. As the acid is invisible, it is not observed, except an excavation be made, wherein it immediately accumulates, so that it will extinguish a candle. There are some springs in this district, where the water is seen bubbling and boiling up with much noise, in consequence of the abundant disengagement of this gas. In the environs of Pont-Gibaud, not far from Clermont, a rock belonging to the gneiss formation, in which lead-mines are worked, has been found to be quite saturated with carbonic acid gas, which is constantly disengaged. The carbonates of iron, lime, and manganese are so dissolved, that the rock is rendered soft, and the quartz alone remains unattacked.[329] Not far off is the small volcanic cone of Chaluzet, which once broke up through the gneiss, and sent forth a lava stream.
Supposed atmosphere of carbonic acid.—Prof. Bischoff in his history of volcanoes,[330] has shown what enormous quantities of carbonic acid gas are exhaled in the vicinity of the extinct craters of the Rhine (in the neighborhood of the Laacher-see, for example, and the Eifel), and also in the mineral springs of Nassau and other countries, where there are no immediate traces of volcanic action. It would be easy to calculate in how short a period the solid carbon, thus emitted from the interior of the earth in an invisible form, would amount to a quantity as great as could be obtained from the trees of a large forest, and how many thousand years would be required to supply the materials of a dense seam of pure coal from the same source. Geologists who favor the doctrine of the former existence of an atmosphere highly charged with carbonic acid, at the period of the ancient coal-plants, have not sufficiently reflected on the continual disengagement of carbon, which is taking place in a gaseous form from springs, as also in a free state from the ground and from volcanic craters into the air. We know that all plants are now engaged in secreting carbon, and many thousands of large trees are annually floated down by great rivers, and buried in their alluvial deposits; but before we can assume that the quantity of carbon which becomes permanently locked up in the earth by such agency will bring about an essential change in the chemical composition of the atmosphere, we must be sure that the trees annually buried contain more carbon than is given out from the interior of the earth in the same lapse of time. Every large area covered by a dense mass of peat, bears ample testimony to the fact, that several million tons of carbon have been taken from the air, by the powers of vegetable life, and stored up in the earth's crust, a large quantity of oxygen having been at the same time set free; but we cannot infer from these circumstances, that the constitution of the atmosphere has been materially deranged, until we have data for estimating the rate at which dead animal and vegetable substances are daily putrefying,—organic remains and various calcareous rocks decomposing, and volcanic regions emitting fresh volumes of carbonic acid gas. That the ancient carboniferous period was one of vast duration all geologists are agreed; instead, therefore, of supposing an excess of carbonic acid in the air at that epoch, for the support of a peculiar flora, we may imagine Time to have multiplied the quantity of carbon given out annually by mineral springs, volcanic craters, and other sources, until the component elements of any given number of coal-seams had been evolved from below, without any variation taking place in the constitution of the atmosphere. It has been too common, in reasoning on this question, to compute the loss of carbon by the volume of coal stored up in the ancient strata, and to take no account of the annual gain, by the restoration of carbonic acid to the atmosphere, through the machinery above alluded to.[331]
Disintegrating effects of carbonic acid.—The disintegration of granite is a striking feature of large districts in Auvergne, especially in the neighborhood of Clermont. This decay was called by Dolomieu, "la maladie du granite;" and the rock may with propriety be said to have the rot, for it crumbles to pieces in the hand. The phenomenon may, without doubt, be ascribed to the continual disengagement of carbonic acid gas from numerous fissures.
In the plains of the Po, between Verona and Parma, especially at Villa Franca, south of Mantua, I observed great beds of alluvium, consisting chiefly of primary pebbles, percolated by spring-water, charged with carbonate of lime and carbonic acid in great abundance. They are for the most part incrusted with calc-sinter; and the rounded blocks of gneiss, which have all the outward appearance of solidity, have been so disintegrated by the carbonic acid as readily to fall to pieces.
The subtraction of many of the elements of rocks by the solvent power of carbonic acid, ascending both in a gaseous state and mixed with spring-water in the crevices of rocks, must be one of the most powerful sources of those internal changes and rearrangements of particles so often observed in strata of every age. The calcareous matter, for example, of shells, is often entirely removed and replaced by carbonate of iron, pyrites, silex, or some other ingredient, such as mineral waters usually contain in solution. It rarely happens, except in limestone rocks, that the carbonic acid can dissolve all the constituent parts of the mass; and for this reason, probably, calcareous rocks are almost the only ones in which great caverns and long winding passages are found.
Petroleum springs.—Springs of which the waters contain a mixture of petroleum and the various minerals allied to it, as bitumen, naphtha, asphaltum, and pitch, are very numerous, and are, in many cases, undoubtedly connected with subterranean fires, which raise or sublime the more subtle parts of the bituminous matters contained in rocks. Many springs in the territory of Modena and Parma, in Italy, produce petroleum in abundance; but the most powerful, perhaps, yet known, are those on the Irawadi, in the Burman empire. In one locality there are said to be 520 wells, which yield annually 400,000 hogsheads of petroleum.[332]
Pitch lake of Trinidad.—Fluid bitumen is seen to ooze from the bottom of the sea, on both sides of the island of Trinidad, and to rise up to the surface of the water. Near Cape La Braye there is a vortex which, in stormy weather, according to Captain Mallet, gushes out, raising the water five or six feet, and covers the surface for a considerable space with petroleum, or tar; and the same author quotes Gumilla, as stating, in his "Description of the Orinoco," that about seventy years ago, a spot of land on the western coast of Trinidad, near half-way between the capital and an Indian village, sank suddenly, and was immediately replaced by a small lake of pitch, to the great terror of the inhabitants.[333]
It is probable that the great pitch lake of Trinidad owes its origin to a similar cause; and Dr. Nugent has justly remarked, that in that district all the circumstances are now combined from which deposits of pitch may have originated. The Orinoco has for ages been rolling down great quantities of woody and vegetable bodies into the surrounding sea, where, by the influence of currents and eddies, they may be arrested and accumulated in particular places. The frequent occurrence of earthquakes and other indications of volcanic action in those parts lend countenance to the opinion, that these vegetable substances may have undergone, by the agency of subterranean fire, those transformations and chemical changes which produce petroleum; and this may, by the same causes, be forced up to the surface, where, by exposure to the air, it becomes inspissated, and forms the different varieties of pure and earthy pitch, or asphaltum, so abundant in the island.[334]
It may be stated generally, that a large portion of the finer particles and the more crystalline substances, found in sedimentary rocks of different ages, are composed of the same elements as are now held in solution by springs, while the coarser materials bear an equally strong resemblance to the pebbles and sedimentary matter carried down by torrents and rivers. It should also be remembered, that it is not only during inundations, when the muddy sediment is apparent, that rivers are busy in conveying solid matter to the sea, but that even when their waters are perfectly transparent, they are annually bearing along vast masses of carbon, lime, and silica to the ocean.
CHAPTER XVII.
REPRODUCTIVE EFFECTS OF RIVERS.
Lake deltas—Growth of the delta of the Upper Rhine in the Lake of Geneva—Computation of the age of deltas—Recent deposits in Lake Superior—Deltas of inland seas—Course of the Po—Artificial embankments of the Po and Adige—Delta of the Po, and other rivers entering the Adriatic—Rapid conversion of that gulf into land—Mineral characters of the new deposits—Marine delta of the Rhone—Various proofs of its increase—Stony nature of its deposits—Coast of Asia Minor—Delta of the Nile.
DELTAS IN LAKES.
I have already spoken in the 14th chapter of the action of running water, and of the denuding power of rivers, but we can only form a just conception of the excavating and removing force exerted by such bodies of water, when we have the advantage of examining the reproductive effects of the same agents: in other words, of beholding in a palpable form the aggregate amount of matter, which they have thrown down at certain points in their alluvial plains, or in the basins of lakes and seas. Yet it will appear, when we consider the action of currents, that the growth of deltas affords a very inadequate standard by which to measure the entire carrying power of running water, since a considerable portion of fluviatile sediment is swept far out to sea.
Deltas may be divided into, first, those which are formed in lakes; secondly, those in island seas, where the tides are almost imperceptible; and, thirdly, those on the borders of the ocean. The most characteristic distinction between the lacustrine and marine deltas consists in the nature of the organic remains which become imbedded in their deposits; for, in the case of a lake, it is obvious that these must consist exclusively of such genera of animals as inhabit the land or the waters of a river or a lake; whereas, in the other case, there will be an admixture, and most frequently a predominance, of animals which inhabit salt water. In regard, however, to the distribution of inorganic matter, the deposits of lakes and seas are formed under very analogous circumstances.
Lake of Geneva.—Lakes exemplify the first reproductive operations in which rivers are engaged when they convey the detritus of rocks and the ingredients of mineral springs from mountainous regions. The accession of new land at the mouth of the Rhone, at the upper end of the Lake of Geneva, or the Leman Lake, presents us with an example of a considerable thickness of strata which have accumulated since the historical era. This sheet of water is about thirty-seven miles long, and its breadth is from two to eight miles. The shape of the bottom is very irregular, the depth having been found by late measurements to vary from 20 to 160 fathoms.[335] The Rhone, where it enters at the upper end, is turbid and discolored; but its waters, where it issues at the town of Geneva, are beautifully clear and transparent. An ancient town, called Port Vallais (Portus Valesiæ of the Romans), once situated at the water's edge, at the upper end, is now more than a mile and a half inland—this intervening alluvial tract having been acquired in about eight centuries. The remainder of the delta consists of a flat alluvial plain, about five or six miles in length, composed of sand and mud, a little raised above the level of the river, and full of marshes.
Sir Henry De la Beche found, after numerous soundings in all parts of the lake, that there was a pretty uniform depth of from 120 to 160 fathoms throughout the central region, and on approaching the delta, the shallowing of the bottom began to be very sensible at a distance of about a mile and three quarters from the mouth of the Rhone; for a line drawn from St. Gingoulph to Vevey gives a mean depth of somewhat less than 600 feet, and from that part of the Rhone, the fluviatile mud is always found along the bottom.[336] We may state, therefore, that the new strata annually produced are thrown down upon a slope about two miles in length; so that, notwithstanding the great depth of the lake, the new deposits are inclined at so slight an angle, that the dip of the beds would be termed, in ordinary geological language, horizontal.
The strata probably consist of alternations of finer and coarser particles; for, during the hotter months from April to August, when the snows melt, the volume and velocity of the river are greatest, and large quantities of sand, mud, vegetable matter, and drift-wood are introduced; but during the rest of the year, the influx is comparatively feeble, so much so, that the whole lake, according to Saussure, stands six feet lower. If, then, we could obtain a section of the accumulation formed in the last eight centuries, we should see a great series of strata, probably from 600 to 900 feet thick (the supposed original depth of the head of the lake), and nearly two miles in length, inclined at a very slight angle. In the mean time, a great number of smaller deltas are growing around the borders of the lake, at the mouths of rapid torrents, which pour in large masses of sand and pebbles. The body of water in these torrents is too small to enable them to spread out the transported matter over so extensive an area as the Rhone does. Thus, for example, there is a depth of eighty fathoms within half a mile of the shore, immediately opposite the great torrent which enters east of Ripaille, so that the dip of the strata in that minor delta must be about four times as great as those deposited by the main river at the upper extremity of the lake.[337]
Chronological computations of the age of deltas.—The capacity of this basin being now ascertained, it would be an interesting subject of inquiry, to determine in what number of years the Leman Lake will be converted into dry land. It would not be very difficult to obtain the elements for such a calculation, so as to approximate at least to the quantity of time required for the accomplishment of the result. The number of cubic feet of water annually discharged by the river into the lake being estimated, experiments might be made in the winter and summer months, to determine the proportion of matter held in suspension or in chemical solution by the Rhone. It would be also necessary to allow for the heavier matter drifted along at the bottom, which might be estimated on hydrostatical principles, when the average size of the gravel and the volume and velocity of the stream at different seasons were known. Supposing all these observations to have been made, it would be more easy to calculate the future than the former progress of the delta, because it would be a laborious task to ascertain, with any degree of precision, the original depth and extent of that part of the lake which is already filled up. Even if this information were actually obtained by borings, it would only enable us to approximate within a certain number of centuries to the time when the Rhone began to form its present delta; but this would not give us the date of the origin of the Leman Lake in its present form, because the river may have flowed into it for thousands of years, without importing any sediment whatever. Such would have been the case, if the waters had first passed through a chain of upper lakes; and that this was actually the fact, seems indicated by the course of the Rhone between Martigny and the Lake of Geneva, and, still more decidedly, by the channels of many of its principal feeders.
If we ascend, for example, the valley through which the Dranse flows, we find that it consists of a succession of basins, one above the other, in each of which there is a wide expanse of flat alluvial lands, separated from the next basin by a rocky gorge, once perhaps the barrier of a lake. The river seems to have filled these lakes, one after the other, and to have partially cut through the barriers, some of which it is still gradually eroding to a greater depth. Before, therefore, we can pretend even to hazard a conjecture as to the era at which the principal delta of Lake Leman or any other delta commenced, we must be thoroughly acquainted with the geographical features and geological history of the whole system of higher valleys which communicate with the main stream, and all the changes which they have undergone since the last series of convulsions which agitated and altered the face of the country.
Lake Superior.—Lake Superior is the largest body of freshwater in the world, being above 1700 geographical miles in circumference when we follow the sinuosities of its coasts, and its length, on a curved line drawn through its centre, being more than 400, and its extreme breadth above 150 geographical miles. Its surface is nearly as large as the whole of England. Its average depth varies from 80 to 150 fathoms; but, according to Captain Bayfield, there is reason to think that its greatest depth would not be overrated at 200 fathoms, so that its bottom is, in some parts, nearly 600 feet below the level of the Atlantic, its surface being about as much above it. There are appearances in different parts of this, as of the other Canadian lakes, leading us to infer that its waters formerly occupied a higher level than they reach at present; for at a considerable distance from the present shores, parallel lines of rolled stones and shells are seen rising one above the other, like the seats of an amphitheatre. These ancient lines of shingle are exactly similar to the present beaches in most bays, and they often attain an elevation of 40 or 50 feet above the present level. As the heaviest gales of wind do not raise the waters more than three or four feet, the elevated beaches have by some been referred to the subsidence of the lake at former periods, in consequence of the wearing down of its barrier; by others to the upraising of the shores by earthquakes, like those which have produced similar phenomena on the coast of Chili.
The streams which discharge their waters into Lake Superior are several hundred in number, without reckoning those of smaller size; and the quantity of water supplied by them is many times greater than that discharged at the Falls of St. Mary, the only outlet. The evaporation, therefore, is very great, and such as might be expected from so vast an extent of surface. On the northern side, which is encircled by primary mountains, the rivers sweep in many large boulders with smaller gravel and sand, chiefly composed of granitic and trap rocks. There are also currents in the lake in various directions, caused by the continued prevalence of strong winds, and to their influence we may attribute the diffusion of finer mud far and wide over great areas; for by numerous soundings made during Captain Bayfield's survey, it was ascertained that the bottom consists generally of a very adhesive clay, containing shells of the species at present existing in the lake. When exposed to the air, this clay immediately becomes indurated in so great a degree, as to require a smart blow to break it. It effervesces slightly with diluted nitric acid, and is of different colors in different parts of the lake; in one district blue, in another red, and in a third white, hardening into a substance resembling pipeclay.[338] From these statements, the geologist will not fail to remark how closely these recent lacustrine formations in America resemble the tertiary argillaceous and calcareous marls of lacustrine origin in Central France. In both cases many of the genera of shells most abundant, as Limnea and Planorbis, are the same; and in regard to other classes of organic remains there must be the closest analogy, as I shall endeavor more fully to explain when speaking of the imbedding of plants and animals in recent deposits.
DELTAS OF INLAND SEAS.
Having thus briefly considered some of the lacustrine deltas now in progress, we may next turn our attention to those of inland seas.
Course of the Po.—The Po affords an instructive example of the manner in which a great river bears down to the sea the matter poured into it by a multitude of tributaries descending from lofty chains of mountains. The changes gradually effected in the great plain of Northern Italy, since the time of the Roman republic, are considerable. Extensive lakes and marshes have been gradually filled up, as those near Placentia, Parma, and Cremona, and many have been drained naturally by the deepening of the beds of rivers. Deserted river-courses are not unfrequent, as that of the Serio Morto, which formerly fell into the Adda, in Lombardy. The Po also itself has often deviated from its course, having after the year 1390 deserted part of the territory of Cremona, and invaded that of Parma; its old channel being still recognizable, and bearing the name of Po Morto. There is also an old channel of the Po in the territory of Parma, called Po Vecchio, which was abandoned in the twelfth century, when a great number of towns were destroyed.
Artificial embankments of Italian rivers.—To check these and similar aberrations, a general system of embankment has been adopted; and the Po, Adige, and almost all their tributaries, are now confined between high artificial banks. The increased velocity acquired by streams thus closed in, enables them to convey a much larger portion of foreign matter to the sea; and, consequently, the deltas of the Po and Adige have gained far more rapidly on the Adriatic since the practice of embankment became almost universal. But, although more sediment is borne to the sea, part of the sand and mud, which in the natural state of things would be spread out by annual inundations over the plain, now subsides in the bottom of the river-channels; and their capacity being thereby diminished, it is necessary, in order to prevent inundations in the following spring, to extract matter from the bed, and to add it to the banks of the river. Hence it happens that these streams now traverse the plain on the top of high mounds, like the waters of aqueducts, and at Ferrara the surface of the Po has become more elevated than the roofs of the houses.[339] The magnitude of these barriers is a subject of increasing expense and anxiety, it having been sometimes found necessary to give an additional height of nearly one foot to the banks of the Adige and Po in a single season.
The practice of embankment was adopted on some of the Italian rivers as early as the thirteenth century; and Dante, writing in the beginning of the fourteenth, describes, in the seventh circle of hell, a rivulet of tears separated from a burning sandy desert by embankments "like those which, between Ghent and Bruges, were raised against the ocean, or those which the Paduans had erected along the Brenta to defend their villas on the melting of the Alpine snows."
Quale i Fiamminghi tra Guzzante e Bruggia, Temendo il fiotto che in ver lor s'avventa, Fanno lo schermo, perchè il mar si fuggia, E quale i Padovan lungo la Brenta, Per difender lor ville e lor castelli, Anzi che Chiarentana il caldo senta.— Inferno, Canto xv.
In the Adriatic, from the northern part of the Gulf of Trieste, where the Isonzo enters, down to the south of Ravenna, there is an uninterrupted series of recent accessions of land, more than 100 miles in length, which, within the last 2000 years, have increased from two to twenty miles in breadth. A line of sand-bars of great length has been formed nearly all along the western coast of this gulf, inside of which are lagunes, such as those of Venice, and the large lagune of Comacchio, 20 miles in diameter. Newly deposited mud brought down by the streams is continually lessening the depth of the lagunes, and converting part of them into meadows.[340] The Isonzo, Tagliamento, Piave, Brenta, Adige, and Po, besides many other inferior rivers, contribute to this advance of the coast-line and to the shallowing of the lagunes and the gulf.
Delta of the Po.—The Po and the Adige may now be considered as entering by one common delta, for two branches of the Adige are connected with arms of the Po, and thus the principal delta has been pushed out beyond those bars which separate the lagunes from the sea. The rate of the advance of this new land has been accelerated, as before stated, since the system of embanking the rivers became general, especially at that point where the Po and Adige enter. The waters are no longer permitted to spread themselves far and wide over the plains, and to leave behind them the larger portion of their sediment. Mountain torrents also have become more turbid since the clearing away of forests, which once clothed the southern flanks of the Alps. It is calculated that the mean rate of advance of the delta of the Po on the Adriatic between the years 1200 and 1600 was 25 yards or metres a year, whereas the mean annual gain from 1600 to 1804 was 70 metres.[341]
Adria was a seaport in the time of Augustus, and had, in ancient times, given its name to the gulf; it is now about twenty Italian miles inland. Ravenna was also a seaport, and is now about four miles from the main sea. Yet even before the practice of embankment was introduced, the alluvium of the Po advanced with rapidity on the Adriatic; for Spina, a very ancient city, originally built in the district of Ravenna, at the mouth of a great arm of the Po, was, so early as the commencement of our era, eleven miles distant from the sea.[342]
But although so many rivers are rapidly converting the Adriatic into land, it appears, by the observations of M. Morlot, that since the time of the Romans, there has been a general subsidence of the coast and bed of this sea in the same region to the amount of five feet, so that the advance of the new-made land has not been so fast as it would have been had the level of the coast remained unaltered. The signs of a much greater depression anterior to the historical period have also been brought to light by an Artesian well, bored in 1847, to the depth of more than 400 feet, which still failed to penetrate through the modern fluviatile deposit. The auger passed chiefly through beds of sand and clay, but at four several depths, one of them very near the bottom of the excavation, it pierced beds of turf, or accumulations of vegetable matter, precisely similar to those now formed superficially on the extreme borders of the Adriatic. Hence we learn that a considerable area of what was once land has sunk down 400 feet in the course of ages.[343]
The greatest depth of the Adriatic, between Dalmatia and the mouths of the Po, is twenty-two fathoms; but a large part of the Gulf of Trieste and the Adriatic, opposite Venice, is less than twelve fathoms deep. Farther to the south, where it is less affected by the influx of great rivers, the gulf deepens considerably. Donati, after dredging the bottom, discovered the new deposits to consist partly of mud and partly of rock, the rock being formed of calcareous matter, incrusting shells. He also ascertained, that particular species of testacea were grouped together in certain places, and were becoming slowly incorporated with the mud or calcareous precipitates.[344] Olivi, also, found some deposits of sand, and others of mud, extending half way across the gulf; and he states that their distribution along the bottom was evidently determined by the prevailing current.[345] It is probable, therefore, that the finer sediment of all the rivers at the head of the Adriatic may be intermingled by the influence of the current; and all the central parts of the gulf may be considered as slowly filling up with horizontal deposits, similar to those of the Subapennine hills, and containing many of the same species of shells. The Po merely introduces at present fine sand and mud, for it carries no pebbles farther than the spot where it joins the Trebia, west of Piacenza. Near the northern borders of the basin, the Isonzo, Tagliamento, and many other streams, are forming immense beds of sand and some conglomerate; for here some high mountains of Alpine limestone approach within a few miles of the sea.
In the time of the Romans, the hot-baths of Monfalcone were on one of several islands of Alpine limestone, between which and the mainland, on the north, was a channel of the sea, about a mile broad. This channel is now converted into a grassy plain, which surrounds the islands on all sides. Among the numerous changes on this coast, we find that the present channel of the Isonzo is several miles to the west of its ancient bed, in part of which, at Ronchi, the old Roman bridge which crossed the Via Appia was lately found buried in fluviatile silt.
Marine delta of the Rhone.—The lacustrine delta of the Rhone in Switzerland has already been considered (p. 251), its contemporaneous marine delta may now be described. Scarcely has the river passed out of the Lake of Geneva before its pure waters are again filled with sand and sediment by the impetuous Arve, descending from the highest Alps, and bearing along in its current the granitic detritus annually brought down by the glaciers of Mont Blanc. The Rhone afterwards receives vast contributions of transported matter from the Alps of Dauphiny, and the primary and volcanic mountains of Central France; and when at length it enters the Mediterranean, it discolors the blue waters of that sea with a whitish sediment, for the distance of between six and seven miles, throughout which space the current of fresh water is perceptible.
Strabo's description of the delta is so inapplicable to its present configuration, as to attest a complete alteration in the physical features of the country since the Augustan age. It appears, however, that the head of the delta, or the point at which it begins to ramify, has remained unaltered since the time of Pliny, for he states that the Rhone divided itself at Arles into two arms. This is the case at present; one of the branches, the western, being now called Le Petit Rhône, which is again subdivided before entering the Mediterranean. The advance of the base of the delta, in the last eighteen centuries, is demonstrated by many curious antiquarian monuments. The most striking of these is the great and unnatural détour of the old Roman road from Ugernum to Beziers (Bœterræ) which went round by Nismes (Nemausus). It is clear that, when this was first constructed, it was impossible to pass in a direct line, as now, across the delta, and that either the sea or marshes intervened in a tract now consisting of terra firma.[346] Astruc also remarks, that all the places on low lands, lying to the north of the old Roman road between Nismes and Beziers, have names of Celtic origin, evidently given to them by the first inhabitants of the country; whereas, the places lying south of that road, towards the sea, have names of Latin derivation, and were clearly founded after the Roman language had been introduced.
Another proof, also, of the great extent of land which has come into existence since the Romans conquered and colonized Gaul, is derived from the fact, that the Roman writers never mention the thermal waters of Balaruc in the delta, although they were well acquainted with those of Aix, and others still more distant, and attached great importance to them, as they invariably did to all hot springs. The waters of Balaruc, therefore, must have formerly issued under the sea—a common phenomenon on the borders of the Mediterranean; and on the advance of the delta they continued to flow out through the new deposits.
Among the more direct proofs of the increase of land, we find that Mese, described under the appellation of Mesua Collis by Pomponius Mela,[347] and stated by him to be nearly an island, is now far inland. Notre Dame des Ports, also, was a harbor in 898, but is now a league from the shore. Psalmodi was an island in 815, and is now two leagues from the sea. Several old lines of towers and sea-marks occur at different distances from the present coast, all indicating the successive retreat of the sea, for each line has in its turn become useless to mariners; which may well be conceived, when we state that the Tower of Tignaux, erected on the shore so late as the year 1737, is already a mile remote from it.[348]
By the confluence of the Rhone and the currents of the Mediterranean, driven by winds from the south, sand-bars are often formed across the mouths of the river; by these means considerable spaces become divided off from the sea, and subsequently from the river also, when it shifts its channels of efflux. As some of these lagoons are subject to the occasional ingress of the river when flooded, and of the sea during storms, they are alternately salt and fresh. Others, after being filled with salt water, are often lowered by evaporation till they become more salt than the sea; and it has happened, occasionally, that a considerable precipitate of muriate of soda has taken place in these natural salterns. During the latter part of Napoleon's career, when the excise laws were enforced with extreme rigor, the police was employed to prevent such salt from being used. The fluviatile and marine shells inclosed in these small lakes often live together in brackish water; but the uncongenial nature of the fluid usually produces a dwarfish size, and sometimes gives rise to strange varieties in form and color.
Captain Smyth in his survey of the coast of the Mediterranean, found the sea opposite the mouth of the Rhone, to deepen gradually from four to forty fathoms, within a distance of six or seven miles, over which the discolored fresh water extends; so that the inclination of the new deposits must be too slight to be appreciable in such an extent of section as a geologist usually obtains in examining ancient formations. When the wind blew from the southwest, the ships employed in the survey were obliged to quit their moorings; and when they returned, the new sand-banks in the delta were found covered over with a great abundance of marine shells. By this means, we learn how occasional beds of drifted marine shells may become interstratified with freshwater strata at a river's mouth.
Stony nature of its deposits.—That a great proportion, at least, of the new deposit in the delta of the Rhone consists of rock, and not of loose incoherent matter, is perfectly ascertained. In the Museum at Montpelier is a cannon taken up from the sea near the mouth of the river, imbedded in a crystalline calcareous rock. Large masses, also, are continually taken up of an arenaceous rock, cemented by calcareous matter, including multitudes of broken shells of recent species. The observations lately made on this subject corroborate the former statement of Marsilli, that the earthy deposits of the coast of Languedoc form a stony substance, for which reason he ascribes a certain bituminous, saline, and glutinous nature to the substances brought down with sand by the Rhone.[349] If the number of mineral springs charged with carbonate of lime which fall into the Rhone and its feeders in different parts of France be considered, we shall feel no surprise at the lapidification of the newly deposited sediment in this delta. It should be remembered, that the fresh water introduced by rivers being lighter than the water of the sea, floats over the latter, and remains upon the surface for a considerable distance. Consequently it is exposed to as much evaporation as the waters of a lake; and the area over which the river-water is spread, at the junction of great rivers and the sea, may well be compared, in point of extent, to that of considerable lakes.
Now, it is well known, that so great is the quantity of water carried off by evaporation in some lakes, that it is nearly equal to the water flowing in; and in some inland seas, as the Caspian, it is quite equal. We may, therefore, well suppose that, in cases where a strong current does not interfere, the greater portion not only of the matter held mechanically in suspension, but of that also which is in chemical solution, may be precipitated at no great distance from the shore. When these finer ingredients are extremely small in quantity, they may only suffice to supply crustaceous animals, corals, and marine plants, with the earthy particles necessary for their secretions; but whenever it is in excess (as generally happens if the basin of a river lie partly in a district of active or extinct volcanoes), then will solid deposits be formed, and the shells will at once be included in a rocky mass.
Coast of Asia Minor.—Examples of the advance of the land upon the sea are afforded by the southern coast of Asia Minor. Admiral Sir F. Beaufort has pointed out in his survey the great alterations effected since the time of Strabo, where havens are filled up, islands joined to the mainland, and where the whole continent has increased many miles in extent. Strabo himself, on comparing the outline of the coast in his time with its ancient state, was convinced, like our countryman, that it had gained very considerably upon the sea. The new-formed strata of Asia Minor consist of stone, not of loose incoherent materials. Almost all the streamlets and rivers, like many of those in Tuscany and the south of Italy, hold abundance of carbonate of lime in solution, and precipitate travertin, or sometimes bind together the sand and gravel into solid sandstones and conglomerates; every delta and sand-bar thus acquires solidity, which often prevents streams from forcing their way through them, so that their mouths are constantly changing their position.[350]
Delta of the Nile.—That Egypt was "the gift of the Nile," was the opinion of her priests before the time of Herodotus; and Rennell observes, that the "configuration and composition of the low lands leave no room for doubt that the sea once washed the base of the rocks on which the pyramids of Memphis stand, the present base of which is washed by the inundation of the Nile, at an elevation of 70 or 80 feet above the Mediterranean. But when we attempt to carry back our ideas to the remote period when the foundation of the delta was first laid, we are lost in the contemplation of so vast an interval of time."[351] Herodotus observes, "that the country round Memphis seemed formerly to have been an arm of the sea gradually filled by the Nile, in the same manner as the Meander, Achelous, and other streams, had formed deltas. Egypt, therefore, he says, like the Red Sea, was once a long narrow bay, and both gulfs were separated by a small neck of land. If the Nile, he adds, should by any means have an issue into the Arabian Gulf, it might choke it up with earth in 20,000 or even, perhaps, in 10,000 years; and why may not the Nile have filled a still greater gulf with mud in the space of time which has passed before our age?"[352]
The distance between Memphis and the most prominent part of the delta in a straight line north and south, is about 100 geographical miles; the length of the base of the delta is more than 200 miles if we follow the coast between the ancient extreme eastern and western arms; but as these are now blocked up, that part only of Lower Egypt which intervenes between the Rosetta and Damietta branches, is usually called the delta, the coast line of which is about 90 miles in length. The bed of the river itself, says Sir J. G. Wilkinson, undergoes a gradual increase of elevation varying in different places, and always lessening in proportion as the river approaches the sea. "This increase of elevation in perpendicular height is much smaller in Lower than in Upper Egypt, and in the delta it diminishes still more; so that, according to an approximate calculation, the land about Elephantine, or the first cataract, lat. 24° 5', has been raised nine feet in 1700 years; at Thebes, lat. 25° 43', about seven feet; and at Heliopolis and Cairo, lat. 30°, about five feet ten inches. At Rosetta and the mouths of the Nile, lat. 31° 30', the diminution in the perpendicular thickness of the deposit is lessened in a much greater decreasing ratio than in the straitened valley of Central and Upper Egypt, owing to the great extent, east and west, over which the inundation spreads."[353]
For this reason the alluvial deposit does not cause the delta to protrude rapidly into the sea, although some ancient cities are now a mile or more inland, and the mouths of the Nile, mentioned by the earlier geographers, have been many of them silted up, and the outline of the coast entirely changed.
The bed of the Nile always keeps pace with the general elevation of the soil, and the banks of this river, like those of the Mississippi and its tributaries (see p. [265], are much higher than the flat land at a distance, so that they are seldom covered during the highest inundations. In consequence of the gradual rise of the river's bed, the annual flood is constantly spreading over a wider area, and the alluvial soil encroaches on the desert, covering, to the depth of six or seven feet, the base of statues and temples which the waters never reached 3000 years ago. Although the sands of the Libyan deserts have in some places been drifted into the valley of the Nile, yet these aggressions, says Wilkinson, are far more than counterbalanced by the fertilizing effect of the water which now reaches farther inland towards the desert, so that the number of square miles of arable soil is greater at present than at any previous period.
Mud of the Nile.—On comparing the different analyses which have been published of this mud, it will be found that it contains a large quantity of argillaceous matter, with much peroxide of iron, some carbonate of lime, and a small proportion of carbonate of magnesia. The latest and most careful analysis by M. Lassaigne shows a singularly close resemblance in the proportions of the ingredients of silica, alumina, iron, carbon, lime, and magnesia, and those observed in ordinary mica;[354] but a much larger quantity of calcareous matter is sometimes present.
In many places, as at Cairo, where artificial excavations have been made, or where the river has undermined its banks, the mud is seen to be thinly stratified, the upper part of each annual layer consisting of earth of a lighter color than the lower, and the whole separating easily from the deposit of the succeeding year. These annual layers are variable in thickness; but, according to the calculations of Girard and Wilkinson, the mean annual thickness of a layer at Cairo cannot exceed that of a sheet of thin pasteboard, and a stratum of two or three feet must represent the accumulation of a thousand years.
The depth of the Mediterranean is about twelve fathoms at a small distance from the shore of the delta; it afterwards increases gradually to 50, and then suddenly descends to 380 fathoms, which is, perhaps, the original depth of the sea where it has not been rendered shallower by fluviatile matter. We learn from Lieut. Newbold that nothing but the finest and lightest ingredients reach the Mediterranean, where he has observed the sea discolored by them to the distance of 40 miles from the shore.[355] The small progress of the delta in the last 2000 years affords, perhaps, no measure for estimating its rate of growth when it was an inland bay, and had not yet protruded itself beyond the coast-line of the Mediterranean. A powerful current now sweeps along the shores of Africa, from the Straits of Gibraltar to the prominent convexity of Egypt, the western side of which is continually the prey of the waves; so that not only are fresh accessions of land checked, but ancient parts of the delta are carried away. By this cause, Canopus and some other towns have been overwhelmed; but to this subject I shall again refer when speaking of tides and currents.
CHAPTER XVIII.
REPRODUCTIVE EFFECTS OF RIVERS—continued.
Deltas formed under the influence of tides—Basin and delta of the Mississippi—Alluvial plain—River-banks and bluffs—Curves of the river—Natural rafts and snags—New lakes, and effects of earthquakes—Antiquity of the delta—Delta of the Ganges and Brahmapootra—Head of the delta and Sunderbunds—Islands formed and destroyed—Crocodiles—Amount of fluviatile sediment in the water—Artesian boring at Calcutta—Proofs of subsidence—Age of the delta—Convergence of deltas—Origin of existing deltas not contemporaneous—Grouping of strata and stratification in deltas—Conglomerates—Constant interchange of land and sea.
In the last chapter several examples were given of the deltas of inland seas, where the influence of the tides is almost imperceptible. We may next consider those marine or oceanic deltas, where the tides play an important part in the dispersion of fluviatile sediment, as in the Gulf of Mexico, where they exert a moderate degree of force, and then in the Bay of Bengal, where they are extremely powerful. In regard to estuaries, which Rennel termed "negative deltas," they will be treated of more properly when our attention is specially turned to the operations of tides and currents (chapters 20, 21, and 22). In this case, instead of the land gaining on the sea at the river's mouth, the tides penetrate far inland beyond the general coast-line.
BASIN AND DELTA OF THE MISSISSIPPI.
Alluvial plain.—The hydrographical basin of the Mississippi displays, on the grandest scale, the action of running water on the surface of a vast continent. This magnificent river rises nearly in the forty-ninth parallel of north latitude, and flows to the Gulf of Mexico in the twenty-ninth—a course, including its meanders, of more than three thousand miles. It passes from a cold climate, where the hunter obtains his furs and peltries, traverses the temperate latitudes, and discharges its waters into the sea in the region of rice, the cotton plant, and the sugar-cane. From near its mouth at the Balize a steamboat may ascend for 2000 miles with scarcely any perceptible difference in the width of the river. Several of its tributaries, the Red River, the Arkansas, the Missouri, the Ohio, and others, would be regarded elsewhere as of the first importance, and, taken together, are navigable for a distance many times exceeding that of the main stream. No river affords a more striking illustration of the law before mentioned, that an augmentation of volume does not occasion a proportional increase of surface, nay, is even sometimes attended with a narrowing of the channel. The Mississippi is half a mile wide at its junction with the Missouri, the latter being also of equal width; yet the united waters have only, from their confluence to the mouth of the Ohio, a medial width of about half a mile. The junction of the Ohio seems also to produce no increase, but rather a decrease, of surface.[356] The St. Francis, White, Arkansas, and Red rivers are also absorbed by the main stream with scarcely any apparent increase of its width, although here and there it expands to a breadth of 1½, or even to 2 miles. On arriving at New Orleans, it is somewhat less than half a mile wide. Its depth there is very variable, the greatest at high water being 168 feet. The mean rate at which the whole body of water flows is variously estimated; according to Mr. Forshey the mean velocity of the current at the surface, somewhat exceeds 2-1/4 miles an hour when the water is at a mean height. For 300 miles above New Orleans the distance measured by the winding river is about twice as great as the distance in a right line. For the first 100 miles from the mouth the rate of fall is 1·80 inch per mile, for the second hundred 2 inches, for the third 2·30, for the fourth 2·57.
The alluvial plain of the Mississippi begins to be of great width below Cape Girardeau, 50 miles above the junction of the Ohio. At this junction it is about 50 miles broad, south of which it contracts to about 30 miles at Memphis, expands again to 80 miles at the mouth of the White River, and then, after various contractions and expansions, protrudes beyond the general coast-line, in a large delta, about 90 miles in width, from N. E. to S. W. Mr. Forshey estimates the area of the great plain as above defined at 31,200 square miles, with a circumference of about 3000 miles, exceeding the area of Ireland. If that part of this plain which lies below, or to the south of the branching off of the highest arm, called the Atchafalaya, be termed the delta, it constitutes less than half of the whole, being 14,000 square British miles in area. The delta may be said to be bounded on the east, west, and south by the sea; on the north chiefly by the broad valley-plain which entirely resembles it in character as in origin. The east and west boundaries of the alluvial region above the head of the delta consists of cliffs or bluffs, which on the east side of the Mississippi are very abrupt, and are undermined by the river at many points. They consist, from Baton Rouge in Louisiana, where they commence, as far north as the borders of Kentucky, of geological formations newer than the cretaceous, the lowest being Eocene, and the uppermost consisting of loam, resembling the loess of the Rhine, and containing freshwater and land shells almost all of existing species. (See [fig. 23].) These recent shells are associated with the bones of the mastodon, elephant, tapir, mylodon, horse, ox, and other quadrupeds, most of them of extinct species.
I have endeavored to show in my Second Visit to the United States, that this extensive formation of loam is either an ancient alluvial plain or a delta of the great river, formed originally at a lower level, and since upheaved, and partially denuded.
Fig. 23.
Valley of the Mississippi.
1. Modern alluvium of Mississippi. 2. Loam or Loess. 3.f. Eocene. 4. Cretaceous.
The Mississippi in that part of its course which is below the mouth of the Ohio, frequently washes the eastern bluffs, but never once comes in contact with the western. These are composed of similar formations; but I learn from Mr. Forshey that they rise up more gently from the alluvial plain (as at a, [fig. 23]). It is supposed that the waters are thrown to the eastern side, because all the large tributary rivers entering from the west have filled that side of the great valley with their deltas, or with a sloping mass of clay and sand; so that the opposite bluffs are undermined, and the Mississippi is slowly but incessantly advancing eastward.[357]
Curves of the Mississippi.—The river traverses the plain in a meandering course, describing immense curves. After sweeping round the half of a circle, it is carried in a rapid current diagonally across the ordinary direction of its channel, to another curve of similar shape. Opposite to each of these, there is always a sand-bar, answering, in the convexity of its form, to the concavity of "the bend," as it is called.[358] The river, by continually wearing these curves deep, returns, like many other streams before described, on its own track, so that a vessel in some places, after sailing for twenty-five or thirty miles, is brought round again to within a mile of the place whence it started. When the waters approach so near to each other, it often happens at high floods that they burst through the small tongue of land, and insulate a portion, rushing through what is called the "cut-off," so that vessels may pass from one point to another in half a mile to a distance which it previously required a voyage of twenty miles to reach. As soon as the river has excavated the new passage, bars of sand and mud are formed at the two points of junction with the old bend, which is soon entirely separated from the main river by a continuous mud-bank covered with wood. The old bend then becomes a semicircular lake of clear water, inhabited by large gar-fish, alligators, and wild fowl, which the steamboats have nearly driven away from the main river. A multitude of such crescent-shaped lakes, scattered far and wide over the alluvial plain, the greater number of them to the west, but some of them also eastward of the Mississippi, bear testimony of the extensive wanderings of the great stream in former ages. For the last two hundred miles above its mouth the course of the river is much less winding than above, there being only in the whole of that distance one great curve, that called the "English Turn." This great straightness of the stream is ascribed by Mr. Forshey to the superior tenacity of the banks, which are more clayey in this region.
Fig. 24.
Section of channel, bank, levees (a and b), and swamps of Mississippi river.
The Mississippi has been incorrectly described by some of the earlier geographers, as a river running along the top of a long hill, or mound in a plain. In reality it runs in a valley, from 100 to 200 or more feet in depth, as a, c, b, [fig. 24], its banks forming long strips of land parallel to the course of the main stream, and to the swamps g, f, and d, e, lying on each side. These extensive morasses, which are commonly well-wooded, though often submerged for months continuously, are rarely more than fifteen feet below the summit level of the banks. The banks themselves are occasionally overflowed, but are usually above water for a breadth of about two miles. They follow all the curves of the great river, and near New Orleans are raised artificially by embankments (or levees), a b, [fig. 24], through which the river when swollen sometimes cuts a deep channel (or crevasse), inundating the adjoining low lands and swamps, and not sparing the lower streets of the great city.
The cause of the uniform upward slope of the river-bank above the adjoining alluvial plain is this: when the waters charged with sediment pass over the banks in the flood season, their velocity is checked among the herbage and reeds, and they throw down at once the coarser and more sandy matter with which they are charged. But the fine particles of mud are carried farther on, so that at the distance of about two miles, a thin film of fine clay only subsides, forming a stiff unctuous black soil, which gradually envelops the base of trees growing on the borders of the swamps.
Waste of the banks.—It has been said of a mountain torrent, that "it lays down what it will remove, and removes what it has laid down;" and in like manner the Mississippi, by the continual shifting of its course, sweeps away, during a great portion of the year, considerable tracts of alluvium, which were gradually accumulated by the overflow of former years, and the matter now left during the spring-floods will be at some future time removed. After the flood season, when the river subsides within its channel, it acts with destructive force upon the alluvial banks, softened and diluted by the recent overflow. Several acres at a time, thickly covered with wood, are precipitated into the stream; and large portions of the islands are frequently swept away.
"Some years ago," observes Captain Hall, "when the Mississippi was regularly surveyed, all its islands were numbered, from the confluence of the Missouri to the sea; but every season makes such revolutions, not only in the number, but in the magnitude and situation of these islands, that this enumeration is now almost obsolete. Sometimes large islands are entirely melted away; at other places they have attached themselves to the main shore, or, which is the more correct statement, the interval has been filled up by myriads of logs cemented together by mud and rubbish."[359]
Rafts.—One of the most interesting features in the great rivers of this part of America is the frequent accumulation of what are termed "rafts," or masses of floating trees, which have been arrested in their progress by snags, islands, shoals, or other obstructions, and made to accumulate, so as to form natural bridges, reaching entirely across the stream. One of the largest of these was called the raft of the Atchafalaya, an arm of the Mississippi, which was certainly at some former time the channel of the Red River, when the latter found its way to the Gulf of Mexico by a separate course. The Atchafalaya being in a direct line with the general direction of the Mississippi, catches a large portion of the timber annually brought down from the north; and the drift-trees collected in about thirty-eight years previous to 1816 formed a continuous raft, no less than ten miles in length, 220 yards wide, and eight feet deep. The whole rose and fell with the water, yet was covered with green bushes and trees, and its surface enlivened in the autumn by a variety of beautiful flowers. It went on increasing till about 1835, when some of the trees upon it had grown to the height of about sixty feet. Steps were then taken by the State of Louisiana to clear away the whole raft, and open the navigation, which was effected, not without great labor, in the space of four years.
The rafts on Red River are equally remarkable: in some parts of its course, cedar-trees are heaped up by themselves, and in other places, pines. On the rise of the waters in summer hundreds of these are seen, some with their green leaves still upon them, just as they have fallen from a neighboring bank, others leafless, broken and worn in their passage from a far distant tributary: wherever they accumulate on the edge of a sand-bar they arrest the current, and soon become covered with sediment. On this mud the young willows and the poplars called cotton-wood spring up, their boughs still farther retarding the stream, and as the inundation rises, accelerating the deposition of new soil. The bank continuing to enlarge, the channel at length becomes so narrow that a single long tree may reach from side to side, and the remaining space is then soon choked up by a quantity of other timber.
"Unfortunately for the navigation of the Mississippi," observes Captain Hall, "some of the largest trunks, after being cast down from the position on which they grew, get their roots entangled with the bottom of the river, where they remain anchored, as it were, in the mud. The force of the current naturally gives their tops a tendency downwards, and, by its flowing past, soon strips them of their leaves and branches. These fixtures, called snags, or planters, are extremely dangerous to the steam-vessels proceeding up the stream, in which they lie like a lance in rest, concealed beneath the water, with their sharp ends pointed directly against the bows of the vessels coming up. For the most part these formidable snags remain so still that they can be detected only by a slight ripple above them, not perceptible to inexperienced eyes. Sometimes, however, they vibrate up and down, alternately showing their heads above the surface and bathing them beneath it."[360] So imminent, until lately, was the danger caused by these obstructions, that almost all the boats on the Mississippi were constructed on a particular plan, to guard against fatal accidents; but in the last ten years, by the aid of the power of steam and the machinery of a snag-boat, as it is called, the greater number of these trunks of trees have been drawn out of the mud.[361]
The prodigious quantity of wood annually drifted down by the Mississippi and its tributaries, is a subject of geological interest, not merely as illustrating the manner in which abundance of vegetable matter becomes, in the ordinary course of nature, imbedded in submarine and estuary deposits, but as attesting the constant destruction of soil and transportation of matter to lower levels by the tendency of rivers to shift their courses. Each of these trees must have required many years, some of them centuries, to attain their full size; the soil, therefore, whereon they grew, after remaining undisturbed for long periods, is ultimately torn up and swept away.
It is also found in excavating at New Orleans, even at the depth of several yards below the level of the sea, that the soil of the delta contains innumerable trunks of trees, layer above layer, some prostrate, as if drifted, others broken off near the bottom, but remaining still erect, and with their roots spreading on all sides, as if in their natural position. In such situations they appeared to me to indicate a sinking of the ground, as the trees must formerly have grown in marshes above the sea-level. In the higher parts of the alluvial plain, for many hundred miles above the head of the delta, similar stools and roots of trees are also seen buried in stiff clay at different levels, one above the other, and exposed to view in the banks at low water. They point clearly to the successive growth of forests in the extensive swamps of the plain, where the ground was slowly raised, year after year, by the mud thrown down during inundations. These roots and stools belong chiefly to the deciduous cypress (Taxodium distichum), and other swamp-trees, and they bear testimony to the constant shifting of the course of the great river, which is always excavating land originally formed at some distance from its banks.
Formation of lakes in Louisiana..—Another striking feature in the basin of the Mississippi, illustrative of the changes now in progress, is the formation by natural causes of great lakes, and the drainage of others. These are especially frequent in the basin of the Red River in Louisiana, where the largest of them, called Bistineau, is more than thirty miles long, and has a medium depth of from fifteen to twenty feet. In the deepest parts are seen numerous cypress-trees, of all sizes, now dead, and most of them with their tops broken by the wind, yet standing erect under water. This tree resists the action of air and water longer than any other, and, if not submerged throughout the whole year, will retain life for an extraordinary period. Lake Bistineau, as well as Black Lake, Cado Lake, Spanish Lake, Natchitoches Lake, and many others, have been formed, according to Darby, by the gradual elevation of the bed of Red River, in which the alluvial accumulations have been so great as to raise its channel, and cause its waters, during the flood season, to flow up the mouths of many tributaries, and to convert parts of their courses into lakes. In the autumn, when the level of Red River is again depressed, the waters rush back, and some lakes become grassy meadows, with streams meandering through them.[362] Thus, there is a periodical flux and reflux between Red River and some of these basins, which are merely reservoirs, alternately emptied and filled, like our tide estuaries—with this difference, that in the one case the land is submerged for several months continuously, and in the other twice in every twenty-four hours. It has happened, in several cases, that a raft of timber or a bar has been thrown by Red River across some of the openings of these channels, and then the lakes become, like Bistineau, constant repositories of water. But, even in these cases, their level is liable to annual elevation and depression, because the flood of the main river, when at its height, passes over the bar; just as, where sand-hills close the entrance of an estuary on the Norfolk or Suffolk coast, the sea, during some high tide or storm, has often breached the barrier and inundated again the interior.
I am informed by Mr. Featherstonhaugh that the plains of the Red River and the Arkansas are so low and flat, that whenever the Mississippi rises thirty feet above its ordinary level, those great tributaries are made to flow back, and inundate a region of vast extent. Both the streams alluded to contain red sediment, derived from the decomposition of red porphyry; and since 1833, when there was a great inundation in the Arkansas, an immense swamp has been formed near the Mammelle mountain, comprising 30,000 acres, with here and there large lagoons, where the old bed of the river was situated; in which innumerable trees, for the most part dead, are seen standing, of cypress, cotton-wood, or poplar, the triple-thorned acacia, and others, which are of great size. Their trunks appear as if painted red for about fifteen feet from the ground; at which height a perfectly level line extends through the whole forest, marking the rise of the waters during the last flood.[363]
But most probably the causes above assigned for the recent origin of these lakes are not the only ones. Subterranean movements have altered, so lately as the years 1811-12, the relative levels of various parts of the basin of the Mississippi, situated 300 miles northeast of Lake Bistineau. In those years the great valley, from the mouth of the Ohio to that of the St. Francis, including a tract 300 miles in length, and exceeding in area the whole basin of the Thames, was convulsed to such a degree, as to create new islands in the river, and lakes in the alluvial plain. Some of these were on the left or east bank of the Mississippi, and were twenty miles in extent; as, for example, those named Reelfoot and Obion in Tennessee, formed in the channels or valleys of small streams bearing the same names.[364]
But the largest area affected by the great convulsion lies eight or ten miles to the westward of the Mississippi, and inland from the town of New Madrid, in Missouri. It is called "the sunk country," and is said to extend along the course of the White Water and its tributaries, for a distance of between seventy and eighty miles north and south, and thirty miles or more east and west. Throughout this area, innumerable submerged trees, some standing leafless, others prostrate, are seen; and so great is the extent of lake and marsh, that an active trade in the skins of muskrats, mink, otters, and other wild animals, is now carried on there. In March, 1846, I skirted the borders of the "sunk country" nearest to New Madrid, passing along the Bayou St. John and Little Prairie, where dead trees of various kinds, some erect in the water, others fallen, and strewed in dense masses over the bottom, in the shallows, and near the shore, were conspicuous. I also beheld countless rents in the adjoining dry alluvial plains, caused by the movements of the soil in 1811-12, and still open, though the rains, frost, and river inundations, have greatly diminished their original depth. I observed, moreover, numerous circular cavities, called "sunk holes," from ten to thirty yards wide, and twenty feet or more in depth, which interrupt the general level of the plain. These were formed by the spouting out of large quantities of sand and mud during the earthquakes.[365]
That the prevailing changes of level in the delta and alluvial plain of the Mississippi have been caused by the subsidence, rather than the upheaval of land, appears to me established by the fact, that there are no protuberances of upraised alluvial soil, projecting above the level surface of the great plain. It is true that the gradual elevation of that plain, by new accessions of matter, would tend to efface every inequality derived from this source, but we might certainly have expected to find more broken ground between the opposite bluffs, had local upthrows of alluvial strata been of repeated occurrence.
Antiquity of the delta.—The vast size of the alluvial plain both above and below the head of the delta, or the branching off of the uppermost arm of the Atchafalaya, has been already alluded to. Its superficial dimensions, according to Mr. Forshey, exceed 30,000 square miles, nearly half of which belong to the true delta. The deposits consist partly of sand originally formed upon or near the banks of the river, and its tributaries, partly of gravel, swept down the main channel, of which the position has continually shifted, and partly of fine mud slowly accumulated in the swamps. The farther we descend the river towards its mouth, the finer becomes the texture of the sediment. The whole alluvial formation, from the base of the delta upwards, slopes with a very gentle inclination, rising about three inches in a mile from the level of the sea at the Balize, to the height of about 200 feet in a distance of about 800 miles.
That a large portion of this fluviatile deposit, together with the fluvio-marine strata now in progress near the Balize, consists of mud and sand with much vegetable matter intermixed, may be inferred from what has been said of the abundance of drift trees floated down every summer. These are seen matted together into a net-work around the extensive mud banks at the extreme mouths of the river. Every one acquainted with the geography of Louisiana is aware that the most southern part of the delta forms a long narrow tongue of land protruding for 50 miles into the Gulf of Mexico, at the end of which are numerous channels of discharge. This singular promontory consists simply of the river and its two low, flat banks, covered with reeds, young willows, and poplars. Its appearance answers precisely to that of the banks far in the interior, when nothing appears above water during inundations but the higher part of the sloping glacis or bank. In the one case we have the swamps or an expanse of freshwater with the tops of trees appearing above, in the other the bluish green surface of the Gulf of Mexico. An opinion has very commonly prevailed that this narrow promontory, the newest product of the river, has gained very rapidly upon the sea, since the foundation of New Orleans; but after visiting the Balize in 1846, in company with Dr. Carpenter, and making many inquiries of the pilots, and comparing the present outline of the coast with the excellent Spanish chart, published by Charlevoix 120 years before, we came to a different conclusion. The rate of permanent advance of the new land has been very slow, not exceeding perhaps one mile in a century. The gain may have been somewhat more rapid in former years, when the new strip of soil projected less far into the gulf, since it is now much more exposed to the action of a strong marine current. The tides also, when the waters of the river are low, enter into each opening, and scour them out, destroying the banks of mud and the sand-bars newly formed during the flood season.
An observation of Darby, in regard to the strata composing part of this delta, deserves attention. In the steep banks of the Atchafalaya, before alluded to, the following section, he says, is observable at low water:—first an upper stratum, consisting invariably of bluish clay, common to the banks of the Mississippi; below this a stratum of red ochreous earth, peculiar to Red River, under which the blue clay of the Mississippi again appears; and this arrangement is constant, proving, as that geographer remarks, that the waters of the Mississippi and the Red River occupied alternately, at some former periods, considerable tracts below their present point of union.[366] Such alternations are probably common in submarine spaces situated between two converging deltas; for, before the two rivers unite, there must almost always be a certain period when an intermediate tract will by turns be occupied and abandoned by the waters of each stream; since it can rarely happen that the season of highest flood will precisely correspond in each. In the case of the Red River and Mississippi, which carry off the waters from countries placed under widely distant latitudes, an exact coincidence in the time of greatest inundation is very improbable.
The antiquity of the delta, or length of the period which has been occupied in the deposition of so vast a mass of alluvial matter, is a question which may well excite the curiosity of every geologist. Sufficient data have not yet been obtained to afford a full and satisfactory answer to the inquiry, but some approximation may already be made to the minimum of time required.
When I visited New Orleans, in February, 1846, I found that Dr. Riddell had made numerous experiments to ascertain the proportion of sediment contained in the waters of the Mississippi; and he concluded that the mean annual amount of solid matter was to the water as 1/1245 in weight, or about 1/3000 in volume.[367] From the observations of the same gentleman, and those of Dr. Carpenter and Mr. Forshey, an eminent engineer, to whom I have before alluded, the average width, depth, and velocity of the Mississippi, and thence the mean annual discharge of water were deduced. I assumed 528 feet, or the tenth of a mile, as the probable thickness of the deposit of mud and sand in the delta; founding my conjecture chiefly on the depth of the Gulf of Mexico, between the southern point of Florida and the Balize, which equals on an average 100 fathoms, and partly on some borings 600 feet deep in the delta, near Lake Pontchartrain, north of New Orleans, in which the bottom of the alluvial matter is said not to have been reached. The area of the delta being about 13,600 square statute miles, and the quantity of solid matter annually brought down by the river 3,702,758,400 cubic feet, it must have taken 67,000 years for the formation of the whole; and if the alluvial matter of the plain above be 264 feet deep, or half that of the delta,[368] it must have required 33,500 more years for its accumulation, even if its area be estimated as only equal to that of the delta, whereas it is in fact larger. If some deduction be made from the time here stated, in consequence of the effect of the drift-wood, which must have aided in filling up more rapidly the space above alluded to, a far more important allowance must be made on the other hand, for the loss of matter, owing to the finer particles of mud not settling at the mouths of the river, but being swept out far to sea during the predominant action of the tides, and the waves in the winter months, when the current of fresh water is feeble. Yet however vast the time during which the Mississippi has been transporting its earthy burden to the ocean, the whole period, though far exceeding, perhaps, 100,000 years, must be insignificant in a geological point of view, since the bluffs or cliffs, bounding the great valley, and therefore older in date, and which are from 50 to 250 feet in perpendicular height, consist in great part of loam containing land, fluviatile, and lacustrine shells of species still inhabiting the same country. (See [fig. 23], p. 265.)
Before we take leave of the great delta, we may derive an instructive lesson from the reflection that the new deposits already formed, or now accumulating, whether marine or freshwater, must greatly resemble in composition, and the general character of their organic remains, many ancient strata, which enter largely into the earth's structure. Yet there is no sudden revolution in progress, whether on the land or in the waters, whether in the animate or the inanimate world. Notwithstanding the excessive destruction of soil and uprooting of trees, the region which yields a never-failing supply of drift-wood is densely clothed with noble forests, and is almost unrivalled in its power of supporting animal and vegetable life. In spite of the undermining of many a lofty bluff, and the encroachments of the delta on the sea—in spite of the earthquake, which rends and fissures the soil, or causes areas more than sixty miles in length to sink down several yards in a few months, the general features of the district remain unaltered, or are merely undergoing a slow and insensible change. Herds of wild deer graze on the pastures, or browse upon the trees; and if they diminish in number, it is only where they give way to man and the domestic animals which follow in his train. The bear, the wolf, the fox, the panther, and the wild-cat, still maintain themselves in the fastnesses of the forests of cypress and gum-tree. The racoon and the opossum are everywhere abundant, while the musk-rat, otter, and mink still frequent the rivers and lakes, and a few beavers and buffaloes have not yet been driven from their ancient haunts. The waters teem with aligators, tortoises, and fish, and their surface is covered with millions of migratory waterfowl, which perform their annual voyage between the Canadian lakes and the shores of the Mexican Gulf. The power of man begins to be sensibly felt, and many parts of the wilderness to be replaced by towns, orchards, and gardens. The gilded steamboats, like moving palaces, stem the force of the current, or shoot rapidly down the descending stream, through the solitudes of the forests and prairies. Already does the flourishing population of the great valley far exceed that of the thirteen United States when first they declared their independence. Such is the state of a continent where trees and stones are hurried annually by a thousand torrents, from the mountains to the plains, and where sand and finer matter are swept down by a vast current to the sea, together with the wreck of countless forests and the bones of animals which perish in the inundations. When these materials reach the gulf, they do not render the waters unfit for aquatic animals; but on the contrary, the ocean here swarms with life, as it generally does where the influx of a great river furnishes a copious supply of organic and mineral matter. Yet many geologists, when they behold the spoils of the land heaped in successive strata, and blended confusedly with the remains of fishes, or interspersed with broken shells and corals; when they see portions of erect trunks of trees with their roots still retaining their natural position, and one tier of these preserved in a fossil state above another, imagine that they are viewing the signs of a turbulent instead of a tranquil and settled state of the planet. They read in such phenomena the proof of chaotic disorder and reiterated catastrophes, instead of indications of a surface as habitable as the most delicious and fertile districts now tenanted by man.
Fig. 25.
Map of the Delta of the Ganges and Brahmapootra.
As an example of a still larger delta advancing upon the sea in opposition to more powerful tides, I shall next describe that of the Ganges and Brahmapootra (or Burrampooter). These, the two principal rivers of India, descend from the highest mountains in the world, and partially mingle their waters in the low plains of Hindostan, before reaching the head of the Bay of Bengal. The Brahmapootra, somewhat the larger of the two, formerly passed to the east of Dacca, even so lately as the beginning of the present century, pouring most of its waters into one of the numerous channels in the delta called "the Megna." By that name the main stream was always spoken of by Rennell and others in their memoirs on this region. But the main trunk now unites with an arm of the Ganges considerably higher up, at a point about 100 miles distant from the sea; and it is constantly, according to Dr. Hooker, working its way westward, having formerly, as may be seen by ancient maps, moved eastward for a long period.
The area of the delta of the combined rivers, for it is impossible now to distinguish what belongs to each, is considerably more than double that of the Nile, even if we exclude from the delta a large extent of low, flat, alluvial plain, doubtless of fluviatile origin, which stretches more than 100 miles to the hills west of Calcutta (see map, [fig. 25]), and much farther in a northerly direction beyond the head of the great delta. The head of a delta is that point where the first arm is given off. Above that point a river receives the waters of tributaries flowing from higher levels; below it, on the contrary, it gives out portions of its waters to lower levels, through channels which flow into adjoining swamps, or which run directly to the sea. The Mississippi, as before described, has a single head, which originated at an unknown period when the Red River joined it. In the great delta of Bengal there may be said to be two heads nearly equidistant from the sea, that of the Ganges (G, map, [fig. 25]), about 30 miles below Rajmahal, or 216 statute miles in a direct line from the sea, and that of the Brahmapootra (B), below Chirapoonjee, where the river issues from the Khasia mountains, a distance of 224 miles from the Bay of Bengal.
It will appear, by reference to the map, that the great body of fresh water derived from the two rivers enters the bay on its eastern side; and that a large part of the delta bordering on the sea is composed of a labyrinth of rivers and creeks, all filled with salt water, except those immediately communicating with the Hoogly, or principal arm of the Ganges. This tract alone, known by the name of the Woods, or Sunderbunds (more properly Soonderbuns), a wilderness infested by tigers and crocodiles, is, according to Rennell, equal in extent to the whole principality of Wales.[369]
On the sea-coast there are eight great openings, each of which has evidently, at some ancient period, served in its turn as the principal channel of discharge. Although the flux and reflux of the tide extend even to the heads of the delta when the rivers are low, yet, when they are periodically swollen by tropical rains, their volume and velocity counteract the tidal current, so that, except very near the sea, the ebb and flow become insensible. During the flood season, therefore, the Ganges and Brahmapootra almost assume in their delta, the character of rivers entering an inland sea; the movements of the ocean being then subordinate to the force of the rivers, and only slightly disturbing their operations. The great gain of the delta in height and area takes place during the inundations; and, during other seasons of the year, the ocean makes reprisals, scouring out the channels, and sometimes devouring rich alluvial plains.
Islands formed and destroyed.—Major R. H. Colebrooke, in his account of the course of the Ganges, relates examples of the rapid filling up of some of its branches, and the excavation of new channels, where the number of square miles of soil removed in a short time (the column of earth being 114 feet high) was truly astonishing. Forty square miles, or 25,600 acres, are mentioned as having been carried away, in one place, in the course of a few years.[370] The immense transportation of earthy matter by the Ganges and Brahmapootra is proved by the great magnitude of the islands formed in their channels during a period far short of that of a man's life. Some of these, many miles in extent, have originated in large sand-banks thrown up round the points at the angular turning of the rivers, and afterwards insulated by breaches of the streams. Others, formed in the main channel, are caused by some obstruction at the bottom. A large tree, or a sunken boat, is sometimes sufficient to check the current, and cause a deposit of sand, which accumulates till it usurps a considerable portion of the channel. The river then undermines its banks on each side, to supply the deficiency in its bed, and the island is afterwards raised by fresh deposits during every flood. In the great gulf below Luckipour, formed by the united waters of the Ganges and Megna, some of the islands, says Rennell, rival in size and fertility the Isle of Wight. While the river is forming new islands in one part, it is sweeping away old ones in others. Those newly formed are soon overrun with reeds, long grass, the Tamarix Indica, and other shrubs, forming impenetrable thickets, where the tiger, the rhinoceros, the buffalo, deer, and other wild animals, take shelter. It is easy, therefore, to perceive, that both animal and vegetable remains may occasionally be precipitated into the flood, and become imbedded in the sediment which subsides in the delta.
Three or four species of crocodile, of two distinct sub-genera, abound in the Ganges, and its tributary and contiguous waters; and Mr. H. T. Colebrooke informed me, that he had seen both forms in places far inland, many hundred miles from the sea. The Gangetic crocodile, or Gavial (in correct orthography, Garial), is confined to the fresh water, living exclusively on fish, but the commoner kinds, called Koomiah and Muggar, frequent both fresh and salt, being much larger and fiercer in salt and brackish water.[371] These animals swarm in the brackish water along the line of sand-banks, where the advance of the delta is most rapid. Hundreds of them are seen together in the creeks of the delta, or basking in the sun on the shoals without. They will attack men and cattle, destroying the natives when bathing, and tame and wild animals which come to drink. "I have not unfrequently," says Mr. Colebrooke, "been witness to the horrid spectacle of a floating corpse seized by a crocodile with such avidity, that he half emerged above the water with his prey in his mouth." The geologist will not fail to observe how peculiarly the habits and distribution of these saurians expose them to become imbedded in the horizontal strata of fine mud, which are annually deposited over many hundred square miles in the Bay of Bengal. The inhabitants of the land, which happen to be drowned or thrown into the water, are usually devoured by these voracious reptiles; but we may suppose the remains of the saurians themselves to be continually entombed in the new formations. The number, also, of bodies of the poorer class of Hindoos thrown annually into the Ganges is so great, that some of their bones or skeletons can hardly fail to be occasionally enveloped in fluviatile mud.
It sometimes happens, at the season when the periodical flood is at its height, that a strong gale of wind, conspiring with a high springtide, checks the descending current of the river, and gives rise to most destructive inundations. From this cause, in 1763, the waters at Luckipour rose six feet above their ordinary level, and the inhabitants of a considerable district, with their houses and cattle, were totally swept away.
The population of all oceanic deltas are particularly exposed to suffer by such catastrophes, recurring at considerable intervals of time; and we may safely assume that such tragical events have happened again and again since the Gangetic delta was inhabited by man. If human experience and forethought cannot always guard against these calamities, still less can the inferior animals avoid them; and the monuments of such disastrous inundations must be looked for in great abundance in strata of all ages, if the surface of our planet has always been governed by the same laws. When we reflect on the general order and tranquillity that reigns in the rich and populous delta of Bengal, notwithstanding the havoc occasionally committed by the depredations of the ocean, we perceive how unnecessary it is to attribute the imbedding of successive races of animals in older strata to extraordinary energy in the causes of decay and reproduction in the infancy of our planet, or to those general catastrophes and sudden revolutions so often resorted to.
Deposits in the delta.—The quantity of mud held in suspension by the waters of the Ganges and Brahmapootra is found, as might be expected, to exceed that of any of the rivers alluded to in this or the preceding chapters; for, in the first place, their feeders flow from mountains of unrivalled altitude, and do not clear themselves in any lakes, as does the Rhine in the Lake of Constance, or the Rhone in that of Geneva. And, secondly, their whole course is nearer the equator than that of the Mississippi, or any great river, respecting which careful experiments have been made, to determine the quantity of its water and earthy contents. The fall of rain, moreover, as we have before seen, is excessive on the southern flanks of the first range of mountains which rise from the plains of Hindostan, and still more remarkable is the quantity sometimes poured down in one day. (See above, p. 200.) The sea, where the Ganges and Brahmapootra discharge their main stream at the flood season, only recovers its transparency at the distance of from 60 to 100 miles from the delta; and we may take for granted that the current continues to transport the finer particles much farther south than where the surface water first becomes clear. The general slope, therefore, of the new strata must be extremely gentle. According to the best charts, there is a gradual deepening from four to about sixty fathoms, as we proceed from the base of the delta to the distance of about one hundred miles into the Bay of Bengal. At some few points seventy, or even one hundred, fathoms are obtained at that distance.
One remarkable exception, however, occurs to the regularity of the shape of the bottom. Opposite the middle of the delta, at the distance of thirty or forty miles from the coast, a deep submarine valley occurs, called the "swatch of no ground," about fifteen miles in diameter, where soundings of 180, and even 300, fathoms fail to reach the bottom. (See map, p. 275.) This phenomenon is the more extraordinary, since the depression runs north to within five miles of the line of shoals; and not only do the waters charged with sediment pass over it continually, but, during the monsoons, the sea, loaded with mud and sand, is beaten back in that direction towards the delta. As the mud is known to extend for eighty miles farther into the gulf, an enormous thickness of matter must have been deposited in "the swatch." We may conclude, therefore, either that the original depth of this part of the Bay of Bengal was excessive, or that subsidences have occurred in modern times. The latter conjecture is the less improbable, as the whole area of the delta has been convulsed in the historical era by earthquakes, and actual subsidences have taken place in the neighboring coast of Chittagong, while "the swatch" lies not far from the volcanic band which connects Sumatra, Barren Island, and Ramree.[372]
Opposite the mouth of the Hoogly river, and immediately south of Saugor Island, four miles from the nearest land of the delta, a new islet was formed about twenty years ago, called Edmonstone Island, on the centre of which a beacon was erected as a landmark in 1817. In 1818 the island had become two miles long and half a mile broad, and was covered with vegetation and shrubs. Some houses were then built upon it, and in 1820 it was used as a pilot station. The severe gale of 1823 divided it into two parts, and so reduced its size as to leave the beacon standing out in the sea, where, after remaining seven years, it was washed away. The islet in 1836 had been converted by successive storms into a sand-bank, half a mile long, on which a sea-mark was placed.
Although there is evidence of gain at some points, the general progress of the coast is very slow; for the tides, when the river water is low, are actively employed in removing alluvial matter. In the Sunderbunds the usual rise and fall of the tides is no more than eight feet, but, on the east side of the delta, Dr. Hooker observed, in the winter of 1851, a rise of from sixty to eighty feet, producing among the islands at the mouths of the Megna and Fenny rivers, a lofty wave or "bore" as they ascend, and causing the river water to be ponded back, and then to sweep down with great violence when the tide ebbs. The bay for forty miles south of Chittagong is so fresh that neither algæ nor mangroves will grow in it. We may, therefore, conceive how effective may be the current formed by so great a volume of water in dispersing fine mud over a wide area. Its power is sometimes augmented by the agitation of the bay during hurricanes in the month of May. The new superficial strata consists entirely of fine sand and mud; such, at least, are the only materials which are exposed to view in regular beds on the banks of the numerous creeks. Neither here or higher up the Ganges, could Dr. Hooker discover any land or freshwater shells in sections of the banks, which in the plains higher up sometimes form cliffs eighty feet in height at low water. In like manner I have stated[373] that I was unable to find any buried shells in the delta or modern river cliffs of the Mississippi.
No substance so coarse as gravel occurs in any part of the delta of the Ganges and Brahmapootra, nor nearer the sea than 400 miles. Yet it is remarkable that the boring of an Artesian well at Fort William, near Calcutta, in the years 1835-1840, displayed, at the depth of 120 feet, clay and sand with pebbles. This boring was carried to a depth of 481 feet below the level of Calcutta, and the geological section obtained in the operation has been recorded with great care. Under the surface soil, at a depth of about ten feet, they came to a stiff blue clay about forty feet in thickness; below which was sandy clay, containing in its lower portion abundance of decayed vegetable matter, which at the bottom assumed the character of a stratum of black peat two feet thick. This peaty mass was considered as a clear indication (like the "dirt-bed" of Portland) of an ancient terrestrial surface, with a forest or Sunderbund vegetation. Logs and branches of a red-colored wood occur both above and immediately below the peat, so little altered that Dr. Wallich was able to identify them with the Soondri tree, Heritiera littoralis, one of the most prevalent forms, at the base of the delta. Dr. Falconer tells me that similar peat has been met with at other points round Calcutta at the depth of nine feet and twenty-five feet. It appears, therefore, that there has been a sinking down of what was originally land in this region, to the amount of seventy feet or more perpendicular; for Calcutta is only a few feet above the level of the sea, and the successive peat-beds seem to imply that the subsidence of the ground was gradual or interrupted by several pauses. Below the vegetable mass they entered upon a stratum of yellowish clay about ten feet thick, containing horizontal layers of kunkar (or kankar), a nodular, concretionary, argillaceous limestone, met with abundantly at greater or less depths in all parts of the valley of the Ganges, over many thousand square miles, and always presenting the same characters, even at a distance of one thousand miles north of Calcutta. Some of this kunkar is said to be of very recent origin in deposits formed by river inundations near Saharanpoor. After penetrating 120 feet, they found loam containing water-worn fragments of mica-slate and other kinds of rock, which the current of the Ganges can no longer transport to this region. In the various beds pierced through below, consisting of clay, marl, and friable sandstone, with kunkar here and there intermixed, no organic remains of decidedly marine origin were met with. Too positive a conclusion ought not, it is true, to be drawn from such a fact, when we consider the narrow bore of the auger and its effect in crushing shells and bones. Nevertheless, it is worthy of remark, that the only fossils obtained in a recognizable state were of a fluviatile or terrestrial character. Thus, at the depth of 350 feet, the bony shell of a tortoise, or trionyx, a freshwater genus, was found in sand, resembling the living species of Bengal. From the same stratum, also, they drew up the lower half of the humerus of a ruminant, at first referred to a hyæna. It was the size and shape, says Dr. Falconer, of the shoulder-bone of the Cervus porcinus, or common hog-deer, of India. At the depth of 380 feet, clay with fragments of lacustrine shells was incumbent on what appears clearly to have been another "dirt-bed," or stratum of decayed wood, implying a period of repose of some duration, and a forest-covered land, which must have subsided 300 feet, to admit of the subsequent superposition of the overlying deposits. It has been conjectured that, at the time when this area supported trees, the land extended much farther out into the Bay of Bengal than now, and that in later times the Ganges, while enlarging its delta, has been only recovering lost ground from the sea.
At the depth of about 400 feet below the surface, an abrupt change was observed in the character of the strata, which were composed in great part of sand, shingle, and boulders, the only fossils observed being the vertebræ of a crocodile, shell of a trionyx, and fragments of wood very little altered, and similar to that buried in beds far above. These gravelly beds constituted the bottom of the section at the depth of 481 feet, when the operations were discontinued, in consequence of an accident which happened to the auger.
The occurrence of pebbles at the depths of 120 and 400 feet implies an important change in the geographical condition of the region around or near Calcutta. The fall of the river, or the general slope of the alluvial plain may have been formerly greater; or, before a general and perhaps unequal subsidence, hills once nearer the present base of the delta may have risen several hundred feet, forming islands in the bay, which may have sunk gradually, and become buried under fluviatile sediment.
Antiquity of the delta.—It would be a matter of no small scientific interest, if experiments were made to enable us to determine, with some degree of accuracy, the mean quantity of earthy matter discharged annually into the sea by the united waters of the Ganges and Brahmapootra. The Rev. Mr. Everest instituted, in 1831-2, a series of observations on the earthy matter brought down by the Ganges, at Ghazepoor, 500 miles from the sea. He found that, in 1831, the number of cubic feet of water discharged by the river per second at that place was, during the
| Rains (4 months) | 494,208 |
| Winter (5 months) | 71,200 |
| Hot weather (3 months) | 36,330 |
so that we may state in round numbers that 500,000 cubic feet per second flow down during the four months of the flood season, from June to September, and less than 60,000 per second during the remaining eight months.
The average quantity of solid matter suspended in the water during the rains was, by weight, 1/428th part; but as the water is about one-half the specific gravity of the dried mud, the solid matter discharged is 1/856th part in bulk, or 577 cubic feet per second. This gives a total of 6,082,041,600 cubic feet for the discharge in the 122 days of the rain. The proportion of sediment in the waters at other seasons was comparatively insignificant, the total amount during the five winter months being only 247,881,600 cubic feet, and during the three months of hot weather 38,154,240 cubic feet. The total annual discharge, then, would be 6,368,077,440 cubic feet.
This quantity of mud would in one year raise a surface of 228½ square miles, or a square space, each side of which should measure 15 miles, a height of one foot. To give some idea of the magnitude of this result, we will assume that the specific gravity of the dried mud is only one-half that of granite (it would, however, be more); in that case, the earthy matter discharged in a year would equal 3,184,038,720 cubic feet of granite. Now about 12½ cubic feet of granite weigh one ton; and it is computed that the great Pyramid of Egypt, if it were a solid mass of granite, would weigh about 600,000,000 tons. The mass of matter, therefore, carried down annually would, according to this estimate, more than equal in weight and bulk forty-two of the great pyramids of Egypt, and that borne down in the four months of the rains would equal forty pyramids. But if, without any conjecture as to what may have been the specific gravity of the mud, we attend merely to the weight of solid matter actually proved by Mr. Everest to have been contained in the water, we find that the number of tons weight which passed down in the 122 days of the rainy season was 339,413,760, which would give the weight of fifty-six pyramids and a half; and in the whole year 355,361,464 tons, or nearly the weight of sixty pyramids.
The base of the great Pyramid of Egypt covers eleven acres, and its perpendicular height is about five hundred feet. It is scarcely possible to present any picture to the mind which will convey an adequate conception of the mighty scale of this operation, so tranquilly and almost insensibly carried on by the Ganges, as it glides through its alluvial plain, even at a distance of 500 miles from the sea. It may, however, be stated, that if a fleet of more than eighty Indiamen, each freighted with about 1400 tons' weight of mud, were to sail down the river every hour of every day and night for four months continuously, they would only transport from the higher country to the sea a mass of solid matter equal to that borne down by the Ganges, even in this part of its course, in the four months of the flood season. Or the exertions of a fleet of about 2000 such ships going down daily with the same burden, and discharging it into the gulf, would be no more than equivalent to the operations of the great river.
The most voluminous current of lava which has flowed from Etna within historical times was that of 1669. Ferrara, after correcting Borelli's estimate, calculated the quantity of cubic yards of lava in this current at 140,000,000. Now, this would not equal in bulk one-fifth of the sedimentary matter which is carried down in a single year by the Ganges, past Ghazepoor, according to the estimate above explained; so that it would require five grand eruptions of Etna to transfer a mass of lava from the subterranean regions to the surface, equal in volume to the mud carried down in one year to that place.
Captain R. Strachey, of the Bengal Engineers, has remarked to me, not only that Ghazepoor, where Mr. Everest's observations were made, is 500 miles from the sea, but that the Ganges has not been joined there by its most important feeders. These drain upon the whole 750 miles of the Himalaya, and no more than 150 miles of that mountain-chain have sent their contributions to the main trunk at Ghazepoor. Below that place, the Ganges is joined by the Gogra, Gunduk, Khosee, and Teesta from the north, to say nothing of the Sone flowing from the south, one of the largest of the rivers which rise in the table-land of central India. (See map, [fig. 25], p. 275.) Moreover the remaining 600 miles of the Himalaya comprise that eastern portion of the basin where the rains are heaviest. (See above, p. 200.) The quantity of water therefore carried down to the sea may probably be four or five times as much as that which passes Ghazepoor.
The Brahmapootra, according to Major Wilcox,[374] in the month of January, when it is near its minimum, discharges 150,000 cubic feet of water per second at Gwalpara, not many miles above the head of its delta. Taking the proportions observed at Ghazepoor at the different seasons as a guide, the probable average discharge of the Brahmapootra for the whole year may be estimated at about the same as that of the Ganges. Assuming this; and secondly, in order to avoid the risk of exaggeration, that the proportion of sediment in their waters is about a third less than Mr. Everest's estimate, the mud borne down to the Bay of Bengal in one year would equal 40,000 millions of cubic feet, or between six and seven times as much as that brought down to Ghazepoor, according to Mr. Everest's calculations in 1831, and ten times as much as that conveyed annually by the Mississippi to the Gulf of Mexico.
Captain Strachey estimates the annually inundated portion of the delta at 250 miles in length by 80 in breadth, making an area of 20,000 square miles. The space south of this in the bay, where sediment is thrown down, may be 300 miles from E. to W. by 150 N. and S., or 45,000 square miles, which, added to the former, gives a surface of 65,000 square miles, over which the sediment is spread out by the two rivers. Suppose then the solid matter to amount to 40,000 millions of cubic feet per annum, the deposit, he observes, must be continued for forty-five years and three-tenths to raise the whole area a height of one foot, or 13,600 years to raise it 300 feet; and this, as we have seen, is much less than the thickness of the fluviatile strata actually penetrated, (and the bottom not reached) by the auger at Calcutta.
Nevertheless we can by no means deduce from these data alone, what will be the future rate of advance of the delta, nor even predict whether the land will gain on the sea, or remain stationary. At the end of 13,000 years the bay may be less shallow than now, provided a moderate depression, corresponding to that experienced in part of Greenland for many centuries shall take place (see chap. 30). A subsidence quite insensible to the inhabitants of Bengal, not exceeding two feet three inches in a century, would be more than sufficient to counterbalance all the efforts of the two mighty rivers to extend the limits of their delta. We have seen that the Artesian borings at Calcutta attest, what the vast depth of the "swatch" may also in all likelihood indicate, that the antagonist force of subsidence has predominated for ages over the influx of fluviatile mud, preventing it from raising the plains of Bengal, or from filling up a larger portion of the bay.
CONCLUDING REMARKS ON DELTAS.
Convergence of deltas.—If we possessed an accurate series of maps of the Adriatic for many thousand years, our retrospect would, without doubt, carry us gradually back to the time when the number of rivers descending from the mountains into that gulf by independent deltas was far greater in number. The deltas of the Po and the Adige, for instance, would separate themselves within the recent era, as, in all probability, would those of the Isonzo and the Torre. If, on the other hand, we speculate on future changes, we may anticipate the period when the number of deltas will greatly diminish; for the Po cannot continue to encroach at the rate of a mile in a hundred years, and other rivers to gain as much in six or seven centuries upon the shallow gulf, without new junctions occurring from time to time; so that Eridanus, "the king of rivers," will continually boast a greater number of tributaries. The Ganges and the Brahmapootra have perhaps become partially confluent in the same delta within the historical, or at least within the human era; and the date of the junction of the Red River and the Mississippi would, in all likelihood, have been known, if America had not been so recently discovered. The union of the Tigris and the Euphrates must undoubtedly have been one of the modern geographical changes of our Earth, for Col. Rawlinson informs me that the delta of those rivers has advanced two miles in the last sixty years, and is supposed to have encroached about forty miles upon the Gulf of Persia in the course of the last twenty-five centuries.
When the deltas of rivers, having many mouths, converge, a partial union at first takes place by the confluence of some one or more of their arms; but it is not until the main trunks are connected above the head of the common delta, that a complete intermixture of their joint waters and sediment takes place. The union, therefore, of the Po and Adige, and of the Ganges and Brahmapootra, is still incomplete. If we reflect on the geographical extent of surface drained by rivers such as now enter the Bay of Bengal, and then consider how complete the blending together of the greater part of their transported matter has already become, and throughout how vast a delta it is spread by numerous arms, we no longer feel so much surprise at the area occupied by some ancient formations of homogeneous mineral composition. But our surprise will be still farther lessened, when we afterwards inquire (ch. 21) into the action of tides and currents in disseminating sediment.
Age of existing deltas.—If we could take for granted, that the relative level of land and sea had remained stationary ever since all the existing deltas began to be formed—could we assume that their growth commenced at one and the same instant when the present continents acquired their actual shape—we might understand the language of geologists who speak of "the epoch of existing continents." They endeavor to calculate the age of deltas from this imaginary fixed period; and they calculate the gain of new land upon the sea, at the mouths of rivers, as having begun everywhere simultaneously. But the more we study the history of deltas, the more we become convinced that upward and downward movements of the land and contiguous bed of the sea have exerted, and continue to exert, an influence on the physical geography of many hydrographical basins, on a scale comparable in magnitude or importance to the amount of fluviatile deposition effected in an equal lapse of time. In the basin of the Mississippi, for example, proofs both of descending and ascending movements to a vertical amount of several hundred feet can be shown to have taken place since the existing species of land and freshwater shells lived in that region.[375]
The deltas also of the Po and Ganges have each, as we have seen (p. 257), when probed by the Artesian auger, borne testimony to a gradual subsidence of land to the extent of several hundred feet—old terrestrial surfaces, turf, peat, forest-land, and "dirt-beds," having been pierced at various depths. The changes of level at the mouth of the Indus in Cutch (see below, chap. [27]), and those of New Madrid in the valley of the Mississippi (see p. [270], and chap. [27]), are equally instructive, as demonstrating unceasing fluctuations in the levels of those areas into which running water is transporting sediment. If, therefore, the exact age of all modern deltas could be known, it is scarcely probable that we should find any two of them in the world to have coincided in date, or in the time when their earliest deposits originated.
Grouping of strata in deltas.—The changes which have taken place in deltas, even within the times of history, may suggest many important considerations in regard to the manner in which subaqueous sediment is distributed. With the exception of some cases hereafter to be noticed, there are some general laws of arrangement which must evidently hold good in almost all the lakes and seas now filling up. If a lake, for example, be encircled on two sides by lofty mountains, receiving from them many rivers and torrents of different sizes, and if it be bounded on the other sides, where the surplus waters issue, by a comparatively low country, it is not difficult to define some of the leading geological features which must characterize the lacustrine formation, when this basin shall have been gradually converted into dry land by the influx of sediment. The strata would be divisible into two principal groups: the older comprising those deposits which originated on the side adjoining the mountains, where numerous deltas first began to form; and the newer group consisting of beds deposited in the more central parts of the basin, and towards the side farthest from the mountains. The following characters would form the principal marks of distinction between the strata in each series:—The more ancient system would be composed, for the most part, of coarser materials, containing many beds of pebbles and sand, often of great thickness, and sometimes dipping at a considerable angle. These, with associated beds of finer ingredients, would, if traced round the borders of the basin, be seen to vary greatly in color and mineral composition, and would also be very irregular in thickness. The beds, on the contrary, in the newer group, would consist of finer particles, and would be horizontal, or very slightly inclined. Their color and mineral composition would be very homogeneous throughout large areas, and would differ from almost all the separate beds in the older series.
The following causes would produce the diversity here alluded to between the two great members of such lacustrine formations:—When the rivers and torrents first reach the edge of the lake, the detritus washed down by them from the adjoining heights sinks at once into deep water, all the heavier pebbles and sand subsiding near the shore. The finer mud is carried somewhat farther out, but not to the distance of many miles, for the greater part may be seen, as, for example, where the Rhone enters the Lake of Geneva, to fall down in clouds to the bottom, not far from the river's mouth. Thus alluvial tracts are soon formed at the mouths of every torrent and river, and many of these in the course of ages become of considerable extent. Pebbles and sand are then transported farther from the mountains; but in their passage they decrease in size by attrition, and are in part converted into mud and sand. At length some of the numerous deltas, which are all directed towards a common centre, approach near to each other; those of adjoining torrents become united, and each is merged, in its turn, in the delta of the largest river, which advances most rapidly into the lake, and renders all the minor streams, one after the other, its tributaries. The various mineral ingredients of all are thus blended together into one homogeneous mixture, and the sediment is poured out from a common channel into the lake.
As the average size of the transported particles decreases, while the force and volume of the main river augments, the newer deposits are diffused continually over a wider area, and are consequently more horizontal than the older. When at first there were many independent deltas near the borders of the basin, their separate deposits differed entirely from each other; one may have been charged, like the Arve where it joins the Rhone, with white sand and sediment derived from granite—another may have been black, like many streams in the Tyrol, flowing from the waste of decomposing rocks of dark slate—a third may have been colored by ochreous sediment, like the Red River in Louisiana—a fourth, like the Elsa in Tuscany, may have held much carbonate of lime in solution. At first they would each form distinct deposits of sand, gravel, limestone, marl, or other materials; but, after their junction, new chemical combinations and a distinct color would be the result, and the particles, having been conveyed ten, twenty, or a greater number of miles over alluvial plains, would become finer.
In those deltas where the tides and strong marine currents interfere, the above description would only be applicable, with certain modifications. If a series of earthquakes accompany the growth of a delta, and change the levels of the land from time to time, as in the region where the Indus now enters the sea, the phenomena will depart still more widely from the ordinary type. If, after a protracted period of rest, a delta sinks down, pebbles may be borne along in shallow water near the foot of the boundary hills, so as to form conglomerates overlying the fine mud previously thrown into deeper water in the same area.
Causes of stratification in deltas.—The stratified arrangement, which is observed to prevail so generally in aqueous deposits, is most frequently due to variations in the velocity of running water, which cannot sweep along particles of more than a certain size and weight when moving at a given rate. Hence, as the force of the stream augments or decreases, the materials thrown down in successive layers at particular places are rudely sorted, according to their dimensions, form, and specific gravity. Where this cause has not operated, as where sand, mud, and fragments of rock are conveyed by a glacier, a confused heap of rubbish devoid of all stratification is produced.
Natural divisions are also occasioned in deltas, by the interval of time which separates annually the deposition of matter during the periodical rains, or melting of snow upon the mountains. The deposit of each year may acquire some degree of consistency before that of the succeeding year is superimposed. A variety of circumstances also give rise annually, or sometimes from day to day, to slight variations in color, fineness of the particles, and other characters, by which alternations of strata distinct in texture and mineral ingredients must be produced. Thus, for example, at one period of the year, drift-wood may be carried down, and, at another, mud, as was before stated to be the case in the delta of the Mississippi; or at one time, when the volume and velocity of the stream are greatest, pebbles and sand may be spread over a certain area, over which, when the waters are low, fine matter or chemical precipitates are formed. During inundations, the turbid current of fresh water often repels the sea for many miles; but when the river is low, salt water again occupies the same space. When two deltas are converging, the intermediate space is often, for reasons before explained, alternately the receptacle of different sediments derived from the converging streams (see p. [272]). The one is, perhaps, charged with calcareous, the other with argillaceous matter; or one sweeps down sand and pebbles, the other impalpable mud. These differences may be repeated with considerable regularity, until a thickness of hundreds of feet of alternating beds is accumulated. The multiplication, also, of shells and corals in particular spots, and for limited periods, gives rise occasionally to lines of separation, and divides a mass which might otherwise be homogeneous into distinct strata.
An examination of the shell marl now forming in the Scotch lakes, or the sediment termed "warp," which subsides from the muddy water of the Humber and other rivers, shows that recent deposits are often composed of a great number of extremely thin layers, either even or slightly undulating, and preserving a general parallelism to the planes of stratification. Sometimes, however, the laminæ in modern strata are disposed diagonally at a considerable angle, which appears to take place where there are conflicting movements in the waters. In January, 1829, I visited, in company with Professor L. A. Necker, of Geneva, the confluence of the Rhone and Arve, when those rivers were very low, and were cutting channels through the vast heaps of débris thrown down from the waters of the Arve in the preceding spring. One of the sandbanks which had formed, in the spring of 1828, where the opposing currents of the two rivers neutralized each other, and caused a retardation in the motion, had been undermined; and the following is an exact representation of the arrangement of laminæ exposed in a vertical section. The length of the portion here seen is about twelve feet, and the height five. The strata A A consist of irregular alternations of pebbles and sand in undulating beds: below these are seams of very fine sand B B, some as thin as paper, others about a quarter of an inch thick. The strata C C are composed of layers of fine greenish-gray sand as thin as paper. Some of the inclined beds will be seen to be thicker at their upper, others at their lower extremity, the inclination of some being very considerable. These layers must have accumulated one on the other by lateral apposition, probably when one of the rivers was very gradually increasing or diminishing in velocity, so that the point of greatest retardation caused by their conflicting currents shifted slowly, allowing the sediment to be thrown down in successive layers on a sloping bank. The same phenomenon is exhibited in older strata of all ages.[376]
Fig. 26.
Section of a sand-bank in the bed of the Arve at its confluence with the Rhone, showing the stratification of deposits where currents meet.
If the bed of a lake or of the sea be sinking, whether at a uniform or an unequal rate, or oscillating in level during the deposition of sediment, these movements will give rise to a different class of phenomena, as, for example, to repeated alternations of shallow-water and deep-water deposits, each with peculiar organic remains, or to frequent repetitions of similar beds, formed at a uniform depth, and inclosing the same organic remains, and to other results too complicated and varied to admit of enumeration here.
Formation of conglomerates.—Along the base of the Maritime Alps, between Toulon and Genoa, the rivers, with few exceptions, are now forming strata of conglomerate and sand. Their channels are often several miles in breadth, some of them being dry, and the rest easily forded for nearly eight months in the year, whereas during the melting of the snow they are swollen, and a great transportation of mud and pebbles takes place. In order to keep open the main road from France to Italy, now carried along the sea-coast, it is necessary to remove annually great masses of shingle brought down during the flood season. A portion of the pebbles are seen in some localities, as near Nice, to form beds of shingle along the shore, but the greater part are swept into a deep sea. The small progress made by the deltas of minor rivers on this coast need not surprise us, when we recollect that there is sometimes a depth of two thousand feet at a few hundred yards from the beach, as near Nice. Similar observations might be made respecting a large proportion of the rivers in Sicily, and among others, respecting that which, immediately north of the port of Messina, hurries annually vast masses of granitic pebbles into the sea.
Constant interchange of land and sea.—I may here conclude my remarks on deltas, observing that, imperfect as is our information of the changes which they have undergone within the last three thousand years, they are sufficient to show how constant an interchange of sea and land is taking place on the face of our globe. In the Mediterranean alone, many flourishing inland towns, and a still greater number of ports, now stand where the sea rolled its waves since the era of the early civilization of Europe. If we could compare with equal accuracy the ancient and actual state of all the islands and continents, we should probably discover that millions of our race are now supported by lands situated where deep seas prevailed in earlier ages. In many districts not yet occupied by man, land animals and forests now abound where ships once sailed; and, on the other hand, we shall find, on inquiry, that inroads of the ocean have been no less considerable. When to these revolutions, produced by aqueous causes, we add analogous changes wrought by igneous agency, we shall, perhaps, acknowledge the justice of the conclusion of Aristotle, who declared that the whole land and sea on our globe periodically changed places.[377]
CHAPTER XIX.
DESTROYING AND TRANSPORTING EFFECTS OF TIDES AND CURRENTS.
Difference in the rise of tides—Lagullas and Gulf currents—Velocity of currents—Causes of currents—Action of the sea on the British coast—Shetland Islands—Large blocks removed—Isles reduced to clusters of rocks—Orkney isles—Waste of East coast of Scotland—and East coast of England—Waste of the cliffs of Holderness, Norfolk, and Suffolk—Sand-dunes, how far chronometers—Silting up of estuaries—Yarmouth estuary—Suffolk coast—Dunwich—Essex coast—Estuary of the Thames—Goodwin Sands—Coast of Kent—Formation of the Straits of Dover—South coast of England—Sussex—Hants—Dorset—Portland—Origin of the Chesil Bank—Cornwall—Coast of Brittany.
Although the movements of great bodies of water, termed tides and currents, are in general due to very distinct causes, their effects cannot be studied separately; for they produce, by their joint action, aided by that of the waves, those changes which are objects of geological interest. These forces may be viewed in the same manner as we before considered rivers, first, as employed in destroying portions of the solid crust of the earth and removing them to other places; secondly, as reproductive of new strata.
Tides.—It would be superfluous at the present day to offer any remarks on the cause of the tides. They are not perceptible in lakes or in most inland seas; in the Mediterranean even, deep and extensive as is that sea, they are scarcely sensible to ordinary observation, their effects being quite subordinate to those of the winds and currents. In some places, however, as in the Straits of Messina, there is an ebb and flow to the amount of two feet and upwards; at Naples and at the Euripus, of twelve or thirteen inches; and at Venice, according to Rennell, of five feet.[378] In the Syrtes, also, of the ancients, two wide shallow gulfs, which penetrate very far within the northern coast of Africa, between Carthage and Cyrene, the rise is said to exceed five feet.[379]
In islands remote from any continent, the ebb and flow of the ocean is very slight, as at St. Helena, for example, where it is rarely above three feet.[380] In any given line of coast, the tides are greatest in narrow channels, bays, and estuaries, and least in the intervening tracts where the land is prominent. Thus, at the entrance of the estuary of the Thames and Medway, the rise of the spring tides is eighteen feet; but when we follow our eastern coast from thence northward, towards Lowestoff and Yarmouth, we find a gradual diminution, until at the places last mentioned, the highest rise is only seven or eight feet. From this point there begins again to be an increase, so that at Comer, where the coast again retires towards the west, the rise is sixteen feet; and towards the extremity of the gulf called "the Wash," as at Lynn and in Boston Deeps, it is from twenty-two to twenty-four feet, and in some extraordinary cases twenty-six feet. From thence again there is a decrease towards, the north, the elevation at the Spurn Point being from nineteen to twenty feet, and at Flamborough Head and the Yorkshire coast from fourteen to sixteen feet.[381]
At Milford Haven in Pembrokeshire, at the mouth of the Bristol Channel, the tides rise thirty-six feet; and at King-Road near Bristol, forty-two feet. At Chepstow on the Wye, a small river which opens into the estuary of the Severn, they reach fifty feet, and sometimes sixty-nine, and even seventy-two feet. A current which sets in on the French coast, to the west of Cape La Hague, becomes pent up by Guernsey, Jersey, and other islands, till the rise of the tide is from twenty to forty-five feet, which last height it attains at Jersey, and at St. Malo, a seaport of Brittany. The tides in the Basin of Mines, at the head of the Bay of Fundy in Nova Scotia, rise to the height of seventy feet.
There are, however, some coasts where the tides seem to offer an exception to the rule above mentioned; for while there is scarcely any rise in the estuary of the Plata in S. America, there is an extremely high tide on the open coast of Patagonia, farther to the south. Yet even in this region the tides reach their greatest elevation (about fifty feet) in the Straits of Magellan, and so far at least they conform to the general rule.[382]
Currents.—The most extensive and best determined system of currents, is that which has its source in the Indian Ocean under the influence of the trade winds; and which, after doubling the Cape of Good Hope, inclines to the northward, along the western coast of Africa, then across the Atlantic, near the equator, where it is called the equatorial current, and is lost in the Caribbean Sea, yet seems to be again revived in the current which issues from the Gulf of Mexico. From thence it flows rapidly through the Straits of Bahama, taking the name of the Gulf Stream, and passing in a northeasterly direction, by the Banks of Newfoundland, towards the Azores.
We learn from the posthumous work of Rennell on this subject, that the Lagullas current, so called from the cape and bank of that name, is formed by the junction of two streams, flowing from the Indian Ocean; the one from the channel of Mozambique, down the southeast coast of Africa; the other from the ocean at large. The collective stream is from ninety to one hundred miles in breadth, and runs at the rate of from two and a half to more than four miles per hour. It is at length turned westward by the Lagullas bank, which rises from a sea of great depth to within one hundred fathoms of the surface. It must therefore be inferred, says Rennell, that the current here is more than one hundred fathoms deep, otherwise the main body of it would pass across the bank, instead of being deflected westward, so as to flow round the Cape of Good Hope. From this cape it flows northward, as before stated, along the western coast of Africa, taking the name of the South Atlantic current. It then enters the Bight, or Bay of Benin, and is turned westward, partly by the form of the coast there, and partly, perhaps, by the Guinea current, which runs from the north into the same great bay. From the centre of this bay proceeds the equatorial current already mentioned, holding a westerly direction across the Atlantic, which it traverses, from the coast of Guinea to that of Brazil, flowing afterwards by the shores of Guiana to the West Indies. The breadth of this current varies from 160 to 450 geographical miles, and its velocity is from twenty-five to seventy-nine miles per day, the mean rate being about thirty miles. The length of its whole course is about 4000 miles. As it skirts the coast of Guiana, it is increased by the influx of the waters of the Amazon and Orinoco, and by their junction acquires accelerated velocity. After passing the island of Trinidad it expands, and is almost lost in the Caribbean Sea; but there appears to be a general movement of that sea towards the Mexican Gulf, which discharges the most powerful of all currents through the Straits of Florida, where the waters run in the northern part with a velocity of four or five miles an hour, having a breadth of from thirty-five to fifty miles.[383]
The temperature of the Gulf of Mexico is 86° F. in summer, or 6° higher than that of the ocean, in the same parallel (25° N. lat.), and a large proportion of this warmth is retained, even where the stream reaches the 43° N. lat. After issuing from the Straits of Florida, the current runs in a northerly direction to Cape Hatteras, in North Carolina, about 35° N. lat., where it is more than seventy miles broad, and still moves at the rate of seventy-five miles per day. In about the 40° N. lat., it is turned more towards the Atlantic by the extensive banks of Nantucket and St. George, which are from 200 to 300 feet beneath the surface of the sea; a clear proof that the current exceeds that depth. On arriving near the Azores, the stream widens, and overflows, as it were, forming a large expanse of warm water in the centre of the North Atlantic, over a space of 200 or 300 miles from north to south, and having a temperature of from 8° to 10° Fahr. above the surrounding ocean. The whole area, covered by the Gulf water, is estimated by Rennell at 2000 miles in length, and, at a mean, 350 miles in breadth; an area more extensive than that of the Mediterranean. The warm water has been sometimes known to reach the Bay of Biscay, still retaining five degrees of temperature above that of the adjoining ocean; and a branch of the Gulf current occasionally drifts fruits, plants, and wood, the produce of America and the West Indies, to the shores of Ireland and the Hebrides.
From the above statements we may understand why Rennell has characterized some of the principal currents as oceanic rivers, which he describes as being from 50 to 250 miles in breadth, and having a rapidity exceeding that of the largest navigable rivers of the continents, and so deep as to be sometimes obstructed, and occasionally turned aside, by banks, the tops of which do not rise within forty, fifty, or even one hundred fathoms of the surface of the sea.[384]
Greatest velocity of currents.—The ordinary velocity of the principal currents of the ocean is from one to three miles per hour; but when the boundary lands converge, large bodies of water are driven gradually into a narrow space, and then wanting lateral room, are compelled to raise their level. Whenever this occurs their velocity is much increased. The current which runs through the Race of Alderney, between the island of that name and the main land, has a velocity of about eight English miles an hour. Captain Hewett found that in the Pentland Firth, the stream, in ordinary spring tides, runs ten miles and a half an hour, and about thirteen miles during violent storms. The greatest velocity of the tidal current through the "Shoots" or New Passage, in the Bristol Channel, is fourteen English miles an hour; and Captain King observed, in his survey of the Straits of Magellan, that the tide ran at the same rate through the "First Narrows," and about eight geographical miles an hour, in other parts of those straits.
Causes of currents.—That movements of no inconsiderable magnitude should be impressed on an expansive ocean, by winds blowing for many months in one direction, may easily be conceived, when we observe the effects produced in our own seas by the temporary action of the same cause. It is well known that a strong southwest or northwest wind invariably raises the tides to an unusual height along the west coast of England and in the Channel; and that a northwest wind of any continuance causes the Baltic to rise two feet and upwards above its ordinary level. Smeaton ascertained by experiment, that in a canal four miles in length, the water was kept up four inches higher at one end than at the other, merely by the action of the wind along the canal; and Rennell informs us that a large piece of water, ten miles broad, and generally only three feet deep, has, by a strong wind, had its waters driven to one side, and sustained so as to become six feet deep, while the windward side was laid dry.[385]
As water, therefore, he observes, when pent up so that it cannot escape, acquires a higher level, so, in a place where it can escape, the same operation produces a current; and this current will extend to a greater or less distance, according to the force by which it is produced. By the side of the principal oceanic currents, such as the Lagullas and the Gulf Stream, are parallel "counter-currents" running steadily in an opposite direction.
Currents flowing alternately in opposite directions are occasioned by the rise and fall of the tides. The effect of this cause is, as before observed, most striking in estuaries and channels between islands.
A third cause of oceanic currents is evaporation by solar heat, of which the great current setting through the Straits of Gibraltar into the Mediterranean is a remarkable example, and will be fully considered in the next chapter. A stream of colder water also flows from the Black Sea into the Mediterranean. It must happen in many other parts of the world that large quantities of water raised from one tract of the ocean by solar heat, are carried to some other where the vapor is condensed and falls in the shape of rain, and this, in flowing back again to restore equilibrium, will cause sensible currents.
These considerations naturally lead to the inquiry whether the level of those seas out of which currents flow, is higher than that of seas into which they flow. If not, the effect must be immediately equalized by under-currents or counter-currents. Arago is of opinion that, so far as observations have gone, there are no exact proofs of any such difference of level. It was inferred from the measurements of M. Lepére, that the level of the Mediterranean, near Alexandria, was lower by 26 feet 6 inches, than the Red Sea near Suez at low water, and about 30 feet lower than the Red Sea at the same place at high water,[386] but Mr. Robert Stevenson affirms, as the result of a more recent survey, that there is no difference of level between the two seas.[387]
It was formerly imagined that there was an equal, if not greater, diversity in the relative levels of the Atlantic and Pacific, on the opposite sides of the Isthmus of Panama. But the levellings carried across that isthmus by Capt. Lloyd, in 1828, to ascertain the relative height of the Pacific Ocean at Panama, and of the Atlantic at the mouth of the river Chagres, have shown, that the difference of mean level between those oceans is not considerable, and, contrary to expectation, the difference which does exist is in favor of the greater height of the Pacific. According to this survey, the mean height of the Pacific is three feet and a half, or 3·52 above the Atlantic, if we assume the mean level of a sea to coincide with the mean between the extremes of the elevation and depression of the tides; for between the extreme levels of the greatest tides in the Pacific, at Panama, there is a difference of 27·44 feet; and at the usual spring tides 21·22 feet; whereas at Chagres this difference is only 1·16 feet, and is the same at all seasons of the year.
The tides, in short, in the Caribbean Sea are scarcely perceptible, not equalling those in some parts of the Mediterranean, whereas the rise is very high in the Bay of Panama; so that the Pacific is at high tide lifted up several feet above the surface of the Gulf of Mexico, and then at low water let down as far below it.[388] But astronomers are agreed that, on mathematical principles, the rise of the tidal wave above the mean level of a particular sea must be greater than the fall below it; and although the difference has been hitherto supposed insufficient to cause an appreciable error, it is, nevertheless, worthy of observation, that the error, such as it may be, would tend to reduce the small difference, now inferred, from the observations of Mr. Lloyd, to exist between the levels of the two oceans.
There is still another way in which heat and cold must occasion great movements in the ocean, a cause to which, perhaps, currents are principally due. Whenever the temperature of the surface of the sea is lowered, condensation takes place, and the superficial water, having its specific gravity increased, falls to the bottom, upon which lighter water rises immediately and occupies its place. When this circulation of ascending and descending currents has gone on for a certain time in high latitudes, the inferior parts of the sea are made to consist of colder or heavier fluid than the corresponding depths of the ocean between the tropics. If there be a free communication, if no chain of submarine mountains divide the polar from the equatorial basins, a horizontal movement will arise by the flowing of colder water from the poles to the equator, and there will then be a reflux of warmer superficial water from the equator to the poles. A well-known experiment has been adduced to elucidate this mode of action in explanation of the "trade winds."[389] If a long trough, divided in the middle by a sluice or partition, have one end filled with water and the other with quicksilver, both fluids will remain quiet so long as they are divided; but when the sluice is drawn up, the heavier fluid will rush along the bottom of the trough, while the lighter, being displaced, will rise, and, flowing in an opposite direction, spread itself at the top. In like manner the expansion and contraction of sea-water by heat and cold, have a tendency to set under-currents in motion from the poles to the equator, and to cause counter-currents at the surface, which are impelled in a direction contrary to that of the prevailing trade winds. The geographical and other circumstances being very complicated, we cannot expect to trace separately the movements due to each cause, but must be prepared for many anomalies, especially as the configuration of the bed of the ocean must often modify and interfere with the course of the inferior currents, as much as the position and form of continents and islands alter the direction of those on the surface. Thus on sounding at great depths in the Mediterranean, Captains Berard and D'Urville have found that the cold does not increase in a high ratio as in the tropical regions of the ocean, the thermometer remaining fixed at about 55° F. between the depths of 1000 and 6000 feet. This might have been anticipated, as Captain Smyth in his survey had shown that the deepest part of the Straits of Gibraltar is only 1320 feet, so that a submarine barrier exists there which must prevent the influx of any under-current of the ocean cooled by polar ice.
Each of the four causes above mentioned, the wind, the tides, evaporation, and the expansion and contraction of water by heat and cold, may be conceived to operate independently of the others, and although the influence of all the rest were annihilated. But there is another cause, the rotation of the earth on its axis, which can only come into play when the waters have already been set in motion by some one or all of the forces above described, and when the direction of the current so raised happens to be from south to north, or from north to south.
The principle on which this cause operates is probably familiar to the reader, as it has long been recognized in the case of the trade winds. Without enlarging, therefore, on the theory, it will be sufficient to offer an example of the mode of action alluded to. When a current flows from the Cape of Good Hope towards the Gulf of Guinea, it consists of a mass of water, which, on doubling the Cape, in lat. 35°, has a rotatory velocity of about 800 miles an hour; but when it reaches the line, where it turns westward, it has arrived at a parallel where the surface of the earth is whirled round at the rate of 1000 miles an hour, or about 200 miles faster. If this great mass of water was transferred suddenly from the higher to the lower latitude, the deficiency of its rotatory motion, relatively to the land and water with which it would come into juxtaposition, would be such as to cause an apparent motion of the most rapid kind (of no less than 200 miles an hour) from east to west.
In the case of such a sudden transfer, the eastern coast of America, being carried round in an opposite direction, might strike against a large body of water with tremendous violence, and a considerable part of the continent might be submerged. This disturbance does not occur, because the water of the stream, as it advances gradually into new zones of the sea which are moving more rapidly, acquires by friction an accelerated velocity. Yet as this motion is not imparted instantaneously, the fluid is unable to keep up with the full speed of the new surface over which it is successively brought. Hence, to borrow the language of Herschel, when he speaks of the trade winds, "it lags or hangs back, in a direction opposite to the earth's rotation, that is, from east to west,"[390] and thus a current, which would have run simply towards the north but for the rotation, may acquire a relative direction towards the west.
We may next consider a case where the circumstances are the converse of the above. The Gulf Stream flowing from about lat. 20° is at first impressed with a velocity of rotation of about 940 miles an hour, and runs to the lat. 40°, where the earth revolves only at the rate of 766 miles, or 174 miles slower. In this case a relative motion of an opposite kind may result; and the current may retain an excess of rotatory velocity, tending continually to deflect it eastward. Polar currents, therefore, or those flowing from high to low latitudes, are driven towards the eastern shores of continents, while tropical currents flowing towards the poles are directed against their western shores.
Thus it will be seen that currents depend, like the tides, on no temporary or accidental circumstances, but on the laws which preside over the motions of the heavenly bodies. But although the sum of their influence in altering the surface of the earth may be very constant throughout successive epochs, yet the points where these operations are displayed in fullest energy shift perpetually. The height to which the tides rise, and the violence and velocity of currents, depend in a great measure on the actual configuration of the land, the contour of a long line of continental or insular coast, the depth and breadth of channels, the peculiar form of the bottom of seas—in a word, on a combination of circumstances which are made to vary continually by many igneous and aqueous causes, and, amongst the rest, by the tides and currents themselves. Although these agents, therefore, of decay and reproduction are local in reference to periods of short duration, such as those which history embraces, they are nevertheless universal, if we extend our views to a sufficient lapse of ages.
Destroying and transporting power of currents.—After these preliminary remarks on the nature and causes of currents, their velocity and direction, we may next consider their action on the solid materials of the earth. We shall find that their efforts are, in many respects, strictly analogous to those of rivers. I have already treated in the third chapter, of the manner in which currents sometimes combine with ice, in carrying mud, pebbles, and large fragments of rock to great distances. Their operations are more concealed from our view than those of rivers, but extend over wider areas, and are therefore of more geological importance.
Waste of the British coasts.—Shetland Islands.—If we follow the eastern and southern shores of the British islands, from our Ultima Thule in Shetland to the Land's End in Cornwall, we shall find evidence of a series of changes since the historical era, very illustrative of the kind and degree of force exerted by tides and currents co-operating with the waves of the sea. In this survey we shall have an opportunity of tracing their joint power on islands, promontories, bays, and estuaries; on bold, lofty cliffs, as well as on low shores; and on every description of rock and soil, from granite to blown sand.
The northernmost group of the British islands, the Shetland, are composed of a great variety of rocks, including granite, gneiss, mica-slate, serpentine, greenstone, and many others, with some secondary rocks, chiefly sandstone and conglomerate. These islands are exposed continually to the uncontrolled violence of the Atlantic, for no land intervenes between their western shores and America. The prevalence, therefore, of strong westerly gales, causes the waves to be sometimes driven with irresistible force upon the coast, while there is also a current setting from the north. The spray of the sea aids the decomposition of the rocks, and prepares them to be breached by the mechanical force of the waves. Steep cliffs are hollowed out into deep caves and lofty arches; and almost every promontory ends in a cluster of rocks, imitating the forms of columns, pinnacles, and obelisks.
Drifting of large masses of rock.—Modern observations show that the reduction of continuous tracts to such insular masses is a process in which nature is still actively engaged. "The isle of Stenness," says Dr. Hibbert, "presents a scene of unequalled desolation. In stormy winters, huge blocks of stones are overturned, or are removed from their native beds, and hurried up a slight acclivity to a distance almost incredible. In the winter of 1802, a tabular-shaped mass, eight feet two inches by seven feet, and five feet one inch thick, was dislodged from its bed, and removed to a distance of from eighty to ninety feet. I measured the recent bed from which a block had been carried away the preceding winter (A. D. 1818), and found it to be seventeen feet and a half by seven feet, and the depth two feet eight inches. The removed mass had been borne to a distance of thirty feet, when it was shivered into thirteen or more lesser fragments, some of which, were carried still farther, from 30 to 120 feet. A block, nine feet two inches by six feet and a half, and four feet thick, was hurried up the acclivity to a distance of 150 feet."[391]
At Northmavine, also, angular blocks of stone have been removed in a similar manner to considerable distances by the waves of the sea, some of which are represented in the annexed figure.
Effects of lightning.—In addition to numerous examples of masses detached and driven by the waves, tides, and currents from their place, some remarkable effects of lightning are recorded in these isles. At Funzie, in Fetlar, about the middle of the last century, a rock of mica-schist, 105 feet long, ten feet broad, and in some places four feet thick, was in an instant torn by a flash of lightning from its bed, and broken into three large and several smaller fragments. One of these, twenty-six feet long, ten feet broad, and four feet thick, was simply turned over. The second, which was twenty-eight feet long, seventeen broad, and five feet in thickness, was hurled across a high point to the distance of fifty yards. Another broken mass, about forty feet long, was thrown still farther, but in the same direction, quite into the sea. There were also many smaller fragments scattered up and down.[392]
Fig. 27.
Stony fragments drifted by the sea. Northmavine, Shetland.
When we thus see electricity co-operating with the violent movements of the ocean in heaping up piles of shattered rocks on dry land and beneath the waters, we cannot but admit that a region which shall be the theatre, for myriads of ages, of the action of such disturbing causes, might present, at some future period, if upraised far above the bosom of the deep, a scene of havoc and ruin that may compare with any now found by the geologist on the surface of our continents.
In some of the Shetland Isles, as on the west of Meikle Roe, dikes, or veins of soft granite, have mouldered away; while the matrix in which they were inclosed, being of the same substance, but of a firmer texture, has remained unaltered. Thus, long narrow ravines, sometimes twenty feet wide, are laid open, and often give access to the waves. After describing some huge cavernous apertures into which the sea flows for 250 feet in Roeness, Dr. Hibbert, writing in 1822, enumerates other ravages of the ocean. "A mass of rock, the average dimensions of which may perhaps be rated at twelve or thirteen feet square, and four and a half or five in thickness, was first moved from its bed, about fifty years ago, to a distance of thirty feet, and has since been twice turned over."
Passage forced by the sea through porphyritic rocks.—"But the most sublime scene is where a mural pile of porphyry, escaping the process of disintegration that is devastating the coast, appears to have been left as a sort of rampart against the inroads of the ocean;—the Atlantic, when provoked by wintry gales, batters against it with all the force of real artillery—the waves having, in their repeated assaults, forced themselves an entrance. This breach, named the Grind of the Navir (fig. 28), is widened every winter by the overwhelming surge that, finding a passage through it, separates large stones from its sides, and forces them to a distance of no less than 180 feet. In two or three spots, the fragments which have been detached are brought together in immense heaps, that appear as an accumulation of cubical masses, the product of some quarry."[393]
Grind of the Navir—passage forced by the sea through rocks of hard porphyry.
It is evident from this example, that although the greater indestructibility of some rocks may enable them to withstand, for a longer time, the action of the elements, yet they cannot permanently resist. There are localities in Shetland, in which rocks of almost every variety of mineral composition are suffering disintegration; thus the sea makes great inroads on the clay slate of Fitfel Head, on the serpentine of the Vord Hill in Fetlar, and on the mica-schist of the Bay of Triesta, on the east coast of the same island, which decomposes into angular blocks. The quartz rock on the east of Walls, and the gneiss and mica-schist of Garthness, suffer the same fate.
Destruction of islands.—Such devastation cannot be incessantly committed for thousands of years without dividing islands, until they become at last mere clusters of rocks, the last shreds of masses once continuous. To this state many appear to have been reduced, and innumerable fantastic forms are assumed by rocks adjoining these islands to which the name of Drongs is applied, as it is to those of similar shape in Feroe.
Granitic rocks named the Drongs, between Papa Stour and Hillswick Ness.
Granitic rocks to the south of Hillswick Ness, Shetland.
The granite rocks ([fig. 29]), between Papa Stour and Hillswick Ness afford an example. A still more singular cluster of rocks is seen to the south of Hillswick Ness ([fig. 30]), which presents a variety of forms as viewed from different points, and has often been likened to a small fleet of vessels with spread sails.[394] We may imagine that in the course of time Hillswick Ness itself may present a similar wreck, from the unequal decomposition of the rocks whereof it is composed, consisting of gneiss and mica-schist traversed in all directions by veins of felspar-porphyry.
Midway between the groups of Shetland and Orkney is Fair Island, said to be composed of sandstone with high perpendicular cliffs. The current runs with such velocity, that during a calm, and when there is no swell, the rocks on its shores are white with the foam of the sea driven against them. The Orkneys, if carefully examined, would probably illustrate our present topic as much as the Shetland group. The northeast promontory of Sanda, one of these islands, has been cut off in modern times by the sea, so that it became what is now called Start Island, where a lighthouse was erected in 1807, since which time the new strait has grown broader.
East coast of Scotland.—To pass over to the main land of Scotland, we find that in Inverness-shire there have been inroads of the sea at Fort George, and others in Morayshire, which have swept away the old town of Findhorn. On the coast of Kincardineshire, an illustration was afforded at the close of the last century, of the effect of promontories in protecting a line of low shore. The village of Mathers, two miles south of Johnshaven, was built on an ancient shingle beach, protected by a projecting ledge of limestone rock. This was quarried for lime to such an extent that the sea broke through, and in 1795 carried away the whole village in one night, and penetrated 150 yards inland, where it has maintained its ground ever since, the new village having been built farther inland on the new shore. In the bay of Montrose, we find the North Esk and the South Esk rivers pouring annually into the sea large quantities of sand and pebbles; yet they have formed no deltas, for the waves, aided by the current, setting across their mouths, sweep away all the materials. Considerable beds of shingle, brought down by the North Esk, are seen along the beach.
Proceeding southwards, we learn that at Arbroath, in Forfarshire, which stands on a rock of red sandstone, gardens and houses have been carried away since the commencement of the present century by encroachments of the sea. It had become necessary before 1828, to remove the lighthouses at the mouth of the estuary of the Tay, in the same county, at Button Ness, which were built on a tract of blown sand, the sea having encroached for three-quarters of a mile.
Force of waves and currents in estuaries.—The combined power which waves and currents can exert in estuaries (a term which I confine to bays entered both by rivers and the tides of the sea), was remarkably exhibited during the building of the Bell Rock Lighthouse, off the mouth of the Tay. The Bell Rock is a sunken reef, consisting of red sandstone, being from twelve to sixteen feet under the surface at high water, and about twelve miles from the mainland. At the distance of 100 yards, there is a depth, in all directions of two or three fathoms at low water. In 1807, during the erection of the lighthouse, six large blocks of granite, which had been landed on the reef, were removed by the force of the sea, and thrown over a rising ledge to the distance of twelve or fifteen paces; and an anchor, weighing about 22 cwt., was thrown up upon the rock.[395] Mr. Stevenson informs us moreover, that drift stones, measuring upwards of thirty cubic feet, or more than two tons' weight, have, during storms, been often thrown upon the rock from the deep water.[396]
Submarine forests.—Among the proofs that the sea has encroached on the land bordering the estuary of the Tay, Dr. Fleming has mentioned a submarine forest which has been traced for several miles along the northern shore of the county of Fife.[397] But subsequent surveys seem to have shown that the bed of peat containing tree-roots, leaves, and branches, now occurring at a lower level than the Tay, must have come into its present position by a general sinking of the ground on which the forest grew. The peat-bed alluded to is not confined, says Mr. Buist, to the present channel of the Tay, but extends far beyond it, and is covered by stratified clay from fifteen to twenty-five feet in thickness, in the midst of which, in some places, is a bed full of sea-shells.[398] Recent discoveries having established the fact that upward and downward movements have affected our island since the general coast-line had nearly acquired its present shape, we must hesitate before we attribute any given change to a single cause, such as the local encroachment of the sea upon low land.
On the coast of Fife, at St. Andrew's, a tract of land, said to have intervened between the castle of Cardinal Beaton and the sea, has been entirely swept away, as were the last remains of the Priory of Crail, in the same county, in 1803. On both sides of the Frith of Forth, land has been consumed; at North Berwick in particular, and at Newhaven, where an arsenal and dock, built in the reign of James IV., in the fifteenth century, has been overflowed.
East coast of England.—If we now proceed to the English coast, we find records of numerous lands having been destroyed in Northumberland, as those near Bamborough and Holy Island, and at Tynemouth Castle, which now overhangs the sea, although formerly separated from it by a strip of land. At Hartlepool, and several other parts of the coast of Durham composed of magnesian limestone, the sea has made considerable inroads.
Coast of Yorkshire.—Almost the whole coast of Yorkshire, from the mouth of the Tees to that of the Humber, is in a state of gradual dilapidation. That part of the cliffs which consist of lias, the oolite series, and chalk, decays slowly. They present abrupt and naked precipices, often 300 feet in height; and it is only at a few points that the grassy covering of the sloping talus marks a temporary relaxation of the erosive action of the sea. The chalk cliffs are worn into caves and needles in the projecting headland of Flamborough, where they are decomposed by the salt spray, and slowly crumble away. But the waste is most rapid between that promontory and Spurn Point, or the coast of Holderness, as it is called, a tract consisting of beds of clay, gravel, sand, and chalk rubble. The irregular intermixture of the argillaceous beds causes many springs to be thrown out, and this facilitates the undermining process, the waves beating against them, and a strong current setting chiefly from the north. The wasteful action is very conspicuous at Dimlington Height, the loftiest point in Holderness, where the beacon stands on a cliff 146 feet above high water, the whole being composed of clay, with pebbles scattered through it.[399] "For many years," says Professor Phillips, "the rate at which the cliffs recede from Bridlington to Spurn, a distance of thirty-six miles, has been found by measurement to equal on an average two and a quarter yards annually, which, upon thirty-six miles of coast, would amount to about thirty acres a year. At this rate, the coast, the mean height of which above the sea is about forty feet, has lost one mile in breadth since the Norman Conquest, and more than two miles since the occupation of York (Eboracum) by the Romans."[400] The extent of this denudation, as estimated by the number of cubic feet of matter removed annually, will be again spoken of in chapter 22.
In the old maps of Yorkshire, we find spots, now sand-banks in the sea, marked as the ancient sites of the towns and villages of Auburn, Hartburn, and Hyde. "Of Hyde," says Pennant, "only the tradition is left; and near the village of Hornsea, a street called Hornsea Beck has long since been swallowed."[401] Owthorne and its church have also been in great part destroyed, and the village of Kilnsea; but these places are now removed farther inland. The annual rate of encroachment at Owthorne for several years preceding 1830, is stated to have averaged about four yards. Not unreasonable fears are entertained that at some future time the Spurn Point will become an island, and that the ocean, entering into the estuary of the Humber, will cause great devastation.[402] Pennant, after speaking of the silting up of some ancient ports in that estuary, observes, "But, in return, the sea has made most ample reprisals; the site, and even the very names of several places, once towns of note upon the Humber, are now only recorded in history; and Ravensper was at one time a rival to Hull (Madox, Ant. Exch. i. 422), and a port so very considerable in 1332, that Edward Baliol and the confederated English barons sailed from hence to invade Scotland; and Henry IV., in 1399, made choice of this port to land at, to effect the deposal of Richard II.; yet the whole of this has long since been devoured by the merciless ocean; extensive sands, dry at low water, are to be seen in their stead."[403]
Pennant describes Spurn Head as a promontory in the form of a sickle, and says the land, for some miles to the north, was "perpetually preyed on by the fury of the German Sea, which devours whole acres at a time, and exposes on the shores considerable quantities of beautiful amber."
Lincolnshire.—The maritime district of Lincolnshire consists chiefly of lands that lie below the level of the sea, being protected by embankments. Some of the fens were embanked and drained by the Romans; but after their departure the sea returned, and large tracts were covered with beds of silt, containing marine shells, now again converted into productive lands. Many dreadful catastrophes are recorded by incursions of the sea, whereby several parishes have been at different times overwhelmed.
Norfolk.—The decay of the cliffs of Norfolk and Suffolk is incessant. At Hunstanton, on the north, the undermining of the lower arenaceous beds at the foot of the cliff, causes masses of red and white chalk to be precipitated from above. Between Hunstanton and Weybourne, low hills, or dunes, of blown sand, are formed along the shore, from fifty to sixty feet high. They are composed of dry sand, bound in a compact mass by the long creeping roots of the plant called Marram (Arundo arenaria). Such is the present set of the tides, that the harbors of Clay, Wells, and other places are securely defended by these barriers; affording a clear proof that it is not the strength of the material at particular points that determines whether the sea shall be progressive or stationary, but the general contour of the coast.
The waves constantly undermine the low chalk cliffs, covered with sand and clay, between Weybourne and Sherringham, a certain portion of them being annually removed. At the latter town I ascertained, in 1829, some facts which throw light on the rate at which the sea gains upon the land. It was computed, when the present inn was built, in 1805, that it would require seventy years for the sea to reach the spot: the mean loss of land being calculated, from previous observations, to be somewhat less than one yard, annually. The distance between the house and the sea was fifty yards; but no allowance was made for the slope of the ground being from the sea, in consequence of which the waste was naturally accelerated every year, as the cliff grew lower, there being at each succeeding period less matter to remove when portions of equal area fell down. Between the years 1824 and 1829, no less than seventeen yards were swept away, and only a small garden was then left between the building and the sea. There was, in 1829, a depth of twenty feet (sufficient to float a frigate) at one point in the harbor of that port, where, only forty-eight years before, there stood a cliff fifty feet high, with houses upon it! If once in half a century an equal amount of change were produced suddenly by the momentary shock of an earthquake, history would be filled with records of such wonderful revolutions of the earth's surface; but, if the conversion of high land into deep sea be gradual, it excites only local attention. The flagstaff of the Preventive Service station, on the south side of this harbor, was thrice removed inland between the years 1814 and 1829, in consequence of the advance of the sea.
Farther to the south we find cliffs, composed, like those of Holderness before mentioned, of alternating strata of blue clay, gravel, loam, and fine sand. Although they sometimes exceed 300 feet in height, the havoc made on the coast is most formidable. The whole site of ancient Cromer now forms part of the German Ocean, the inhabitants having gradually retreated inland to their present situation, from whence the sea still threatens to dislodge them. In the winter of 1825, a fallen mass was precipitated from near the lighthouse, which covered twelve acres, extending far into the sea, the cliffs being 250 feet in height.[404] The undermining by springs has sometimes caused large portions of the upper part of the cliffs, with houses still standing upon them, to give way, so that it is impossible, by erecting breakwaters at the base of the cliffs, permanently to ward off the danger.
Tower of the buried Church of Eccles, Norfolk, A. D. 1839.
The inland slope of the hills of blown sand is shown in this view, with the lighthouse of Hasborough in the distance.
On the same coast, says Mr. R. C. Taylor, the ancient villages of Shipden, Wimpwell, and Eccles have disappeared; several manors and large portions of neighboring parishes having, piece after piece, been swallowed up; nor has there been any intermission, from time immemorial, in the ravages of the sea along a line of coast twenty miles in length, in which these places stood.[405] Of Eccles, however, a monument still remains in the rained tower of the old church, which is half buried in the dunes of sand within a few paces (60?) of the sea-beach ([fig. 31]). So early as 1605 the inhabitants petitioned James I. for a reduction of taxes, as 300 acres of land, and all their houses, save fourteen, had then been destroyed by the sea. Not one half that number of acres now remains in the parish, and hills of blown sand now occupy the site of the houses which were still extant in 1605. When I visited the spot in 1839, the sea was fast encroaching on the sand-hills, and had laid open on the beach the foundations of a house fourteen yards square, the upper part of which had evidently been pulled down before it had been buried under sand. The body of the church has also been long buried, but the tower still remains visible.
M. E. de Beaumont has suggested that sand-dunes in Holland and other countries may serve as natural chronometers, by which the date of the existing continents may be ascertained. The sands, he says, are continually blown inland by the force of the winds, and by observing the rate of their march we may calculate the period when the movement commenced.[406] But the example just given will satisfy every geologist that we cannot ascertain the starting-point of dunes, all coasts being liable to waste, and the shores of the Low Countries in particular, being not only exposed to inroads of the sea, but, as M. de Beaumont himself has well shown, having even in historical times undergone a change of level. The dunes may indeed, in some cases, be made use of as chronometers, to enable us to assign a minimum of antiquity to existing coast-lines; but this test must be applied with great caution, so variable is the rate at which the sands may advance into the interior.
Hills of blown sand, between Eccles and Winterton, have barred up and excluded the tide for many hundred years from the mouths of several small estuaries; but there are records of nine breaches, from 20 to 120 yards wide, having been made through these, by which immense damage was done to the low grounds in the interior. A few miles south of Happisburgh, also, are hills of blown sand, which extend to Yarmouth. These dunes afford a temporary protection to the coast, and an inland cliff, about a mile long, at Winterton, shows clearly that at that point the sea must have penetrated formerly farther than at present.
Silting up of estuaries/—At Yarmouth, the sea has not advanced upon the sands in the slightest degree since the reign of Elizabeth. In the time of the Saxons, a great estuary extended as far as Norwich, which city, is represented; even in the thirteenth and fourteenth centuries, as "situated on the banks of an arm of the sea." The sands whereon Yarmouth is built, first became firm and habitable ground about the year 1008, from which time a line of dunes has gradually increased in height and breadth, stretching across the whole entrance of the ancient estuary, and obstructing the ingress of the tides so completely, that they are only admitted by the narrow passage which the river keeps open, and which has gradually shifted several miles to the south. The ordinary tides at the river's mouth rise, at present, only to the height, of three or four feet, the spring tides to about eight or nine.
By the exclusion of the sea, thousands of acres in the interior have become cultivated lands; and, exclusive of smaller pools, upwards of sixty freshwater lakes have been formed, varying in depth from fifteen to thirty feet, and in extent from one acre to twelve hundred.[407] The Yare, and other rivers, frequently communicate with these sheets of water; and thus they are liable to be filled up gradually with lacustrine and fluviatile deposits, and to be converted into land covered with forests. Yet it must not be imagined, that the acquisition of new land fit for cultivation in Norfolk and Suffolk indicates any permanent growth of the eastern limits of our island to compensate its reiterated losses. No delta can form on such a shore.
Immediately off Yarmouth, and parallel to the shore, is a great range of sand-banks, the shape of which varies slowly from year to year, and often suddenly after great storms. Captain Hewitt, R. N., found in these banks, in 1836, a broad channel sixty-five feet deep, where there was only a depth of four feet during a prior survey in 1822. The sea had excavated to the depth of sixty feet in the course of fourteen years, or perhaps a shorter period. The new channel thus formed serves at present (1838), for the entrance of ships into Yarmouth Roads; and the magnitude of this change shows how easily a new set of the waves and currents might endanger the submergence of the land gained within the ancient estuary of the Yare.
That great banks should be thrown across the mouths of estuaries on our eastern coast, where there is not a large body of river-water to maintain an open channel, is perfectly intelligible, when we bear in mind that the marine current, sweeping along the coast, is charged with the materials of wasting cliffs, and ready to form a bar anywhere the instant its course is interrupted or checked by any opposing stream. The mouth of the Yare has been, within the last five centuries, diverted about four miles to the south. In like manner it is evident that, at some remote period, the river Alde entered the sea at Aldborough, until its ancient outlet was barred up and at length transferred to a point no less than ten miles distant to the southwest. In this case, ridges of sand and shingle, like those of Lowestoff Ness, which will be described by and by, have been thrown up between the river and the sea; and an ancient sea-cliff is to be seen now inland.
It may be asked why the rivers on our east coast are always deflected southwards, although the tidal current flows alternately from the south and north? The cause is to be found in the superior force of what is commonly called "the flood tide from the north," a tidal wave derived from the Atlantic, a small part of which passes eastward up the English Channel, and through the Straits of Dover and then northwards, while the principal body of water, moving much more rapidly in a more open sea, on the western side of Britain, first passes the Orkneys, and then turning, flows down between Norway and Scotland, and sweeps with great velocity along our eastern coast. It is well known that the highest tides on this coast are occasioned by a powerful northwest wind, which raises the eastern part of the Atlantic, and causes it to pour a greater volume of water into the German Ocean. This circumstance of a violent off-shore wind being attended with a rise of the waters, instead of a general retreat of the sea, naturally excites the wonder of the inhabitants of our coast. In many districts they look with confidence for a rich harvest of that valuable manure, the sea-weed, when the north-westerly gales prevail, and are rarely disappointed.
Fig. 32.
Map of Lowestoff Ness, Suffolk.[408]
a, a. The dotted lines express a series of sand and shingle, forming the extremity of the triangular space called the Ness.
b, b, b. The dark line represents the inland cliff on which the town of Lowestoff stands, between which and the sea is the Ness.
Coast of Suffolk.—The cliffs of Suffolk, to which we next proceed, are somewhat less elevated than those of Norfolk, but composed of similar alternations of clay, sand, and gravel. From Gorleston in Suffolk, to within a few miles north of Lowestoff, the cliffs are slowly undermined. Near the last-mentioned town, there is an inland cliff about sixty feet high, the sloping talus of which is covered with turf and heath. Between the cliff and the sea is a low flat tract of sand called the Ness, nearly three miles long, and for the most part out of reach of the highest tides. The point of the Ness projects from the base of the original cliff to the distance of 660 yards. This accession of land, says Mr. Taylor, has been effected at distinct and distant intervals, by the influence of currents running between the land and a shoal about a mile off Lowestoff, called the Holm Sand. The lines of growth in the Ness are indicated by a series of concentric ridges or embankments inclosing limited areas, and several of these ridges have been formed within the observation of persons now living. A rampart of heavy materials is first thrown up to an unusual altitude by some extraordinary tide, attended with a violent gale. Subsequent tides extend the base of this high bank of shingle, and the interstices are then filled with sand blown from the beach. The Arundo and other marine plants by degrees obtain a footing; and creeping along the ridge, give solidity to the mass, and form in some cases a matted covering of turf. Meanwhile another mound is forming externally, which by the like process rises and gives protection to the first. If the sea forces its way through one of the external and incomplete mounds, the breach is soon repaired. After a while the marine plants within the areas inclosed by these embankments are succeeded by a better species of herbage affording good pasturage, and the sands become sufficiently firm to support buildings.
Destruction of Dunwich by the sea.—Of the gradual destruction of Dunwich, once the most considerable seaport on this coast, we have many authentic records. Gardner, in his history of that borough, published in 1754, shows, by reference to documents, beginning with Doomsday Book, that the cliffs at Dunwich, Southwold, Eastern, and Pakefield, have been always subject to wear away. At Dunwich, in particular, two tracts of land which had been taxed in the eleventh century, in the time of King Edward the Confessor, are mentioned in the Conqueror's survey, made but a few years afterwards, as having been devoured by the sea. The losses, at a subsequent period, of a monastery,—at another of several churches,—afterwards of the old port,—then of four hundred houses at once,—of the church of St. Leonard, the high-road, town-hall, jail, and many other buildings, are mentioned, with the dates when they perished. It is stated that, in the sixteenth century, not one-quarter of the town was left standing; yet the inhabitants retreating inland, the name was preserved, as has been the case with many other ports when their ancient site has been blotted out. There is, however, a church of considerable antiquity still standing, the last of twelve mentioned in some records. In 1740, the laying open of the churchyard of St. Nicholas and St. Francis, in the sea-cliffs, is well described by Gardner, with the coffins and skeletons exposed to view—some lying on the beach, and rocked
"In cradle of the rude imperious surge."
Of these cemeteries no remains can now be seen. Ray also says, "that ancient writings make mention of a wood a mile and a half to the east of Dunwich, the site of which must at present be so far within the sea."[409] This city, once so flourishing and populous, is now a small village, with about twenty houses, and one hundred inhabitants.
There is an old tradition, "that the tailors sat in their shops at Dunwich, and saw the ships in Yarmouth Bay;" but when we consider how far the coast at Lowestoff Ness projects between these places, we cannot give credit to the tale, which, nevertheless, proves how much the inroads of the sea in times of old had prompted men of lively imagination to indulge their taste for the marvellous.
Gardner's description of the cemeteries laid open by the waves reminds us of the scene which has been so well depicted by Bewick,[410] and of which numerous points on the same coast might have suggested the idea. On the verge of a cliff, which the sea has undermined, are represented the unshaken tower and western end of an abbey. The eastern aisle is gone, and the pillars of the cloister are soon to follow. The waves have almost isolated the promontory, and invaded the cemetery, where they have made sport with the mortal relics, and thrown up a skull upon the beach. In the foreground is seen a broken tombstone, erected, as its legend tells, "to perpetuate the memory"—of one whose name is obliterated, as is that of the county for which he was "Custos Rotulorum." A cormorant is perched on the monument, defiling it, as if to remind some moralizer like Hamlet, of "the base uses" to which things sacred may be turned. Had this excellent artist desired to satirize certain popular theories of geology, he might have inscribed the stone to the memory of some philosopher who taught "the permanency of existing continents"—"the era of repose"—"the impotence of modern causes."
The incursions of the sea at Aldborough, were formerly very destructive, and this borough is known to have been once situated a quarter of a mile east of the present shore. The inhabitants continued to build farther inland, till they arrived at the extremity of their property, and then the town decayed greatly; but two sand-banks, thrown up at a short distance, now afford a temporary safeguard to the coast. Between these banks and the present shore, where the current now flows, the sea is twenty-four feet deep on the spot where the town formerly stood.
Essex.—Harwich is said to have owed its rise to the destruction of Orwell, a town which stood on the spot now called "the west rocks," and was overwhelmed by an inroad of the sea since the Conquest. Apprehensions have been entertained that the isthmus on which Harwich stands may at no remote period become an island, for the sea may be expected to make a breach near Lower Dover Court, where Beacon Cliff is composed of horizontal beds of London clay containing septaria. It had wasted away considerably between the years 1829 and 1838, at both which periods I examined this coast. In that short interval several gardens and many houses had been swept into the sea, and in April, 1838, a whole street was threatened with destruction. The advance of the sea is much accelerated by the traffic carried on in septaria, which are shipped off for cement as fast as they fall down upon the beach. These stones, if allowed to remain in heaps on the shore, would break the force of the waves and retard the conversion of the peninsula into an island, an event which might be followed by the destruction of the town of Harwich. Captain Washington, R. N., ascertained in 1847, that Beacon Cliff, above mentioned, which is about fifty feet high, had given way at the rate of forty feet in forty-seven years, between 1709 and 1756; eighty feet between 1756 and 1804; and three hundred and fifty feet between the latter period and 1841; showing a rapidly accelerated rate of destruction.[411]
Among other losses it is recorded that, since the year 1807, a field called the Vicar's Field, which belonged to the living of Harwich, has been overwhelmed;[412] and in the year 1820 there was a considerable space between the battery at Harwich, built in the beginning of the present century, and the sea; part of the fortification had been swept away in 1829, and the rest then overhung the water.
At Walton Naze, in the same county, the cliffs, composed of London clay, capped by the shelly sands of the crag, reach the height of about 100 feet, and are annually undermined by the waves. The old churchyard of Walton has been washed away, and the cliffs to the south are constantly disappearing.
Kent.—Isle of Sheppey.—On the coast bounding the estuary of the Thames, there are numerous examples both of the gain and loss of land. The Isle of Sheppey, which is now about six miles long by four in breadth, is composed of London clay. The cliffs on the north, which are from sixty to eighty feet high, decay rapidly, fifty acres having been lost in twenty years, between 1810 and 1830. The church at Minster, now near the coast, is said to have been in the middle of the island in 1780; and if the present rate of destruction should continue, we might calculate the period, and that not a very remote one, when the whole island will be annihilated. On the coast of the mainland, to the east of Sheppey, is Herne Bay: a place still retaining the name of a bay, although it is no longer appropriate, as the waves and currents have swept away the ancient headlands. There was formerly a small promontory in the line of the shoals where the present pier is built, by which the larger bay was divided into two, called the Upper and Lower.[413]
Fig. 33.
View of Reculver Church, taken in the year 1781.
1. Isle of Sheppey. 2. Ancient chapel now destroyed. The cottage between this chapel and the cliff was demolished by the sea, in 1782.
Still farther east stands the church of Reculver, upon a cliff composed of clay and sand, about twenty-five feet high. Reculver (Regulvium) was an important military station in the time of the Romans, and appears, from Leland's account, to have been, so late as Henry VIII.'s reign, nearly one mile distant from the sea. In the "Gentleman's Magazine," there is a view of it, taken in 1781, which still represents a considerable space as intervening between the north wall of the churchyard and the cliff.[414] Sometime before the year 1780, the waves had reached the site of the ancient Roman camp or fortification, the walls of which had continued for several years after they were undermined to overhang the sea, being firmly cemented into one mass. They were eighty yards nearer the sea than the church, and they are spoken of in the "Topographica Britannica," in the year 1780, as having recently fallen down. In 1804, part of the churchyard with some adjoining houses was washed away, and the ancient church, with its two spires, was dismantled and abandoned as a place of worship, but kept in repair as a landmark well known to mariners. I visited the spot in June, 1851, and saw human bones and part of a wooden coffin projecting from the cliff, near the top. The whole building would probably have been swept away long ere this, had not the force of the waves been checked by an artificial causeway of stones and large wooden piles driven into the sands on the beach to break the force of the waves.
Reculver Church, in 1834.
Isle of Thanet.—The isle of Thanet was, in the time of the Romans, separated from the rest of Kent by a navigable channel, through which the Roman fleets sailed on their way to and from London. Bede describes this small estuary as being, in the beginning of the eighth century, three furlongs in breadth; and it is supposed that it began to grow shallow about the period of the Norman conquest. It was so far silted up in the year 1485, that an act was then obtained to build a bridge across it; and it has since become marsh land with small streams running through it. On the coast, Bedlam Farm, belonging to the hospital of that name, lost eight acres in the twenty years preceding 1830, the land being composed of chalk from forty to fifty feet above the level of the sea. It has been computed that the average waste of the cliff between the North Foreland and the Reculvers, a distance of about eleven miles, is not less than two feet per annum. The chalk cliffs on the south of Thanet, between Ramsgate and Pegwell Bay, have on an average lost three feet per annum for the last ten years (preceding 1830).
Goodwin Sands.—The Goodwin Sands lie opposite this part of the Kentish coast. They are about ten miles in length, and are in some parts three, and in others seven, miles distant from the shore; and, for a certain space, are laid bare at low water. That they are a remnant of land, and not "a mere accumulation of sea sand," as Rennell imagined,[415] may be presumed from the fact that, when the erection of a lighthouse on this shoal was in contemplation by the Trinity Board in the year 1817, it was found, by borings, that the bank consisted of fifteen feet of sand, resting on blue clay; and, by subsequent borings, the subjacent chalk has been reached. An obscure tradition has come down to us, that the estates of Earl Goodwin, the father of Harold, who died in the year 1053, were situated here, and some have conjectured that they were overwhelmed by the flood mentioned in the Saxon chronicle, sub anno 1099. The last remains of an island, consisting, like Sheppey, of clay, may perhaps have been carried away about that time.
Fig. 35.
Shakspeare's Cliff in 1836, seen from the northeast.
There are other records of waste in the county of Kent, as at Deal; and at Dover, where Shakspeare's Cliff, composed entirely of chalk, has suffered greatly, and continually diminishes in height, the slope of the hill being towards the land. (See [fig. 35].) There was an immense landslip from this cliff in 1810, by which Dover was shaken as if by an earthquake, and a still greater one in 1772.[416] We may suppose, therefore, that the view from the top of the precipice in the year 1600, when the tragedy of King Lear was written, was more "fearful and dizzy" than it is now. The best antiquarian authorities are agreed, that Dover Harbor was formerly an estuary, the sea flowing up a valley between the chalk hills. The remains found in different excavations confirm the description of the spot given by Cæsar and Antoninus, and there is clear historical evidence to prove that at an early period there was no shingle at all at Dover.[417]
Straits of Dover.—In proceeding from the northern parts of the German Ocean towards the Straits of Dover, the water becomes gradually more shallow, so that, in the distance of about two hundred leagues, we pass from a depth of 120 to that of 58, 38, 18, and even less than 2 fathoms. The shallowest part follows a line drawn between Romney Marsh and Boulogne. From this point the English Channel again deepens progressively as we proceed westward, so that the Straits of Dover may be said to part two seas.[418]
Whether England was formerly united with France has often been a favorite subject of speculation. So early as 1605 our countryman Verstegan, in his "Antiquities of the English Nation," observed that many preceding writers had maintained this opinion, but without supporting it by any weighty reasons. He accordingly endeavors himself to confirm it by various arguments, the principal of which are, first, the proximity and identity of the composition of the opposite cliffs and shores of Albion and Gallia, which, whether flat and sandy, or steep and chalky, correspond exactly with each other; secondly the occurrence of a submarine ridge, called "our Lady's Sand," extending from shore to shore at no great depth, and which, from its composition, appears to be the original basis of the isthmus; thirdly, the identity of the noxious animals in France and England, which could neither have swum across, nor have been introduced by man. Thus no one, he says, would have imported wolves, therefore "these wicked beasts did of themselves pass over." He supposes the ancient isthmus to have been about six English miles in breadth, composed entirely of chalk and flint, and in some places of no great height above the sea-level. The operation of the waves and tides, he says, would have been more powerful when the straits were narrower, and even now they are destroying cliffs composed of similar materials. He suggests the possible co-operation of earthquakes; and when we consider how many submarine forests skirt the southern and eastern shores of England, and that there are raised beaches at many points above the sea-level, containing fossil shells of recent species, it seems reasonable to suppose that such upward now in progress in Sweden and Greenland, may have greatly assisted the denuding force of "the ocean stream," Ποταμοιο μεγα σθενος Ωχεανοτο.
Folkstone.—At Folkstone, the sea undermines the chalk and subjacent strata. About the year 1716 there was a remarkable sinking of a tract of land near the sea, so that houses became visible from certain points at sea, and from particular spots on the sea cliffs, from whence they could not be seen previously. In the description of this subsidence in the Phil. Trans. 1716, it is said, "that the land consisted of a solid stony mass (chalk), resting on wet clay (gault), so that it slid forwards towards the sea, just as a ship is launched on tallowed planks." It is also stated that, within the memory of persons then living, the cliff there had been washed away to the extent of ten rods.
Encroachments of the sea at Hythe are also on record; but between this point and Rye there has been a gain of land within the times of history; the rich level tract called Romney Marsh, or Dungeness, about ten miles in width and five in breadth, and formed of silt, having received great accession. It has been necessary, however, to protect it from the sea, from the earliest periods, by embankments, the towns of Lydd and Romney being the only parts of the marsh above the level of the highest tides.[419] Mr. Redman has cited numerous old charts and trustworthy authorities to prove that the average annual increase of the promontory of shingle called Dungeness amounted for two centuries, previous to 1844, to nearly six yards. Its progress, however, has fluctuated during that period; for between 1689 and 1794, a term of 105 years, the rate was as much as 8-1/4 yards per annum.[420] It is ascertained that the shingle is derived from the westward. Whether the pebbles are stopped by the meeting of the tide from the north flowing through the Straits of Dover, with that which comes up the Channel from the west, as was formerly held, or by the check given to the tidal current by the waters of the Rother, as some maintain, is still a disputed question.
Rye, situated to the south of Romney Marsh, was once destroyed by the sea, but it is now two miles distant from it. The neighboring town of Winchelsea was destroyed in the reign of Edward I., the mouth of the Rother stopped up, and the river diverted into another channel. In its old bed, an ancient vessel, apparently a Dutch merchantman, was found about the year 1824. It was built entirely of oak, and much blackened.[421] Large quantities of hazel-nuts, peat, and wood are found in digging in Romney Marsh.
South coast of England.—Westward of Hastings, or of St. Leonard's, the shore line has been giving way as far as Pevensey Bay, where formerly there existed a haven now entirely blocked up by shingle. The degradation has equalled for a series of years seven feet per annum in some places, and several martello towers had in consequence, before 1851, been removed by the Ordnance.[422] At the promontory of Beachy Head a mass of chalk, three hundred feet in length, and from seventy to eighty in breadth, fell in the year 1813 with a tremendous crash; and similar slips have since been frequent.[423]
About a mile to the west of the town of Newhaven, the remains of an ancient intrenchment are seen on the brow of Castle Hill. This earthwork, supposed to be Roman, was evidently once of considerable extent and of an oval form, but the greater part has been cut away by the sea. The cliffs, which are undermined here, are high; more than one hundred feet of chalk being covered by tertiary clay and sand, from sixty to seventy feet in thickness. In a few centuries the last vestiges of the plastic clay formation on the southern borders of the chalk of the South Downs on this coast will probably be annihilated, and future geologists will learn, from historical documents, the ancient geographical boundaries of this group of strata in that direction. On the opposite side of the estuary of the Ouse, on the east of Newhaven harbor, a bed of shingle, composed of chalk flints derived from the waste of the adjoining cliffs, had accumulated at Seaford for several centuries. In the great storm of November, 1824, this bank was entirely swept away, and the town of Seaford inundated. Another great beach of shingle is now forming from fresh materials.
The whole coast of Sussex has been incessantly encroached upon by the sea from time immemorial; and, although sudden inundations only, which overwhelmed fertile or inhabited tracts, are noticed in history, the records attest an extraordinary amount of loss. During a period of no more than eighty years, there are notices of about twenty inroads, in which tracts of land of from twenty to four hundred acres in extent were overwhelmed at once, the value of the tithes being mentioned in the Taxatio Ecclesiastica.[424] In the reign of Elizabeth, the town of Brighton was situated on that tract where the chain pier now extends into the sea. In the year 1665, twenty-two tenements had been destroyed under the cliff. At that period there still remained under the cliff 113 tenements, the whole of which were overwhelmed in 1703 and 1705. No traces of the ancient town are now perceptible, yet there is evidence that the sea has merely resumed its ancient position at the base of the cliffs, the site of the whole town having been merely a beach abandoned by the ocean for ages.
Hampshire.—Isle of Wight.—It would be endless to allude to all the localities on the Sussex and Hampshire coasts where the land has given way; but I may point out the relation which the geological structure of the Isle of Wight bears to its present shape, as attesting that the coast owes its outline to the continued action of the sea. Through the middle of the island runs a high ridge of chalk strata, in a vertical position, and in a direction east and west. This chalk forms the projecting promontory of Culver Cliff on the east, and of the Needles on the west; while Sandown Bay on the one side, and Compton Bay on the other, have been hollowed out of the softer sands and argillaceous strata, which are inferior, in geological position, to the chalk.
The same phenomena are repeated in the Isle of Purbeck, where the line of vertical chalk forms the projecting promontory of Handfast Point; and Swanage Bay marks the deep excavation made by the waves in the softer strata, corresponding to those of Sandown Bay.
Hurst Castle bank—progressive motion of sea beaches.—Although the loose pebbles and grains of sand composing any given line of sea-beach are carried sometimes one way, sometimes another, they have, nevertheless, an ultimate motion in one particular direction.[425] Their progress, for example, on the south coast of England, is from west to east, which is owing partly to the action of the waves driven eastwards by the prevailing wind, and partly to the current, or the motion of the general body of water caused by the tides and winds. The force of the waves gives motion to pebbles which the velocity of the currents alone would be unable to carry forwards; but as the pebbles are finally reduced to sand or mud, by continual attrition, they are brought within the influence of a current; and this cause must determine the course which the main body of matter derived from wasting cliffs will eventually take.
It appears, from the observations of Mr. Palmer and others, that if a pier or groin be erected anywhere on our southern or southeastern coast to stop the progress of the beach, a heap of shingle soon collects on the western side of such artificial barriers. The pebbles continue to accumulate till they rise as high as the pier or groin, after which they pour over in great numbers during heavy gales.[426]
The western entrance of the Channel, called the Solent, is crossed for more than two-thirds of its width by the shingle-bank of Hurst Castle, which is about two miles long, seventy yards broad, and twelve feet high, presenting an inclined plane to the west. This singular bar consists of a bed of rounded chalk flints, resting on a submarine argillaceous base. The flints and a few other pebbles, intermixed, are derived from the waste of Hordwell, and other cliffs to the westward, where tertiary strata, capped with a covering of broken chalk flints, from five to fifty feet thick, are rapidly undermined. In the great storm of November, 1824, this bank of shingle was moved bodily forwards for forty yards towards the northeast; and certain piles, which served to mark the boundaries of two manors, were found after the storm on the opposite side of the bar. At the same time many acres of pasture land were covered by shingle, on the farm of Westover, near Lymington. But the bar was soon restored in its old position by pebbles drifted from the west; and it appears from ancient maps that it has preserved the same general outline and position for centuries.[427]
Mr. Austen remarks that, as a general rule, it is only when high tides concur with a gale of wind, that the sea reaches the base of cliffs so as to undermine them and throw down earth and stone. But the waves are perpetually employed in abrading and fashioning the materials already strewed over the beach. Much of the gravel and shingle is always travelling up and down, between high-water mark and a slight depth below the level of the lowest tides, and occasionally the materials are swept away and carried into deeper water. Owing to these movements every portion of our southern coast may be seen at one time or other in the condition of bare rock. Yet other beds of sand and shingle soon collect, and, although composed of new materials, invariably exhibit on the same spots precisely similar characters.[428]
The cliffs between Hurst Shingle Bar and Christchurch are undermined continually, the sea having often encroached for a series of years at the rate of a yard annually. Within the memory of persons now living, it has been necessary thrice to remove the coast-road farther inland. The tradition, therefore, is probably true, that the church of Hordwell was once in the middle of that parish, although now (1830) very near the sea. The promontory of Christchurch Head gives way slowly. It is the only point between Lymington and Poole Harbor, in Dorsetshire, where any hard stony masses occur in the cliffs. Five layers of large ferruginous concretions, somewhat like the septaria of the London clay, have occasioned a resistance at this point, to which we may ascribe this headland. In the mean time, the waves have cut deeply into the soft sands and loam of Poole Bay; and, after severe frosts, great landslips take place, which by degrees become enlarged into narrow ravines, or chines, as they are called, with vertical sides. One of these chines, near Boscomb, has been deepened twenty feet within a few years. At the head of each there is a spring, the waters of which have been chiefly instrumental in producing these narrow excavations, which are sometimes from 100 to 150 feet deep.
Isle of Portland.—The peninsulas of Purbeck and Portland are continually wasting away. In the latter, the soft argillaceous substratum (Kimmeridge clay) hastens the dilapidation of the superincumbent mass of limestone.
In 1655 the cliffs adjoining the principal quarries in Portland gave way to the extent of one hundred yards, and fell into the sea; and in December, 1734, a slide to the extent of 150 yards occurred on the east side of the isle, by which several skeletons buried between slabs of stone, were discovered. But a much more memorable occurrence of this nature, in 1792, occasioned probably by the undermining of the cliffs, is thus described in Hutchin's History of Dorsetshire:—"Early in the morning the road was observed to crack: this continued increasing, and before two o'clock the ground had sunk several feet, and was in one continued motion, but attended with no other noise than what was occasioned by the separation of the roots and brambles, and now and then a falling rock. At night it seemed to stop a little, but soon moved again; and, before morning, the ground from the top of the cliff to the waterside had sunk in some places fifty feet perpendicular. The extent of ground that moved was about a mile and a quarter from north to south, and 600 yards from east to west."
Formation of the Chesil Bank.—Portland is connected with the mainland by the Chesil Bank, a ridge of shingle about seventeen miles in length, and, in most places, nearly a quarter of a mile in breadth. The pebbles forming this immense barrier are chiefly siliceous, all loosely thrown together, and rising to the height of from twenty to thirty feet above the ordinary high-water mark; and at the southeastern end, which is nearest the Isle of Portland, where the pebbles are largest, forty feet. The fundamental rocks whereon the shingle rests are found at the depth of a few yards only below the level of the sea. The formation of that part of the bar which attaches Portland to the mainland may have been due to an original shoal or reef, or to the set of the tides in the narrow channel, by which the course of the pebbles, which are always coming from the west, has been arrested. It is a singular fact that, throughout the Chesil Bank, the pebbles increase gradually in size as we proceed southeastward, or as we go farther from the quarter which supplied them. Had the case been reversed, we should naturally have attributed the circumstance to the constant wearing down of the pebbles by friction, as they are rolled along a beach seventeen miles in length. But the true explanation of the phenomenon is doubtless this: the tidal current runs strongest from west to east, and its power is greater in the more open channel or farther from the land. In other words its force increases southwards, and as the direction of the bank is from northwest to southeast, the size of the masses coming from the westward and thrown ashore must always be largest where the motion of the water is most violent. Colonel Reid states that all calcareous stones rolled along from the west are soon ground into sand, and in this form they pass round Portland Island.[429]
The storm of 1824 burst over the Chesil Bank with great fury, and the village of Chesilton, built upon its southern extremity, was overwhelmed, with many of the inhabitants. The same storm carried away part of the Breakwater at Plymouth, and huge masses of rock, from two to five tons in weight, were lifted from the bottom of the weather side, and rolled fairly to the top of the pile. One block of limestone, weighing seven tons, was washed round the western extremity of the Breakwater, and carried 150 feet.[430] The propelling power is derived in these cases from the breaking of the waves, which run fastest in shallow water, and for a short space far exceed the most rapid currents in swiftness. It was in the same month, and also during a spring-tide, that a great flood is mentioned on the coasts of England, in the year 1099. Florence of Worcester says, "On the third day of the nones of Nov. 1099, the sea came out upon the shore and buried towns and men very many, and oxen and sheep innumerable." We also read in the Saxon Chronicle, for the year 1099, "This year eke on St. Martin's mass day, the 11th of Novembre, sprung up so much of the sea flood, and so myckle harm did, as no man minded that it ever afore did, and there was the ylk day a new moon."
South of the Bill, or southern point of Portland, is a remarkable shoal in the channel at the depth of seven fathoms, called "the Shambles," consisting entirely of rolled and broken shells of Purpura lapillus, Mytilus edulis, and other species now living. This mass of light materials is always in motion, varying in height from day to day, and yet the shoal remains constant.
Dorsetshire.—Devonshire.—At Lyme Regis, in Dorsetshire, the "Church Cliffs," as they are called, consisting of lias about one hundred feet in height, gradually fell away at the rate of one yard a year, from 1800 to 1829.[431]
Landslip, near Axmouth, Dec. 1839. (Rev. W. D. Conybeare.)
A. Tract of Downs still remaining at their original level.
B. New ravine.
C, D. Sunk and fractured strip united to A, before the convulsion.
D, E. Bendon undercliff as before, but more fissured, and thrust forward about fifty feet, towards the sea.
F. Pyramidal crag, sunk from seventy to twenty feet in height.
G. New reef upheaved from the sea.
An extraordinary landslip occurred on the 24th of December, 1839, on the coast between Lyme Regis and Axmouth, which has been described by the Rev. W. D. Conybeare, to whose kindness I am indebted for the accompanying section, [fig. 36]. The tract of downs ranging there along the coast is capped by chalk (h), which rests on sandstone, alternating with chert (i), beneath which is more than 100 feet of loose sand (k), with concretions at the bottom, and belonging like i to the green-sand formation; the whole of the above masses, h, i, k, reposing on retentive beds of clay (l), belonging to the lias, which shelves towards the sea. Numerous springs issuing from the loose sand (k), have gradually removed portions of it, and thus undermined the superstratum, so as to have caused subsidences at former times, and to have produced a line of undercliff between D and E. In 1839 an excessively wet season had saturated all the rocks with moisture, so as to increase the weight of the incumbent mass, from which the support had already been withdrawn by the action of springs. Thus the superstrata were precipitated into hollows prepared for them, and the adjacent masses of partially undermined rock, to which the movement was communicated, were made to slide down on a slippery basis of watery sand towards the sea. These causes gave rise to a convulsion, which began on the morning of the 24th of December, with a crashing noise; and, on the evening of the same day, fissures were seen opening in the ground, and the walls of tenements rending and sinking, until a deep chasm or ravine, B, was formed, extending nearly three-quarters of a mile in length, with a depth of from 100 to 150 feet, and a breadth exceeding 240 feet. At the bottom of this deep gulf lie fragments of the original surface thrown together in the wildest confusion. In consequence of lateral movements, the tract intervening between the new fissure and the sea, including the ancient undercliff, was fractured, and the whole line of sea-cliff carried bodily forwards for many yards. "A remarkable pyramidal crag, F, off Culverhole Point, which lately formed a distinguishing landmark, has sunk from a height of about seventy to twenty feet, and the main cliff, E, before more than fifty feet distant from this insulated crag, is now brought almost close to it. This motion of the sea-cliff has produced a farther effect, which may rank among the most striking phenomena of this catastrophe. The lateral pressure of the descending rocks has urged the neighboring strata, extending beneath the shingle of the shore, by their state of unnatural condensation, to burst upwards in a line parallel to the coast—thus an elevated ridge, G, more than a mile in length, and rising more than forty feet, covered by a confused assemblage of broken strata, and immense blocks of rock, invested with sea-weed and corallines, and scattered over with shells and star-fish, and other productions of the deep, forms an extended reef in front of the present range of cliffs."[432]
A full account of this remarkable landslip, with a plan, sections, and many fine illustrative drawings, was published by Messrs. Conybeare and Buckland,[433] from one of which the annexed cut has been reduced, [fig. 37].
View of the Axmouth landslip from Great Bindon, looking westward to the Sidmouth hills, and estuary of the Exe. From an original drawing by Mrs. Buckland.
Cornwall.—Near Penzance, in Cornwall, there is a projecting tongue of land, called the "Green," formed of granitic sand, from which more than thirty acres of pasture land have been gradually swept away, in the course of the last two or three centuries.[434] It is also said that St. Michael's Mount, now an insular rock, was formerly situated in a wood, several miles from the sea; and its old Cornish name (Caraclowse in Cowse) signifies, according to Carew, the Hoar Rock in the wood.[435] Between the Mount and Newlyn there is seen under the sand, black vegetable mould, full of hazel-nuts, and the branches, leaves, roots, and trunks of forest-trees, all of indigenous species. This stratum has been traced seaward as far as the ebb permits, and many proofs of a submerged vegetable accumulation, with stumps of trees in the position in which they grew, have been traced, says Sir Henry De la Beche, round the shores of Devon, Cornwall, and Western Somerset. The facts not only indicate a change in the relative level of the sea and land, since the species of animals and plants were the same as those now living in this district; but, what is very remarkable, there seems evidence of the submergence having been effected, in part at least, since the country was inhabited by man.[436]
A submarine forest occurring at the mouth of the Parret in Somersetshire, on the south side of the Bristol Channel, was described by Mr. L. Horner, in 1815, and its position attributed to subsidence. A bed of peat is there seen below the level of the sea, and the trunks of large trees, such as the oak and yew, having their roots still diverging as they grew, and fixed in blue clay.[437]
Tradition of loss of land in Cornwall.—The oldest historians mention a tradition in Cornwall, of the submersion of the Lionnesse, a country said to have stretched from the Land's End to the Scilly Islands. The tract, if it existed, must have been thirty miles in length, and perhaps ten in breadth. The land now remaining on either side is from two hundred to three hundred feet high; the intervening sea about three hundred feet deep. Although there is no authentic evidence for this romantic tale, it probably originated in some former inroads of the Atlantic, accompanying, perhaps, a subsidence of land on this coast.[438]
West coast of England.—Having now brought together an ample body of proofs of the destructive operations of the waves, tides, and currents, on our eastern and southern shores, it will be unnecessary to enter into details of changes on the western coast, for they present merely a repetition of the same phenomena, and in general on an inferior scale. On the borders of the estuary of the Severn the flats of Somersetshire and Gloucestershire have received enormous accessions, while, on the other hand, the coast of Cheshire, between the rivers Mersey and Dee, has lost, since the year 1764, many hundred yards, and some affirm more than half a mile, by the advance of the sea upon the abrupt cliffs of red clay and marls. Within the period above mentioned several lighthouses have been successively abandoned.[439] There are traditions in Pembrokeshire[440] and Cardiganshire[441] of far greater losses of territory than that which the Lionnesse tale of Cornwall pretends to commemorate. They are all important, as demonstrating that the earliest inhabitants were familiar with the phenomenon of incursions of the sea.
Loss of land on the coast of France.—The French coast, particularly that part of Brittany, where the tides rise to an extraordinary height, is the constant prey of the waves. In the ninth century many villages and woods are reported to have been carried away, the coast undergoing great change, whereby the hill of St. Michael was detached from the mainland. The parish of Bourgneuf, and several others in that neighborhood, were overflowed in the year 1500. In 1735, during a great storm, the ruins of Palnel were seen uncovered in the sea.[442]
CHAPTER XX.
ACTION OF TIDES AND CURRENTS—continued.
Inroads of the sea at the mouths of the Rhine in Holland—Changes in the arms of the Rhine—Proofs of subsidence of land—Estuary of the Bies Bosoh, formed in 1421—Zuyder Zee, in the 13th century—Islands destroyed—Delta of the Ems converted into a bay—Estuary of the Dollart formed—Encroachment of the sea on the coast of Sleswick—On shores of North America—Tidal wave, called the Bore—Influence of tides and currents on the mean level of seas—Action of currents in inland lakes and seas—Baltic—Cimbrian deluge—Straits of Gibraltar—No under-current there—Whether salt is precipitated in the Mediterranean—Waste of shores of Mediterranean.
Inroads of the sea at the mouths of the Rhine.—The line of British coast considered in the preceding chapter offered no example of the conflict of two great antagonist forces; the influx, on the one hand, of a river draining a large continent, and, on the other, the action of the waves, tides, and currents of the ocean. But when we pass over by the Straits of Dover to the Continent, and proceed northeastwards, we find an admirable illustration of such a contest, where the ocean and the Rhine are opposed to each other, each disputing the ground now occupied by Holland; the one striving to shape out an estuary, the other to form a delta. There was evidently a period when the river obtained the ascendancy, when the shape and perhaps the relative level of the coast and set of the tides were very different; but for the last two thousand years, during which man has witnessed and actively participated in the struggle, the result has been in favor of the ocean; the area of the whole territory having become more and more circumscribed; natural and artificial barriers having given away, one after another; and many hundred thousand human beings having perished in the waves.
Changes in the arms of the Rhine.—The Rhine, after flowing from the Grison Alps, copiously charged with sediment, first purifies itself in the Lake of Constance, where a large delta is formed; then swelled by the Aar and numerous other tributaries, it flows for more than six hundred miles towards the north; when, entering a low tract, it divides into two arms, about ten miles northeast of Cleves,—a point which must therefore be considered the head of its delta. (See *, map, [fig. 38].) In speaking of the delta, I do not mean to assume that all that part of Holland which is comprised within the several arms of the Rhine can be called a delta in the strictest sense of the term; because some portion of the country thus circumscribed, as, for example, a part of Gelderland and Utrecht, consists of strata which may have been deposited in the sea before the Rhine existed. These older tracts may either have been raised like the Ullah Bund in Cutch, during the period when the sediment of the Rhine was converting a part of the sea into land, or they may have constituted islands previously.
The dark tint between Antwerp and Nieuport, represents part of the Netherlands which was land in the time of the Romans, then overflowed by the sea before and during the 5th century, and afterwards reconverted into land.
When the river divides north of Cleves, the left arm takes the name of the Waal; and the right, retaining that of the Rhine, is connected, a little farther to the north, by an artificial canal with the river Yssel. The Rhine then flowing westward divides again southeast of Utrecht, and from this point it takes the name of the Leck, a name which was given to distinguish it from the northern arm called the old Rhine, which was sanded up until the year 1825, when a channel was cut for it, by which it now enters the sea at Catwyck. It is common, in all great deltas, that the principal channels of discharge should shift from time to time, but in Holland so many magnificent canals have been constructed, and have so diverted, from time to time, the course of the waters, that the geographical changes in this delta are endless, and their history, since the Roman era, forms a complicated topic of antiquarian research. The present head of the delta is about forty geographical miles from the nearest part of the gulf called the Zuyder Zee, and more than twice that distance from the general coast-line. The present head of the delta of the Nile is about 80 or 90 geographical miles from the sea; that of the Ganges, as before stated, 220; and that of the Mississippi about 180, reckoning from the point where the Atchafalaya branches off to the extremity of the new tongue of land in the Gulf of Mexico. But the comparative distance between the heads of deltas and the sea affords no positive data for estimating the relative magnitude of the alluvial tracts formed by their respective rivers, for the ramifications depend on many varying and temporary circumstances, and the area over which they extend does not hold any constant proportion to the volume of water in the river.
The Rhine therefore has at present three mouths. About two-thirds of its waters flow to the sea by the Waal, and the remainder is carried partly to the Zuyder Zee by the Yssel, and partly to the ocean by the Leck. As the whole coast to the south as far as Ostend, and on the north to the entrance of the Baltic, has, with few exceptions, from time immemorial, yielded to the force of the waves, it is evident that the common delta of the Rhine, Meuse, and Scheldt, for these three rivers may all be considered as discharging their waters into the same part of the sea, would, if its advance had not been checked, have become extremely prominent; and even if it had remained stationary, would long ere this have projected far beyond the rounded outline of the coast, like that strip of land already described at the mouth of the Mississippi. But we find, on the contrary, that the islands which skirt the coast have not only lessened in size, but in number also, while great bays have been formed in the interior by incursions of the sea.
In order to explain the incessant advance of the ocean on the shores and inland country of Holland, M. E. de Beaumont has suggested that there has in all probability been a general depression or sinking of the land below its former level over a wide area. Such a change of level would enable the sea to break through the ancient line of sand-banks and islands which protected the coast,—would lead to the enlargement of bays, the formation of new estuaries, and ultimately to the entire submergence of land. These views appear to be supported by the fact that several peat-mosses of fresh-water origin now occur under the level of the sea, especially on the site of the Zuyder Zee and Lake Flevo, presently to be mentioned. Several excavations also made for wells at Utrecht, Amsterdam, and Rotterdam have proved, that below the level of the ocean, the soil near the coast consists of alternations of sand with marine shells, and beds of peat and clay, which have been traced to the depth of fifty feet and upwards.[443]
I have said that the coast to the south as far as Ostend has given way. This statement may at first seem opposed to the fact, that the tract between Antwerp and Nieuport, shaded black in the annexed map ([fig. 38]), although now dry land, and supporting a large population, has, within the historical period, been covered with the sea. This region, however, consisted, in the time of the Romans, of woods, marshes, and peat-mosses, protected from the ocean by a chain of sandy dunes, which were afterwards broken through during storms, especially in the fifth century. The waters of the sea during these irruptions threw down upon the barren peat a horizontal bed of fertile clay, which is in some places three yards thick, full of recent shells and works of art. The inhabitants, by the aid of embankments and the sand dunes of the coast, have succeeded, although not without frequent disasters, in defending the soil thus raised by the marine deposit.[444]
Inroads of the Sea in Holland.—If we pass to the northward of the territory just alluded to, and cross the Scheldt, we find that between the fourteenth and eighteenth centuries parts of the islands Walcheren and Beveland were swept away, and several populous districts of Kadzand, losses which far more than counterbalance the gain of land caused by the sanding up of some pre-existing creeks. In 1658 the Island Orisant was annihilated. One of the most memorable inroads of the sea occurred in 1421, when the tide, pouring into the mouth of the united Meuse and Waal, burst through a dam in the district between Dort and Gertrudenberg, and overflowed seventy-two villages, forming a large sheet of water called the Bies Bosch. (See map, [fig. 38].) Thirty-five of the villages were irretrievably lost, and no vestige, even of their ruins, was afterwards seen. The rest were redeemed, and the site of the others, though still very generally represented on maps as an estuary, has in fact been gradually filled up by alluvial deposits, and had become in 1835, as I was informed by Professor Moll, an immense plain, yielding abundant crops of hay, though still uninhabited. To the north of the Meuse is a long line of shore covered with sand dunes, where great encroachments have taken place from time to time, in consequence chiefly of the prevalence of southeasterly winds, which blow down the sands towards the sea. The church of Scheveningen, not far from the Hague, was once in the middle of the village, and now stands on the shore, half the place having been overwhelmed by the waves in 1570. Catwyck, once far from the sea, is now upon the shore; two of its streets having been overflowed, and land torn away to the extent of 200 yards, in 1719. It is only by the aid of embankments that Petten, and several other places farther north, have been defended against the sea.
Formation of the Zuyder Zee and Straits of Staveren.—Still more important are the changes which have taken place on the coast opposite the right arm of the Rhine, or the Yssel, where the ocean has burst through a large isthmus, and entered the inland lake Flevo, which, in ancient times, was, according to Pomponius Mela, formed by the overflowing of the Rhine over certain lowlands. It appears that, in the time of Tacitus, there were several lakes on the present site of the Zuyder Zee, between Friesland and Holland. The successive inroads by which these and a great part of the adjoining territory, were transformed into a great gulf, began about the commencement, and were completed towards the close, of the thirteenth century. Alting gives the following relation of the occurrence, drawn from manuscript documents of contemporary inhabitants of the neighboring provinces. In the year 1205, the island now called Wieringen, to the south of the Texel, was still a part of the mainland, but during several high floods, of which the dates are given, ending in December, 1251, it was separated from the continent. By subsequent incursions the sea consumed great parts of the rich and populous isthmus, a low tract which stretched on the north of Lake Flevo, between Staveren in Friesland and Medemblick in Holland, till at length a breach was completed about the year 1282, and afterwards widened. Great destruction of land took place when the sea first broke in, and many towns were swept away; but there was afterwards a reaction to a certain extent, large tracts, at first submerged, having been gradually redeemed. The new straits south of Staveren are more than half the width of those of Dover, but are very shallow, the greatest depth not exceeding two or three fathoms. The new bay is of a somewhat circular form, and between thirty and forty miles in diameter. How much of this space may formerly have been occupied by Lake Flevo is unknown. (See map, [fig. 38].)
Destruction of islands.—A series of islands stretching from the Texel to the mouths of the Weser and Elbe are probably the last relics of a tract once continuous. They have greatly diminished in size, and have lost about a third of their number, since the time of Pliny; for that naturalist counted twenty-three islands between the Texel and Eider, whereas there are now only sixteen, including Heligoland and Neuwerk.[445] The island of Heligoland, at the mouth of the Elbe, consists of a rock of red marl of the Keuper formation (of the Germans), and is bounded by perpendicular red cliffs, above 200 feet high. Although, according to some accounts, it has been greatly reduced in size since the year 800, M. Wiebel assures us, that the ancient map by Meyer cannot be depended upon, and that the island, according to the description still extant by Adam of Bremen, was not much larger than now, in the time of Charlemagne. On comparing the map made in the year 1793 by the Danish engineer Wessel, the average encroachment of the sea on the cliffs, between that period and the year 1848 (or about half a century), did not amount to more than three feet.[446] On the other hand, some few islands have extended their bounds in one direction, or become connected with others, by the sanding-up of channels; but even these, like Juist, have generally given way as much on the north towards the sea as they have gained on the south, or land side.
The Dollart formed.—While the delta of the Rhine has suffered so materially from the movements of the ocean, it can hardly be supposed that minor rivers on the same coast should have been permitted to extend their deltas. It appears that in the time of the Romans there was an alluvial plain of great fertility, where the Ems entered the sea by three arms. This low country stretched between Groningen and Friesland, and sent out a peninsula to the northeast towards Emden. A flood in 1277 first destroyed part of the peninsula. Other inundations followed at different periods throughout the fifteenth century. In 1507, a part only of Torum, a considerable town, remained standing; and in spite of the erection of dams, the remainder of that place, together with market-towns, villages, and monasteries, to the number of fifty, were finally overwhelmed. The new gulf, which was called the Dollart, although small in comparison to the Zuyder Zee, occupied no less than six square miles at first; but part of this space was, in the course of the two following centuries, again redeemed from the sea. The small bay of Leybucht, farther north, was formed in a similar manner in the thirteenth century; and the bay of Harlbucht in the middle of the sixteenth. Both of these have since been partially reconverted into dry land. Another new estuary, called the Gulf of Jahde, near the mouth of the Weser, scarcely inferior in size to the Dollart, has been gradually hollowed out since the year 1016, between which era and 1651 a space of about four square miles has been added to the sea. The rivulet which now enters this inlet is very small; but Arens conjectures that an arm of the Weser had once an outlet in that direction.
Coast of Sleswick.—Farther north we find so many records of waste on the western coast of Sleswick, as to lead us to anticipate that, at no distant period in the history of the physical geography of Europe, Jutland may become an island, and the ocean may obtain a more direct entrance into the Baltic. Indeed, the temporary insulation of the northern extremity of Jutland has been affected no less than four times within the records of history, the ocean having as often made a breach through the bar of sand, which usually excludes it from the Lym Fiord. This long frith is 120 miles in length including its windings, and communicates at its eastern end with the Baltic. The last irruption of salt water happened in 1824, and the fiord was still open in 1837, when some vessels of thirty tons' burden passed through.
The Marsh islands between the rivers Elbe and Eider are mere banks, like the lands formed of the "warp" in the Humber, protected by dikes. Some of them, after having been inhabited with security for more than ten centuries, have been suddenly overwhelmed. In this manner, in 1216, no less than ten thousand of the inhabitants of Eiderstede and Ditmarsch perished; and on the 11th of October, 1634, the islands and the whole coast, as far as Jutland, suffered by a dreadful deluge.
Destruction of Northstrand by the sea.—Northstrand, up to the year 1240, was, with the islands Sylt and Föhr, so nearly connected with the mainland as to appear a peninsula, and was called North Friesland, a highly cultivated and populous district. It measured from nine to eleven geographical miles from north to south, and six to eight from east to west. In the above-mentioned year it was torn asunder from the continent, and in part overwhelmed. The Isle of Northstrand, thus formed, was, towards the end of the sixteenth century, only four geographical miles in circumference, and was still celebrated for its cultivation and numerous population. After many losses, it still contained nine thousand inhabitants. At last, in the year 1634, on the evening of the 11th of October, a flood passed over the whole island, whereby 1300 houses, with many churches, were lost; fifty thousand head of cattle perished, and above six thousand men. Three small islets, one of them still called Northstrand, alone remained, which are now continually wasting.
The redundancy of river water in the Baltic, especially during the melting of ice and snow in spring, causes in general an outward current through the channel called the Cattegat. But after a continuance of northwesterly gales, especially during the height of the spring-tides, the Atlantic rises, and pouring a flood of water into the Baltic, commits dreadful devastations on the isles of the Danish Archipelago. This current even acts, though with diminished force, as far eastward as the vicinity of Dantzic.[447] Accounts written during the last ten centuries attest the wearing down of promontories on the Danish coast, the deepening of gulfs, the severing of peninsulas from the mainland, and the waste of islands, while in several cases marsh land, defended for centuries by dikes, has at last been overflowed, and thousands of the inhabitants whelmed in the waves. Thus the island Barsoe, on the coast of Sleswick, has lost, year after year, an acre at a time, and the island Alsen suffers in like manner.
Cimbrian deluge.—As we have already seen that during the flood before mentioned, 6000 men and 50,000 head of cattle perished on Northstrand on the western coast of Jutland, we are all well prepared to find that this peninsula, the Cimbrica Chersonesus of the ancients, has from a remote period been the theatre of like catastrophes. Accordingly, Strabo records a story, although he treats it as an incredible fiction, that, during a high tide, the ocean rose upon this coast so rapidly, that men on horseback were scarcely able to escape.[448] Florus, alluding to the same tradition, says, "Cimbri, Teutoni, atque Tigurini, ab extremis Galliæ profugi, cùm terras eorum inundasset Oceanus, novas sedes toto orbe quærebant."[449] This event, commonly called the "Cimbrian Deluge," is supposed to have happened about three centuries before the Christian era; but it is not improbable that the principal catastrophe was preceded and followed by many devastations like those experienced in modern times on the islands and shores of Jutland, and such calamities may well be conceived to have forced on the migration of some maritime tribes.
Inroads of the sea on the eastern shores of North America.—After so many authentic details respecting the destruction of the coast in parts of Europe best known, it will be unnecessary to multiply examples of analogous changes in more distant regions of the world. It must not, however, be imagined that our own seas form any exception to the general rule. Thus, for example, if we pass over to the eastern coast of North America, where the tides rise, in the Bay of Fundy, to a great elevation, we find many facts attesting the incessant demolition of land. Cliffs, often several hundred feet high, composed of sandstone, red marl, and other rocks, which border that bay and its numerous estuaries, are perpetually undermined. The ruins of these cliffs are gradually carried, in the form of mud, sand, and large boulders, into the Atlantic by powerful currents, aided at certain seasons by drift ice, which forms along the coast, and freezes round large stones.
At Cape May, on the north side of Delaware Bay, in the United States, the encroachment of the sea was shown by observations made consecutively for sixteen years, from 1804 to 1820, to average about nine feet a year;[450] and at Sullivan's Island, which lies on the north side of the entrance of the harbor of Charleston, in South Carolina, the sea carried away a quarter of a mile of land in three years, ending in 1786.[451]
Tidal wave called "the Bore."—Before concluding my remarks on the action of the tides, I must not omit to mention the wave called "the Bore," which is sometimes produced in a river where a large body of water is made to rise suddenly, in consequence of the contraction of the channel. This wave terminates abruptly on the inland side; because the quantity of water contained in it is so great, and its motion so rapid, that time is not allowed for the surface of the river to be immediately raised by means of transmitted pressure. A tide wave thus rendered abrupt has a close analogy, observes Mr. Whewell, to the waves which curl over and break on a shelving shore.[452]
The Bore which enters the Severn, where the phenomenon is of almost daily occurrence, is sometimes nine feet high, and at spring-tides rushes up the estuary with extraordinary rapidity. The finest example which I have seen of this wave was at Nova Scotia,[453] where the tide is said to rise in some places seventy feet perpendicular, and to be the highest in the world. In the large estuary of the Shubenacadie, which connects with another estuary called the Basin of Mines, itself an embranchment of the Bay of Fundy, a vast body of water comes rushing up, with a roaring noise, into a long narrow channel, and while it is ascending, has all the appearance of pouring down a slope as steep as that of the celebrated rapids of the St. Lawrence. In picturesque effect, however, it bears no comparison, for instead of the transparent green water and snow-white foam of the St. Lawrence, the whole current of the Shubenacadie is turbid and densely charged with red mud. The same phenomenon is frequently witnessed in the principal branches of the Ganges and in the Megna as before mentioned (p. 279). "In the Hoogly," says Rennell, "the Bore commences at Hoogly Point, the place where the river first contracts itself, and is perceptible above Hoogly Town; and so quick is its motion, that it hardly employs four hours in travelling from one to the other, though the distance is nearly seventy miles. At Calcutta it sometimes occasions an instantaneous rise of five feet; and both here, and in every other part of its track, the boats, on its approach, immediately quit the shore, and make for safety to the middle of the river. In the channels, between the islands in the mouth of the Megna, the height of the Bore is said to exceed twelve feet; and is so terrific in its appearance, and dangerous in its consequences, that no boat will venture to pass at spring-tide."[454] These waves may sometimes cause inundations, undermine cliffs, and still more frequently sweep away trees and land animals from low shores, so that they may be carried down, and ultimately imbedded in fluviatile or submarine deposits.
CURRENTS IN INLAND LAKES AND SEAS.
In such large bodies of water as the North American lakes, the continuance of a strong wind in one direction often causes the elevation of the water, and its accumulation on the leeward side; and while the equilibrium is restoring itself, powerful currents are occasioned. In October, 1833, a strong current in Lake Erie, caused partly by the set of the waters towards the outlet of the lake, and partly by the prevailing wind, burst a passage through the extensive peninsula called Long Point, and soon excavated a channel more than nine feet deep and nine hundred feet wide. Its width and depth have since increased, and a new and costly pier has been erected; for it is hoped that this event will permanently improve the navigation of Lake Erie for steamboats.[455] On the opposite, or southern coast of this lake, in front of the town of Cleveland, the degradation of the cliffs had been so rapid for several years preceding a survey made in 1837, as to threaten many towns with demolition.[456] In the Black Sea, also, although free from tides, we learn from Pallas that there is a sufficiently strong current to undermine the cliffs in many parts, and particularly in the Crimea.
Straits of Gibraltar.—It is well known that a powerful current sets constantly from the Atlantic into the Mediterranean, and its influence extends along the whole southern borders of that sea, and even to the shores of Asia Minor. Captain Smyth found, during his survey, that the central current ran constantly at the rate of from three to six miles an hour eastward into the Mediterranean, the body of water being three miles and a half wide. But there are also two lateral currents—one on the European, and one on the African side; each of them about two miles and a half broad, and flowing at about the same rate as the central stream. These lateral currents ebb and flow with the tide, setting alternately into the Mediterranean and into the Atlantic. The excess of water constantly flowing in is very great, and there is only one cause to which this can be attributed, the loss of water in the Mediterranean by evaporation. That the level of this sea should be considerably depressed by this cause is quite conceivable, since we know that the winds blowing from the shores of Africa are hot and dry; and hygrometrical experiments recently made in Malta and other places, show that the mean quantity of moisture in the air investing the Mediterranean is equal only to one half of that in the atmosphere of England. The temperature also of the great inland sea is upon an average higher, by 3½° of Fahrenheit, than the eastern part of the Atlantic Ocean in the same latitude, which must greatly promote its evaporation. The Black Sea being situated in a higher latitude, and being the receptacle of rivers flowing from the north, is much colder, and its expenditure far less; accordingly it does not draw any supply from the Mediterranean, but, on the contrary, contributes to it by a current flowing outwards, for the most part of the year, through the Dardanelles. The discharge, however, at the Bosphorus is so small, when compared to the volume of water carried in by rivers, as to imply a great amount of evaporation in the Black Sea.
Whether salt be precipitated in the Mediterranean.—It is, however, objected, that evaporation carries away only fresh water, and that the current from the Atlantic is continually bringing in salt water: why, then, do not the component parts of the waters of the Mediterranean vary? or how can they remain so nearly the same as those of the ocean? Some have imagined that the excess of salt might be carried away by an under-current running in a contrary direction to the superior; and this hypothesis appeared to receive confirmation from a late discovery, that the water taken up about fifty miles within the Straits, from a depth of 670 fathoms, contained a quantity of salt four times greater than the water of the surface. Dr. Wollaston,[457] who analyzed this water obtained by Captain Smyth, truly inferred that an under-current of such denser water flowing outward, if of equal breadth and depth with the current near the surface, would carry out as much salt below as is brought in above, although it moved with less than one-fourth part of the velocity, and would thus prevent a perpetual increase of saltness in the Mediterranean beyond that existing in the Atlantic. It was also remarked by others, that the result would be the same, if the swiftness being equal, the inferior current had only one-fourth of the volume of the superior. At the same time there appeared reason to conclude that this great specific gravity was only acquired by water at immense depths; for two specimens of the water, taken within the Mediterranean, at the distance of some hundred miles from the Straits, and at depths of 400 and even 450 fathoms, were found by Dr. Wollaston not to exceed in density that of many ordinary samples of sea-water. Such being the case, we can now prove that the vast amount of salt brought into the Mediterranean does not pass out again by the Straits; for it appears by Captain Smyth's soundings, which Dr. Wallaston had not seen, that between the capes of Trafalgar and Spartel, which are twenty-two miles apart, and where the Straits are shallowest, the deepest part, which is on the side of Cape Spartel, is only 220 fathoms. It is therefore evident, that if water sinks in certain parts of the Mediterranean, in consequence of the increase of its specific gravity, to greater depths than 220 fathoms, it can never flow out again into the Atlantic, since it must be stopped by the submarine barrier which crosses the shallowest part of the Straits of Gibraltar.
The idea of the existence of a counter-current, at a certain depth, first originated in the following circumstances:—M. De l'Aigle, commander of a privateer called the Phœnix of Marseilles, gave chase to a Dutch merchant-ship, near Ceuta Point, and coming up with her in the middle of the gut, between Tariffa and Tangier, gave her one broadside, which directly sunk her. A few days after, the sunken ship, with her cargo of brandy and oil, was cast ashore near Tangier, which is at least four leagues to the westward of the place where she went down, and to which she must have floated in a direction contrary to the course of the central current.[458] This fact, however, affords no evidence of an under-current, because the ship, when it approached the coast, would necessarily be within the influence of a lateral current, which running westward twice every twenty-four hours, might have brought back the vessel to Tangier.
What, then, becomes of the excess of salt?—for this is an inquiry of the highest geological interest. The Rhone, the Po, the Nile, and many hundred minor streams and springs, pour annually into the Mediterranean large quantities of carbonate of lime, together with iron, magnesia, silica, alumina, sulphur, and other mineral ingredients in a state of chemical solution. To explain why the influx of this matter does not alter the composition of this sea has never been regarded as a difficulty; for it is known that calcareous rocks are forming in the delta of the Rhone, in the Adriatic, on the coast of Asia Minor, and in other localities. Precipitation is acknowledged to be the means whereby the surplus mineral matter is disposed of, after the consumption of a certain portion in the secretions of testacea, zoophytes, and other marine animals. But before muriate of soda can, in like manner, be precipitated, the whole Mediterranean ought, according to the received principles of chemistry, to become as much saturated with salt as Lake Aral, the Dead Sea, or the brine-springs of Cheshire.
It is undoubtedly true, in regard to small bodies of water, that every particle must be fully saturated with muriate of soda before a single crystal of salt can be formed; such is probably the case in all natural salterns: such, for example, as those described by travellers as occurring on the western borders of the Black Sea, where extensive marshes are said to be covered by thin films of salt after a rapid evaporation of sea-water. The salt étangs of the Rhone, where salt has sometimes been precipitated in considerable abundance, have been already mentioned. In regard to the depth of the Mediterranean, it appears that between Gibraltar and Ceuta, Captain Smyth sounded to the enormous depth of 950 fathoms, and found there a gravelly bottom, with fragments of broken shells. Saussure sounded to the depth of two thousand feet, within a few yards of the shore, at Nice; and M. Bérard has lately fathomed to the depth of more than six thousand feet in several places without reaching the bottom.[459]
The central abysses, therefore, of this sea are, in all likelihood, at least as deep as the Alps are high; and, as at the depth of seven hundred fathoms only, water has been found to contain a proportion of salt four times greater than at the surface, we may presume that the excess of salt may be much greater at the depth of two or three miles. After evaporation, the surface water becomes impregnated with a slight excess of salt, and its specific gravity being thus increased, it instantly falls to the bottom, while lighter water rises to the top, or flows in laterally, being always supplied by rivers and the current from the Atlantic. The heavier fluid, when it arrives at the bottom, cannot stop if it can gain access to any lower part of the bed of the sea, not previously occupied by water of the same density.
How far this accumulation of brine can extend before the inferior strata of water will part with any of their salt, and what difference in such a chemical process the immense pressure of the incumbent ocean, or the escape of heated vapors, thermal springs, or submarine volcanic eruptions, might occasion, are questions which cannot be answered in the present state of science.
The Straits of Gibraltar are said to become gradually wider by the wearing down of the cliffs on each side at many points; and the current sets along the coast of Africa, so as to cause considerable inroads in various parts, particularly near Carthage. Near the Canopic mouth of the Nile, at Aboukir, the coast was greatly devastated in the year 1784, when a small island was nearly consumed. By a series of similar operations, the old site of the cities of Nicropolis, Taposiris, Parva and Canopus, have become a sand-bank.[460]
CHAPTER XXI.
REPRODUCTIVE EFFECTS OF TIDES AND CURRENTS.
Estuaries, how formed—Silting up of estuaries does not compensate the loss of land on the borders of the ocean—Bed of the German Ocean—Composition and extent of its sand-banks—Strata deposited by currents in the English channel—On the shores of the Mediterranean—At the mouths of the Amazon, Orinoco, and Mississippi—Wide area over which strata may be formed by this cause.
From the facts enumerated in the last chapter, it appears that on the borders of the ocean, currents and tides co-operating with the waves of the sea are most powerful instruments in the destruction and transportation of rocks; and as numerous tributaries discharge their alluvial burden into the channel of one great river, so we find that many rivers deliver their earthy contents to one marine current, to be borne by it to a distance, and deposited in some deep receptacle of the ocean. The current, besides receiving this tribute of sedimentary matter from streams draining the land, acts also itself on the coast, as does a river on the cliffs which bound a valley. Yet the waste of cliffs by marine currents constitutes on the whole a very insignificant portion of the denudation annually effected by aqueous causes, as I shall point out in the sequel of this chapter (p. 339).
In inland seas, where the tides are insensible, or on those parts of the borders of the ocean where they are feeble, it is scarcely possible to prevent a harbor at a river's mouth from silting up; for a bar of sand or mud is formed at points where the velocity of the turbid river is checked by the sea, or where the river and a marine current neutralize each other's force. For the current, as we have seen, may, like the river, hold in suspension a large quantity of sediment, or, co-operating with the waves, may cause the progressive motion of a shingle beach in one direction. I have already alluded to the erection of piers and groins at certain places on our southern coast, to arrest the course of the shingle and sand (see p. [318]318). The immediate effect of these temporary obstacles is to cause a great accumulation of pebbles on one side of the barrier, after which the beach still moves on round the end of the pier at a greater distance from the land. This system, however, is often attended with a serious evil, for during storms the waves throw suddenly into the harbor the vast heap of pebbles which have collected for years behind the groin or pier, as happened during a great gale (Jan. 1839) at Dover.
The formation and keeping open of large estuaries are due to the combined influence of tidal currents and rivers; for when the tide rises, a large body of water suddenly enters the mouth of the river, where, becoming confined within narrower bounds, while its momentum is not destroyed, it is urged on, and, having to pass through a contracted channel, rises and runs with increased velocity, just as a stream when it reaches the arch of a bridge scarcely large enough to give passage to its waters, rushes with a steep fall through the arch. During the ascent of the tide, a body of fresh water, flowing down in an opposite direction from the higher country, is arrested in its course for several hours; and thus a large lake of fresh and brackish water is accumulated, which, when the sea ebbs, is let loose, as on the removal of an artificial sluice or dam. By the force of this retiring water, the alluvial sediment both of the river and of the sea is swept away, and transported to such a distance from the mouth of the estuary, that a small part only can return with the next tide.
It sometimes happens, that during a violent storm a large bar of sand is suddenly made to shift its position, so as to prevent the free influx of the tides, or efflux of river water. Thus about the year 1500 the sands at Bayonne were suddenly thrown across the mouth of the Adour. That river, flowing back upon itself, soon forced a passage to the northward along the sandy plain of Capbreton, till at last it reached the sea at Boucau, at the distance of seven leagues from the point where it had formerly entered. It was not till the year 1579 that the celebrated architect Louis de Foix undertook, at the desire of Henry III., to reopen the ancient channel, which he at last effected with great difficulty.[461]
In the estuary of the Thames at London, and in the Gironde, the tide rises only for five hours and ebbs seven, and in all estuaries the water requires a longer time to run down than up; so that the preponderating force is always in the direction which tends to keep open a deep and broad passage. But for reasons already explained, there is naturally a tendency in all estuaries to silt up partially, since eddies, and backwaters, and points where opposing streams meet, are very numerous, and constantly change their position.
Many writers have declared that the gain on our eastern coast, since the earliest periods of history, has more than counterbalanced the loss; but they have been at no pains to calculate the amount of loss, and have often forgotten that, while the new acquisitions are manifest, there are rarely any natural monuments to attest the former existence of the land that has been carried away. They have also taken into their account those tracts artificially recovered, which are often of great agricultural importance, and may remain secure, perhaps, for thousands of years, but which are only a few feet above the mean level of the sea, and are therefore exposed to be overflowed again by a small proportion of the force required to move cliffs of considerable height on our shores. If it were true that the area of land annually abandoned by the sea in estuaries were equal to that invaded by it, there would still be no compensation in kind.
The tidal current which flows out from the northwest, and bears against the eastern coast of England, transports, as we have seen, materials of various kinds. Aided by the waves, it undermines and sweeps away the granite, gneiss, trap-rocks, and sandstone of Shetland, and removes the gravel and loam of the cliffs of Holderness, Norfolk, and Suffolk, which are between twenty and three hundred feet in height, and which waste at various rates of from one foot to six yards annually. It also bears away, in co-operation with the Thames and the tides, the strata of London clay on the coast of Essex and Sheppey. The sea at the same time consumes the chalk with its flints for many miles continuously on the shores of Kent and Sussex—commits annual ravages on the freshwater beds, capped by a thick covering of chalk-flint gravel, in Hampshire, and continually saps the foundations of the Portland limestone. It receives, besides, during the rainy months, large supplies of pebbles, sand, and mud, which numerous streams from the Grampians, Cheviots, and other chains, send down to the sea. To what regions, then, is all this matter consigned? It is not retained in mechanical suspension by the waters of the ocean, nor does it mix with them in a state of chemical solution—it is deposited somewhere, yet certainly not in the immediate neighborhood of our shores; for, in that case, there would soon be a cessation of the encroachment of the sea, and large tracts of low land, like Romney Marsh, would almost everywhere encircle our island.
As there is now a depth of water exceeding thirty feet, in some spots where towns like Dunwich flourished but a few centuries ago, it is clear that the current not only carries far away the materials of the wasted cliffs, but is capable also of excavating the bed of the sea to a certain moderate depth.
So great is the quantity of matter held in suspension by the tidal current on our shores, that the waters are in some places artificially introduced into certain lands below the level of the sea; and by repeating this operation, which is called "warping," for two or three years, considerable tracts have been raised, in the estuary of the Humber, to the height of about six feet. If a current, charged with such materials, meets with deep depressions in the bed of the ocean, it must often fill them up; just as a river, when it meets with a lake in its course, fills it gradually with sediment.
I have said (p. [337]) that the action of the waves and currents on sea-cliffs, or their power to remove matter from above to below the sea-level, is insignificant in comparison with the power of rivers to perform the same task. As an illustration we may take the coast of Holderness described in the last chapter (p. 304). It is composed, as we have seen, of very destructible materials, is thirty-six miles long, and its average height may be taken at forty feet. As it has wasted away at the rate of two and a quarter yards annually, for a long period, it will be found on calculation that the quantity of matter thrown down into the sea every year, and removed by the current, amounts to 51,321,600 cubic feet. It has been shown that the united Ganges and Brahmapootra carry down to the Bay of Bengal 40,000,000,000 of cubic feet of solid matter every year, so that their transporting power is no less than 780 times greater than that of the sea on the coast above-mentioned; and in order to produce a result equal to that of the two Indian rivers, we must have a line of wasting coast, like that of Holderness, nearly 28,000 miles in length, or longer than the entire circumference of the globe by above 3000 miles. The reason of so great a difference in the results may be understood when we reflect that the operations of the ocean are limited to a single line of cliff surrounding a large area, whereas great rivers with their tributaries, and the mountain torrents which flow into them, act simultaneously on a length of bank almost indefinite.
Nevertheless we are by no means entitled to infer, that the denuding force of the great ocean is a geological cause of small efficacy, or inferior to that of rivers. Its chief influence is exerted at moderate depths below the surface, on all those areas which are slowly rising, or are attempting, as it were, to rise above the sea. From data hitherto obtained respecting subterranean movements, we can scarcely speculate on an average rate of upheaval of more than two or three feet in a century. An elevation to this amount is taking place in Scandinavia, and probably in many submarine areas as vast as those which we know to be sinking from the proofs derived from circular lagoon islands or coral atolls. (See chap. 50.) Suppose strata as destructible as those of the Wealden, or the lower and upper cretaceous formation, or the tertiary deposits of the British Isles to be thus slowly upheaved, how readily might they all be swept away by waves and currents in an open sea! How entirely might each stratum disappear as it was brought up successively and exposed to the breakers! Shoals of wide extent might be produced, but it is difficult to conceive how any continent could ever be formed under such circumstances. Were it not indeed for the hardness and toughness of the crystalline and volcanic rocks, which are often capable of resisting the action of the waves, few lands might ever emerge from the midst of an open sea.
Supposed filling up of the German Ocean.—The German Ocean is deepest on the Norwegian side, where the soundings give 190 fathoms; but the mean depth of the whole basin may be stated at no more than thirty-one fathoms.[462] The bed of this sea is traversed by several enormous banks, the greatest of which is the Dogger Bank, extending for upwards of 354 miles from north to south. The whole superficies of these shoals is equal to about one-third of the whole extent of England and Scotland. The average height of the banks measures, according to Mr. Stevenson, about seventy-eight feet; the upper portion of them consisting of fine and coarse siliceous sand, mixed with comminuted corals and shells.[463] It had been supposed that these vast submarine hills were made up bodily of loose materials supplied from the waste of the English, Dutch, and other coasts; but the survey of the North Sea, conducted by Captain Hewett, affords ground for suspecting this opinion to be erroneous. If such immense mounds of sand and mud had been accumulated under the influence of currents, the same causes ought nearly to have reduced to one level the entire bottom of the German Ocean; instead of which some long narrow ravines are found to intersect the banks. One of these varies from seventeen to forty-four fathoms in depth, and has very precipitous sides; in one part, called the "Inner Silver Pits," it is fifty-five fathoms deep. The shallowest parts of the Dogger Bank were found to be forty-two feet under water, except in one place, where the wreck of a ship had caused a shoal. Such uniformity in the minimum depth of water seems to imply that the currents, which vary in their velocity from a mile to two miles and a half per hour, have power to prevent the accumulation of drift matter in places of less depth.
Strata deposited by currents.—It appears extraordinary, that in some tracts of the sea, adjoining the coast of England, where we know that currents are not only sweeping along rocky masses, thrown down, from time to time, from the high cliffs, but also occasionally scooping out channels in the regular strata, there should exist fragile shells and tender zoophytes in abundance, which live uninjured by these violent movements. The ocean, however, is in this respect a counterpart of the land; and as, on the continents, rivers may undermine their banks, uproot trees, and roll along sand and gravel, while their waters are inhabited by testacea and fish, and their alluvial plains are adorned with rich vegetation and forests, so the sea may be traversed by rapid currents, and its bed may here and there suffer great local derangement, without any interruption of the general order and tranquillity. It has been ascertained by soundings in all parts of the world, that where new deposits are taking place in the sea, coarse sand and small pebbles commonly occur near the shore, while farther from land, and in deeper water, finer sand and broken shells are spread out over the bottom. Still farther out, the finest mud and ooze are alone met with. Mr. Austen observes that this rule holds good in every part of the English Channel examined by him. He also informs us, that where the tidal current runs rapidly in what are called "races," where surface undulations are perceived in the calmest weather, over deep banks, the discoloration of the water does not arise from the power of such a current to disturb the bottom at a depth of 40 or 80 fathoms, as some have supposed. In these cases, a column of water sometimes 500 feet in height, is moving onwards with the tide clear and transparent above, while the lower portion holds fine sediment in suspension (a fact ascertained by soundings), when suddenly it impinges upon a bank, and its height is reduced to 300 feet. It is thus made to boil up and flow off at the surface, a process which forces up the lower strata of water charged with fine particles of mud, which in their passage from the coast had gradually sunk to a depth of 300 feet or more.[464]
One important character in the formations produced by currents is, the immense extent over which they may be the means of diffusing homogeneous mixtures, for these are often coextensive with a great line of coast; and, by comparison with their deposits, the deltas of rivers must shrink into significance. In the Mediterranean, the same current which is rapidly destroying many parts of the African coast, between the Straits of Gibraltar and the Nile, checks also the growth of the delta of the Nile, and drifts the sediment of that great river to the eastward. To this source may be attributed the rapid accretions of land on parts of the Syrian shores where rivers do not enter.
Among the greatest deposits now in progress, and of which the distribution is chiefly determined by currents, we may class those between the mouths of the Amazon and the southern coast of North America. Captain Sabine found that the equatorial current before mentioned (p. 292) was running with the rapidity of four miles an hour where it crosses the stream of the Amazon, which river preserves part of its original impulse, and has its waters not wholly mingled with those of the ocean at the distance of 300 miles from its mouth.[465] The sediment of the Amazon is thus constantly carried to the northwest as far as to the mouths of the Orinoco, and an immense tract of swamp is formed along the coast of Guiana, with a long range of muddy shoals bordering the marshes, and becoming converted into land.[466] The sediment of the Orinoco is partly detained, and settles near its mouth, causing the shores of Trinidad to extend rapidly, and is partly swept away into the Carribean Sea by the Guinea current. According to Humboldt, much sediment is carried again out of the Carribean Sea into the Gulf of Mexico.
It should not be overlooked that marine currents, even on coasts where there are no large rivers, may still be the agents of spreading not only sand and pebbles, but the finest mud, far and wide over the bottom of the ocean. For several thousand miles along the western coast of South America, comprising the larger parts of Peru and Chili, there is a perpetual rolling of shingle along the shore, part of which, as Mr. Darwin has shown, are incessantly reduced to the finest mud by the waves, and swept into the depths of the Pacific by the tides and currents. The same author however has remarked that, notwithstanding the great force of the waves on that shore, all rocks 60 feet under water are covered by sea-weed, showing that the bed of the sea is not denuded at that depth, the effects of the winds being comparatively superficial.
In regard to the distribution of sediment by currents it may be observed, that the rate of subsidence of the finer mud carried down by every great river into the ocean, or of that caused by the rolling of the waves upon a shore, must be extremely slow; for the more minute the separate particles of mud, the slower will they sink to the bottom, and the sooner will they acquire what is called their terminal velocity. It is well known that a solid body, descending through a resisting medium, falls by the force of gravity, which is constant, but its motion is resisted by the medium more and more as its velocity increases, until the resistance becomes sufficient to counteract the farther increase of velocity. For example, a leaden ball, one inch diameter, falling through air of density as at the earth's surface, will never acquire greater velocity than 260 feet per second, and, in water, its greatest velocity will be 8 feet 6 inches per second. If the diameter of the ball were 1/100 of an inch, the terminal velocities in air would be 26 feet, and in water ·86 of a foot per second.
Now, every chemist is familiar with the fact, that minute particles descend with extreme slowness through water, the extent of their surface being very great in proportion to their weight, and the resistance of the fluid depending on the amount of surface. A precipitate of sulphate of baryta, for example, will sometimes require more than five or six hours to subside one inch;[467] while oxalate and phosphate of lime require nearly an hour to subside about an inch and a half and two inches respectively,[468] so exceedingly small are the particles of which these substances consist.
When we recollect that the depth of the ocean is supposed frequently to exceed three miles, and that currents run through different parts of that ocean at the rate of four miles an hour, and when at the same time we consider that some fine mud carried away from the mouths of rivers and from sea-beaches, where there is a heavy surf, as well as the impalpable powder showered down by volcanoes, may subside at the rate of only an inch per hour, we shall be prepared to find examples of the transportation of sediment over areas of indefinite extent.
It is not uncommon for the emery powder used in polishing glass to take more than an hour to sink one foot. Suppose mud composed of coarser particles to fall at the rate of two feet per hour, and these to be discharged into that part of the Gulf Stream which preserves a mean velocity of three miles an hour for a distance of two thousand miles; in twenty-eight days these particles will be carried 2016 miles, and will have fallen only to a depth of 224 fathoms.
In this example, however, it is assumed that the current retains its superficial velocity at the depth of 224 fathoms, for which we have as yet no data, although we have seen that the motion of a current may continue at the depth of 100 fathoms. (See above, p. 28.) Experiments should be made to ascertain the rate of currents at considerable distances from the surface, and the time taken by the finest sediment to settle in sea-water of a given depth, and then the geologist may determine the area over which homogeneous mixtures may be simultaneously distributed in certain seas.
CHAPTER XXII.
IGNEOUS CAUSES.
Changes of the inorganic world, continued—Igneous causes—Division of the subject—Distinct volcanic regions—Region of the Andes—System of volcanoes extending from the Aleutian isles to the Molucca and Sunda islands—Polynesian archipelago—Volcanic region extending from Central Asia to the Azores—Tradition of deluges on the shores of the Bosphorus, Hellespont, and Grecian isles—Periodical alternation of earthquakes in Syria and Southern Italy—Western limits of the European region—Earthquakes rarer and more feeble as we recede from the centres of volcanic action. Extinct volcanoes not to be included in lines of active vents.
We have hitherto considered the changes wrought, since the times of history and tradition, by the continued action of aqueous causes on the earth's surface; and we have next to examine those resulting from igneous agency. As the rivers and springs on the land, and the tides and currents in the sea, have, with some slight modifications, been fixed and constant to certain localities from the earliest periods of which we have any records, so the volcano and the earthquake have, with few exceptions, continued, during the same lapse of time, to disturb the same regions. But as there are signs, on almost every part of our continent, of great power having been exerted by running water on the surface of the land, and by waves, tides, and currents on cliffs bordering the sea, where, in modern times, no rivers have excavated, and no waves or tidal currents undermined—so we find signs of volcanic vents and violent subterranean movements in places where the action of fire or internal heat has long been dormant. We can explain why the intensity of the force of aqueous causes should be developed in succession in different districts. Currents, for example, tides, and the waves of the sea, cannot destroy coasts, shape out or silt up estuaries, break through isthmuses, and annihilate islands, form shoals in one place, and remove them from another, without the direction and position of their destroying and transporting power becoming transferred to new localities. Neither can the relative levels of the earth's crust, above and beneath the waters, vary from time to time, as they are admitted to have varied at former periods, and as it will be demonstrated that they still do, without the continents being, in the course of ages, modified, and even entirely altered, in their external configuration. Such events must clearly be accompanied by a complete change in the volume, velocity, and direction of the streams and land floods to which certain regions give passage. That we should find, therefore, cliffs where the sea once committed ravages, and from which it has now retired—estuaries where high tides once rose, but which are now dried up—valleys hollowed out by water, where no streams now flow, is no more than we should expect; these and similar phenomena are the necessary consequences of physical causes now in operation; and if there be no instability in the laws of nature, similar fluctuations must recur again and again in time to come.
But, however natural it may be that the force of running water in numerous valleys, and of tides and currents in many tracts of the sea, should now be spent, it is by no means so easy to explain why the violence of the earthquake and the fire of the volcano should also have become locally extinct at successive periods. We can look back to the time when the marine strata, whereon the great mass of Etna rests, had no existence; and that time is extremely modern in the earth's history. This alone affords ground for anticipating that the eruptions of Etna will one day cease.
Nec quæ sulfureis ardet fornacibus, Ætna Ignea semper erit, neque enim fuit ignea semper, (Ovid, Metam. lib. 15-340,)
are the memorable words which are put into the mouth of Pythagoras by the Roman poet, and they are followed by speculations as to the cause of volcanic vents shifting their positions. Whatever doubts the philosopher expresses as to the nature of these causes, it is assumed, as incontrovertible, that the points of eruption will hereafter vary, because they have formerly done so; a principle of reasoning which, as I have endeavored to show in former chapters, has been too much set at naught by some of the earlier schools of geology, which refused to conclude that great revolutions in the earth's surface are now in progress, or that they will take place hereafter, because they have often been repeated in former ages.
Division of the subject.—Volcanic action may be defined to be "the influence exerted by the heated interior of the earth on its external covering." If we adopt this definition, without connecting it, as Humboldt has done, with the theory of secular refrigeration, or the cooling down of an original heated and fluid nucleus, we may then class under a general head all the subterranean phenomena, whether of volcanoes, or earthquakes, and those insensible movements of the land, by which, as will afterwards appear, large districts may be depressed or elevated, without convulsions. According to this view, I shall consider first, the volcano; secondly, the earthquake; thirdly, the rising or sinking of land in countries where there are no volcanoes or earthquakes; fourthly, the probable causes of the changes which result from subterranean agency.
It is a very general opinion that earthquakes and volcanoes have a common origin; for both are confined to certain regions, although the subterranean movements are least violent in the immediate proximity of volcanic vents, especially where the discharge of aeriform fluids and melted rock is made constantly from the same crater. But as there are particular regions, to which both the points of eruption and the movements of great earthquakes are confined, I shall begin by tracing out the geographical boundaries of some of these, that the reader may be aware of the magnificent scale on which the agency of subterranean fire is now simultaneously developed. Over the whole of the vast tracts alluded to, active volcanic vents are distributed at intervals, and most commonly arranged in a linear direction. Throughout the intermediate spaces there is often abundant evidence that the subterranean fire is at work continuously, for the ground is convulsed from time to time by earthquakes; gaseous vapors, especially carbonic acid gas, are disengaged plentifully from the soil; springs often issue at a very high temperature, and their waters are usually impregnated with the same mineral matters as are discharged by volcanoes during eruptions.
VOLCANIC REGIONS.
Region of the Andes.—Of these great regions, that of the Andes of South America is one of the best defined, extending from the southward of Chili to the northward of Quito, from about lat. 43° S. to about 2° N. of the equator. In this range, however, comprehending forty-five degrees of latitude, there is an alternation on a grand scale of districts of active with those of extinct volcanoes, or which, if not spent, have at least been dormant for the last three centuries. How long an interval of rest may entitle us to consider a volcano as entirely extinct is not easily determined; but we know that in Ischia there intervened between two consecutive eruptions a pause of seventeen centuries; and the discovery of America is an event of far too recent a date to allow us even to conjecture whether different portions of the Andes, nearly the whole of which are subject to earthquakes, may not experience alternately a cessation and renewal of eruptions.
The first line of active vents which have been seen in eruption in the Andes extends from lat. 43° 28' S.; or, from Yantales, opposite the isle of Chiloe, to Coquimbo, in lat. 30° S.; to these thirteen degrees of latitude succeed more than eight degrees in which no recent volcanic eruptions have been observed. We then come to the volcanoes of Bolivia and Peru, reaching six degrees from S. to N., or from lat. 21° S. to lat. 15° S. Between the Peruvian volcanoes and those of Quito, another space intervenes of no less than fourteen degrees of latitude, said to be free from volcanic action so far as yet known. The volcanoes of Quito then succeed, beginning about 100 geographical miles south of the equator, and continuing for about 130 miles north of the line, when there occurs another undisturbed interval of more than six degrees of latitude, after which we arrive at the volcanoes of Guatemala or Central America, north of the Isthmus of Panama.[469]
Having thus traced out the line from south to north, I may first state, in regard to the numerous vents of Chili, that the volcanoes of Yantales and Osorno were in eruption during the great earthquake of 1835, at the same moment that the land was shaken in Chiloe, and in some parts of the Chilian coast permanently upheaved; whilst at Juan Fernandez, at the distance of no less than 720 geographical miles from Yantales, an eruption took place beneath the sea. Some of the volcanoes of Chili are of great height, as that of Antuco, in lat. 37° 40' S., the summit of which is at least 16,000 feet above the sea. From the flanks of this volcano, at a great height, immense currents of lava have issued, one of which flowed in the year 1828. This event is said to be an exception in the general rule; few volcanoes in the Andes, and none of those in Quito, having been seen in modern times to pour out lava, but having merely ejected vapor or scoriæ.
Both the basaltic (or augitic) lavas, and those of the felspathic class, occur in Chili and other parts of the Andes; but the volcanic rocks of the felspathic family are said by Von Buch to be generally not trachyte, but a rock which has been called andesite, or a mixture of augite and albite. The last-mentioned mineral contains soda instead of the potash found in common felspar.
The volcano of Rancagua, lat. 34° 15' S., is said to be always throwing out ashes and vapors like Stromboli, a proof of the permanently heated state of certain parts of the interior of the earth below. A year rarely passes in Chili without some slight shocks of earthquakes, and in certain districts not a month. Those shocks which come from the side of the ocean are the most violent, and the same is said to be the case in Peru. The town of Copiapo was laid waste by this terrible scourge in the years 1773, 1796, and 1819, or in both cases after regular intervals of twenty-three years. There have, however, been other shocks in that country in the periods intervening between the dates above mentioned, although probably all less severe, at least on the exact site of Copiapo. The evidence against a regular recurrence of volcanic convulsions at stated periods is so strong as a general fact, that we must be on our guard against attaching too much importance to a few striking but probably accidental coincidences. Among these last might be adduced the case of Lima, violently shaken by an earthquake on the 17th of June, 1578, and again on the very same day, 1678; or the eruptions of Coseguina in the year 1709 and 1809, which are the only two recorded of that volcano previous to that of 1835.[470]
Of the permanent upheaval of land after earthquakes in Chili, I shall have occasion to speak in the next chapter, when it will also be seen that great shocks often coincide with eruptions, either submarine or from the cones of the Andes, showing the identity of the force which elevates continents with that which causes volcanic outbursts.[471]
The space between Chili and Peru, in which no volcanic action has been observed, is 160 nautical leagues from south to north. It is, however, as Von Buch observes, that part of the Andes which is least known, being thinly peopled, and in some parts entirely desert. The volcanoes of Peru rise from a lofty platform to vast heights above the level of the sea, from 17,000 to 20,000 feet. The lava which has issued from Viejo, lat. 16° 55' S., accompanied by pumice, is composed of a mixture of crystals of albitic felspar, hornblende, and mica, a rock which has been considered as one of the varieties of andesite. Some tremendous earthquakes which have visited Peru in modern times will be mentioned in a subsequent chapter.
The volcanoes of Quito, occurring between the second degree of south and the third degree of north latitude, rise to vast elevations above the sea, many of them being between 14,000 and 18,000 feet high. The Indians of Lican have a tradition that the mountain called L'Altar, or Capac Urcu, which means "the chief," was once the highest of those near the equator, being higher than Chimborazo; but in the reign of Ouainia Abomatha, before the discovery of America, a prodigious eruption took place, which lasted eight years, and broke it down. The fragments of trachyte, says M. Boussingault, which once formed the conical summit of this celebrated mountain, are at this day spread over the plain.[472] Cotopaxi is the most lofty of all the South American volcanoes which have been in a state of activity in modern times, its height being 18,858 feet; and its eruptions have been more frequent and destructive than those of any other mountain. It is a perfect cone, usually covered with an enormous bed of snow, which has, however, been sometimes melted suddenly during an eruption; as in January, 1803, for example, when the snows were dissolved in one night.
Deluges are often caused in the Andes by the liquefaction of great masses of snow, and sometimes by the rending open, during earthquakes, of subterranean cavities filled with water. In these inundations fine volcanic sand, loose stones, and other materials which the water meets with in its descent, are swept away, and a vast quantity of mud, called "moya," is thus formed and carried down into the lower regions. Mud derived from this source descended, in 1797, from the sides of Tunguragua in Quito, and filled valleys a thousand feet wide to the depth of six hundred feet, damming up rivers and causing lakes. In these currents and lakes of moya, thousands of small fish are sometimes enveloped, which, according to Humboldt, have lived and multiplied in subterranean cavities. So great a quantity of these fish were ejected from the volcano of Imbaburu in 1691, that fevers, which prevailed at the period, were attributed to the effluvia arising from the putrid animal matter.
In Quito, many important revolutions in the physical features of the country are said to have resulted, within the memory of man, from the earthquakes by which it has been convulsed. M. Boussingault declares his belief, that if a full register had been kept of all the convulsions experienced here and in other populous districts of the Andes, it would be found that the trembling of the earth had been incessant. The frequency of the movement, he thinks, is not due to volcanic explosions, but to the continual falling in of masses of rock which have been fractured and upheaved in a solid form at a comparatively recent epoch; but a longer series of observations would be requisite to confirm this opinion. According to the same author, the height of several mountains of the Andes has diminished in modern times.[473]
The great crest or cordillera of the Andes is depressed at the Isthmus of Panama to a height of about 1000 feet, and at the lowest point of separation between the two seas near the Gulf of San Miguel, to 150 feet. What some geographers regard as a continuation of that chain in Central America lies to the east of a series of volcanoes, many of which are active in the provinces of Pasto, Popayan, and Guatemala. Coseguina, on the south side of the Gulf of Fonseca, was in eruption in January, 1835, and some of its ashes fell at Truxillo, on the shores of the Gulf of Mexico. What is still more remarkable, on the same day, at Kingston, in Jamaica, the same shower of ashes fell, having been carried by an upper counter-current against the regular east wind which was then blowing. Kingston is about 700 miles distant from Coseguina, and these ashes must have been more than four days in the air, having travelled 170 miles a day. Eight leagues to the southward of the crater, the ashes covered the ground to the depth of three yards and a half, destroying the woods and dwellings. Thousands of cattle perished, their bodies being in many instances one mass of scorched flesh. Deer and other wild animals sought the towns for protection; many birds and quadrupeds were found suffocated in the ashes, and the neighboring streams were strewed with dead fish.[474] Such facts throw light on geological monuments, for in the ashes thrown out at remote periods from the volcanoes of Auvergne, now extinct, we find the bones and skeletons of lost species of quadrupeds.
Mexico.—The great volcanic chain, after having thus pursued its course for several thousand miles from south to north, sends off a branch in a new direction in Mexico, in the parallel of the city of that name, and is prolonged in a great platform between the eighteenth and twenty-second degrees of north latitude. Five active volcanoes traverse Mexico from west to east—Tu`xtla, Orizaba, Popocatepetl, Jorullo, and Colima. Jorullo, which is in the centre of the great platform, is no less than 120 miles from the nearest ocean—an important circumstance, as showing that the proximity of the sea is not a necessary condition, although certainly a very general characteristic of the position of active volcanoes. The extraordinary eruption of this mountain, in 1759, will be described in the sequel. If the line which connects these five vents be prolonged in a westerly direction, it cuts the volcanic group of islands called the Isles of Revillagigedo.
To the north of Mexico there are said to be three, or according to some, five volcanoes in the peninsula of California; and a volcano is reported to have been in eruption in the N. W. coast of America, near the Colombia river, lat. 45° 37' N.
West Indies.—To return to the Andes of Quito: Von Buch inclines to the belief that if we were better acquainted with the region to the east of the Madalena, and with New Granada and the Caraccas, we might find the volcanic chain of the Andes to be connected with that of the West Indian or Carribee Islands. The truth of this conjecture has almost been set at rest by the eruption, in 1848, of the volcano of Zamba, in New Grenada, at the mouth of the river Madalena.[475]
Of the West Indian islands there are two parallel series: the one to the west, which are all volcanic, and which rise to the height of several thousand feet; the others to the east, for the most part composed of calcareous rocks, and very low. In the former or volcanic series, are Granada, St. Vincent, St. Lucia, Martinique, Dominica, Guadaloupe, Montserrat, Nevis, and St. Eustace. In the calcareous chain are Tobago, Barbadoes, Mariegallante, Grandeterre, Desirade, Antigua, Barbuda, St. Bartholomew, and St. Martin. The most considerable eruptions in modern times have been those of St. Vincent. Great earthquakes have agitated St. Domingo, as will be seen in the twenty-ninth chapter.
I have before mentioned (p. 270) the violent earthquake which in 1812 convulsed the valley of the Mississippi at New Madrid, for the space of 300 miles in length, of which more will be said in the twenty-seventh chapter. This happened exactly at the same time as the great earthquake of Caraccas, so that it is possible that these two points are parts of one subterranean volcanic region. The island of Jamaica, with a tract of the contiguous sea, has often experienced tremendous shocks; and these are frequent along a line extending from Jamaica to St. Domingo and Porto Rico.
Thus it will be seen that, without taking account of the West Indian and Mexican branches, a linear train of volcanoes and tracts shaken by earthquakes may be traced from the island of Chiloe and opposite coast to Mexico, or even perhaps to the mouth of the Colombia river—a distance upon the whole as great as from the pole to the equator. In regard to the western limits of the region, they lie deep beneath the waves of the Pacific, and must continue unknown to us. On the east they are not prolonged, except where they include the West Indian Islands, to a great distance; for there seem to be no indications of volcanic disturbances in Buenos Ayres, Brazil, and the United States of North America.
Fig. 39.
MAP OF ACTIVE VOLCANOES AND ATOLLS of The Indian Archipelago, and Part of the adjoining Pacific Ocean.
Volcanic region from the Aleutian Isles to the Moluccas and Isles of Sunda.—On a scale which equals or surpasses that of the Andes, is another line of volcanic action, which commences, on the north, with the Aleutian Isles in Russian America, and extends, first in a westerly direction for nearly 200 geographical miles, and then southwards, with few interruptions, throughout a space of between sixty and seventy degrees of latitude to the Moluccas, where it sends off a branch to the southeast while the principal train continues westerly through Sumbawa and Java to Sumatra, and then in a northwesterly direction to the Bay of Bengal.[476] This volcanic line, observes Von Buch, may be said to follow throughout its course the external border of the continent of Asia; while the branch which has been alluded to as striking southeast from the Moluccas, passes from New Guinea to New Zealand, conforming, though somewhat rudely, to the outline of Australia.[477]
The connection, however, of the New Guinea volcanoes with the line in Java (as laid down in Von Buch's map) is not clearly made out. By consulting Darwin's map of coral reefs and active volcanoes,[478] the reader will see that we might almost with equal propriety include the Mariana and Bonin volcanoes in a band with New Guinea. Or if we allow so much latitude in framing zones of volcanic action, we must also suppose the New Hebrides, Solomon Isles, and New Ireland to constitute one line (see map, [fig. 39], p. 351).
The northern extremity of the volcanic region of Asia, as described by Von Buch, is on the borders of Cook's Inlet, northeast of the Peninsula of Alaska, where one volcano, in about the sixtieth degree of latitude, is said to be 14,000 feet high. In Alaska itself are cones of vast height, which have been seen in eruption, and which are covered for two-thirds of their height downwards with perpetual snow. The summit of the loftiest peak is truncated, and is said to have fallen in during an eruption in 1786. From Alaska the line is continued through the Aleutian or Fox Islands to Kamtschatka. In the Aleutian Archipelago eruptions are frequent, and about thirty miles to the north of Unalaska, near the Isle of Umnack, a new island was formed in 1796. It was first observed after a storm, at a point in the sea from which a column of smoke had been seen to rise. Flames then issued from the new islet which illuminated the country for ten miles round; a frightful earthquake shook the new-formed cone, and showers of stones were thrown as far as Umnack. The eruption continued for several months, and eight years afterwards, in 1804, when it was explored by some hunters, the soil was so hot in some places that they could not walk on it. According to Langsdorf and others, this new island, which is now several thousand feet high, and two or three miles in circumference, has been continually found to have increased in size when successively visited by different travellers; but we have no accurate means of determining how much of its growth, if any, has been due to upheaval, or how far it has been exclusively formed by the ejection of ashes and streams of lava. It seems, however, to be well attested that earthquakes of the most terrific description agitate and alter the bed of the sea and surface of the land throughout this tract.
The line is continued in the southern extremity of the Peninsula of Kamtschatka, where there are many active volcanoes, which, in some eruptions, have scattered ashes to immense distances. The largest and most active of these is Klutschew, lat. 56° 3' N., which rises at once from the sea to the prodigious height of 15,000 feet. Within 700 feet of the summit, Erman saw, in 1829, a current of lava, emitting a vivid light, flow down the northwest side to the foot of the cone. A flow of lava from the summit of Mont Blanc to its base in the valley of Chamouni would afford but an inadequate idea of the declivity down which this current descended. Large quantities of ice and snow opposed for a time a barrier to the lava, until at length the fiery torrent overcame, by its heat and pressure, this obstacle, and poured down the mountain side with a frightful noise, which was heard for a distance of more than fifty miles.[479]
The Kurile chain of islands constitutes the prolongation of the Kamtschatka range, where a train of volcanic mountains, nine of which are known to have been in eruption, trends in a southerly direction. The line is then continued to the southwest in the great island of Jesso, and again in Nipon, the principal of the Japanese group. It then extends by Loo Choo and Formosa to the Philippine Islands, and thence by Sangir and the northeastern extremity of Celebes to the Moluccas (see map, [fig. 39]). Afterwards it passes westward through Sumbawa to Java.
There are said to be thirty-eight considerable volcanoes in Java, some of which are more than 10,000 feet high. They are remarkable for the quantity of sulphur and sulphureous vapors which they discharge. They rarely emit lava, but rivers of mud issue from them, like the moya of the Andes of Quito. The memorable eruption of Galongoon, in 1822, will be described in the twenty-fifth chapter. The crater of Taschem, at the eastern extremity of Java, contains a lake strongly impregnated with sulphuric acid, a quarter of a mile long, from which a river of acid water issues, which supports no living creature, nor can fish live in the sea near its confluence. There is an extinct crater near Batur, called Guevo Upas, or the Valley of Poison, about half a mile in circumference, which is justly an object of terror to the inhabitants of the country. Every living being which penetrates into this valley falls down dead, and the soil is covered with the carcasses of tigers, deer, birds, and even the bones of men; all killed by the abundant emanations of carbonic acid gas, by which the bottom of the valley is filled.
In another crater in this land of wonders, near the volcano of Talaga Bodas, we learn from M. Reinwardt, that the sulphureous exhalations have killed tigers, birds, and innumerable insects; and the soft parts of these animals, such as as the fibres, muscles, nails, hair, and skin, are very well preserved, while the bones are corroded, and entirely destroyed.
We learn from observations made in 1844, by Mr. Jukes, that a recent tertiary formation composed of limestone and resembling the coral rock of a fringing reef, clings to the flanks of all the volcanic islands from the east end of Timor to the west end of Java. These modern calcareous strata are often white and chalk-like, sometimes 1000 feet and upwards above the sea, regularly stratified in thick horizontal beds, and they show that there has been a general elevation of these islands at a comparatively modern period.[480]
The same linear arrangement which is observed in Java holds good in the volcanoes of Sumatra, some of which are of great height, as Berapi, which is more than 12,000 feet above the sea, and is continually smoking. Hot springs are abundant at its base. The volcanic line then inclines slightly to the northwest, and points to Barren Island, lat. 12° 15´ N., in the Bay of Bengal. This volcano was in eruption in 1792, and will be described in the twenty-sixth chapter. The volcanic train then extends, according to Dr. Macclelland, to the island of Narcondam, lat. 13° 22´ N., which is a cone seven or eight hundred feet high, rising from deep water, and said to present signs of lava currents descending from the crater to the base. Afterwards the train stretches in the same direction to the volcanic island of Ramree, about lat. 19° N., and the adjoining island of Cheduba, which is represented in old charts as a burning mountain. Thus we arrive at the Chittagong coast, which in 1762 was convulsed by a tremendous earthquake (see chap. [29]).[481]
To enumerate all the volcanic regions of the Indian and Pacific oceans would lead me far beyond the proper limits of this treatise; but it will appear in the last chapter of this volume, when coral reefs are treated of, that the islands of the Pacific consist alternately of linear groups of two classes, the one lofty, and containing active volcanoes, and marine strata above the sea-level, and which have been undergoing upheaval in modern times; the other very low, consisting of reefs of coral, usually with lagoons in their centres, and in which there is evidence of a gradual subsidence of the ground. The extent and direction of these parallel volcanic bands have been depicted with great care by Darwin in his map before cited (p. [351]).
The most remarkable theatre of volcanic activity in the Northern Pacific—or, perhaps, in the whole world—occurs in the Sandwich Islands, which have been admirably treated of in a recent work by Mr. Dana.[482]
Volcanic region from central Asia to the Azores.—Another great region of subterranean disturbance is that which has been imagined to extend through a large part of Central Asia to the Azores, that is to say, from China and Tartary through Lake Aral and the Caspian to the Caucasus, and the countries bordering the Black Sea, then again through part of Asia Minor to Syria, and westward to the Grecian Islands, Greece, Naples, Sicily, the southern part of Spain, Portugal and the Azores. Respecting the eastern extremity of this line in China, we have little information, but many violent earthquakes are known to have occurred there. The volcano said to have been in eruption in the seventh century in Central Tartary is situated on the northern declivity of the Celestial Mountains, not far distant from the large lake called Issikoul; and Humboldt mentions other vents and solfataras in the same quarter, which are all worthy of notice, as being far more distant from the ocean (260 geographical miles) than any other known points of eruption.
We find on the western shores of the Caspian, in the country round Baku, a tract called the Field of Fire, which continually emits inflammable gas, while springs of naphtha and petroleum occur in the same vicinity, as also mud volcanoes. Syria and Palestine abound in volcanic appearances, and very extensive areas have been shaken, at different periods, with great destruction of cities and loss of lives. Continual mention is made in history of the ravages committed by earthquakes in Sidon, Tyre, Berytus, Laodicea, and Antioch, and in the Island of Cyprus. The country around the Dead Sea appears evidently, from the accounts of modern travellers, to be volcanic. A district near Smyrna, in Asia Minor, was termed by the Greeks Catacecaumene, or "the burnt up," where there is a large arid territory, without trees, and with a cindery soil.[483] This country was visited in 1841 by Mr. W. J. Hamilton, who found in the valley of the Hermus perfect cones of scoriæ, with lava-streams, like those of Auvergne, conforming to the existing river-channels, and with their surface undecomposed.[484]
Grecian Archipelago.—Proceeding westwards, we reach the Grecian Archipelago, where Santorin, afterwards to be described, is the grand centre of volcanic action.
It was Von Buch's opinion that the volcanoes of Greece were arranged in a line running N. N. W. and S. S. E., and that they afforded the only example in Europe of active volcanoes having a linear direction; but M. Virlet, on the contrary, announces as the result of his investigations, made during the French expedition to the Morea in 1829, that there is no one determinate line of direction for the volcanic phenomena in Greece, whether we follow the points of eruptions, or the earthquakes, or any other signs of igneous agency.[485]
Macedonia, Thrace, and Epirus, have always been subject to earthquakes, and the Ionian Isles are continually convulsed.
Respecting Southern Italy, Sicily, and the Lipari Isles, it is unnecessary to enlarge here, as I shall have occasion again to allude to them. I may mention, however, that a band of volcanic action has been traced by Dr. Daubeny across the Italian Peninsula, from Ischia to Mount Vultur, in Apulia, the commencement of the line being found in the hot springs of Ischia, after which it is prolonged through Vesuvius to the Lago d'Ansanto, where gases similar to those of Vesuvius are evolved. Its farther extension strikes Mount Vultur, a lofty cone composed of tuff and lava, from one side of which carbonic acid and sulphuretted hydrogen are emitted.[486]
Traditions of deluges.—The traditions which have come down to us from remote ages of great inundations said to have happened in Greece and on the confines of the Grecian settlements, had doubtless their origin in a series of local catastrophes, caused principally by earthquakes. The frequent migrations of the earlier inhabitants, and the total want of written annals long after the first settlement of each country, make it impossible for us at this distance of time to fix either the true localities or probable dates of these events. The first philosophical writers of Greece were, therefore, as much at a loss as ourselves to offer a reasonable conjecture on these points, or to decide how many catastrophes might sometimes have become confounded in one tale, or how much this tale may have been amplified, in after times, or obscured by mythological fiction. The floods of Ogyges and Deucalion are commonly said to have happened before the Trojan war; that of Ogyges more than seventeen, and that of Deucalion more than fifteen centuries before our era. As to the Ogygian flood, it is generally described as having laid waste Attica, and was referred by some writers to a great overflowing of rivers, to which cause Aristotle also attributed the deluge of Deucalion, which, he says, affected Hellas only, or the central part of Thessaly. Others imagined the same event to have been due to an earthquake, which drew down masses of rock, and stopped up the course of the Peneus in the narrow defile between mounts Ossa and Olympus.
As to the deluge of Samothrace, which is generally referred to a distinct date, it appears that the shores of that small island and the adjoining mainland of Asia were inundated by the sea. Diodorus Siculus says that the inhabitants had time to take refuge in the mountains, and save themselves by flight; he also relates, that long after the event the fishermen of the island drew up in their nets the capitals of columns, which were the remains of cities submerged by that terrible catastrophe.[487] These statements scarcely leave any doubt that there occurred, at the period alluded to, a subsidence of the coast, accompanied by earthquakes and inroads of the sea. It is not impossible that the story of the bursting of the Black Sea through the Thracian Bosphorus into the Grecian Archipelago, which accompanied, and, as some say, caused the Samothracian deluge, may have reference to a wave, or succession of waves, raised in the Euxine by the same convulsion.
We know that subterranean movements and volcanic eruptions are often attended not only by incursions of the sea, but also by violent rains, and the complete derangement of the river drainage of the inland country, and by the damming up of the outlets of lakes by landslips, or obstructions in the courses of subterranean rivers, such as abound in Thessaly and the Morea. We need not therefore be surprised at the variety of causes assigned for the traditional floods of Greece, by Herodotus, Aristotle, Diodorus, Strabo, and others. As to the area embraced, had all the Grecian deluges occurred simultaneously, instead of being spread over many centuries, and had they, instead of being extremely local, reached at once from the Euxine to the southwestern limit of the Peloponnese, and from Macedonia to Rhodes, the devastation would still have been more limited than that which visited Chili in 1835, when a volcanic eruption broke out in the Andes, opposite Chiloe, and another at Juan Fernandez, distant 720 geographical miles, at the same time that several lofty cones, in the Cordillera, 400 miles to the eastward of that island, threw out vapor and ignited matter. Throughout a great part of the space thus recently shaken in South America, cities were laid in ruins, or the land was permanently upheaved, or mountainous waves rolled inland from the Pacific.
Periodical alternation of Earthquakes in Syria and Southern Italy.—It has been remarked by Von Hoff, that from the commencement of the thirteenth to the latter half of the seventeenth century, there was an almost entire cessation of earthquakes in Syria and Judea; and, during this interval of quiescence, the Archipelago, together with part of the adjacent coast of Lesser Asia, as also Southern Italy and Sicily, suffered greatly from earthquakes; while volcanic eruptions were unusually frequent in the same regions. A more extended comparison, also, of the history of the subterranean convulsions of these tracts seems to confirm the opinion, that a violent crisis of commotion never visits both at the same time. It is impossible for us to declare, as yet, whether this phenomenon is constant in this and other regions, because we can rarely trace back a connected series of events farther than a few centuries; but it is well known that, where numerous vents are clustered together within a small area, as in many archipelagoes for instance, two of them are never in violent eruption at once. If the action of one becomes very great for a century or more, the others assume the appearance of spent volcanoes. It is, therefore, not improbable that separate provinces of the same great range of volcanic fires may hold a relation to one deep-seated focus, analogous to that which the apertures of a small group bear to some more superficial rent or cavity. Thus, for example, we may conjecture that, at a comparatively small distance from the surface, Ischia and Vesuvius mutually communicate with certain fissures, and that each affords relief alternately to elastic fluids and lava there generated. So we may suppose Southern Italy and Syria to be connected, at a much greater depth, with a lower part of the very same system of fissures; in which case any obstruction occurring in one duct may have the effect of causing almost all the vapor and melted matter to be forced up the other, and if they cannot get vent, they may be the cause of violent earthquakes. Some objections advanced against this doctrine that "volcanoes act as safety-valves," will be considered in the sequel.[488]
The northeastern portion of Africa, including Egypt, which lies six or seven degrees south of the volcanic line already traced, has been almost always exempt from earthquakes; but the northwestern portion, especially Fez and Morocco, which fall within the line, suffer greatly from time to time. The southern part of Spain also, and Portugal, have generally been exposed to the same scourge simultaneously with Northern Africa. The provinces of Malaga, Murcia, and Granada, and in Portugal the country round Lisbon, are recorded at several periods to have been devastated by great earthquakes. It will be seen, from Michell's account of the great Lisbon shock, in 1755, that the first movement proceeded from the bed of the ocean ten or fifteen leagues from the coast. So late as February 2, 1816, when Lisbon was vehemently shaken, two ships felt a shock in the ocean west from Lisbon; one of them at the distance of 120, and the other 262 French leagues from the coast[489]—a fact which is more interesting, because a line drawn through the Grecian Archipelago, the volcanic region of Southern Italy, Sicily, Southern Spain, and Portugal, will, if prolonged westward through the ocean, strike the volcanic group of the Azores, which may possibly therefore have a submarine connection with the European line.
In regard to the volcanic system of Southern Europe, it may be observed, that there is a central tract where the greatest earthquakes prevail, in which rocks are shattered, mountains rent, the surface elevated or depressed, and cities laid in ruins. On each side of this line of greatest commotion there are parallel bands of country where the shocks are less violent. At a still greater distance (as in Northern Italy, for example, extending to the foot of the Alps), there are spaces where the shocks are much rarer and more feeble, yet possibly of sufficient force to cause, by continued repetition, some appreciable alteration in the external form of the earth's crust. Beyond these limits, again, all countries are liable to slight tremors, at distant intervals of time, when some great crisis of subterranean movement agitates an adjoining volcanic region; but these may be considered as mere vibrations, propagated mechanically through the external covering of the globe, as sounds travel almost to indefinite distances through the air. Shocks of this kind have been felt in England, Scotland, Northern France, and Germany—particularly during the Lisbon earthquake. But these countries cannot, on this account, be supposed to constitute parts of the southern volcanic region, any more than the Shetland and Orkney islands can be considered as belonging to the Icelandic circle, because the sands ejected from Hecla have been wafted thither by the winds.
Besides the continuous spaces of subterranean disturbance, of which we have merely sketched the outline, there are other disconnected volcanic groups, of which several will be mentioned hereafter.
Lines of active and extinct Volcanoes not to be confounded.—We must always be careful to distinguish between lines of extinct and active volcanoes, even where they appear to run in the same direction; for ancient and modern systems may interfere with each other. Already, indeed, we have proof that this is the case; so that it is not by geographical position, but by reference to the species of organic beings alone, whether aquatic or terrestrial, whose remains occur in beds interstratified with lavas, that we can clearly distinguish the relative age of volcanoes of which no eruptions are recorded. Had Southern Italy been known to civilized nations for as short a period as America, we should have had no record of eruptions in Ischia; yet we might have assured ourselves that the lavas of that isle had flowed since the Mediterranean was inhabited by the species of testacea now living in the Neapolitan seas. With this assurance, it would not have been rash to include the numerous vents of that island in the modern volcanic group of Campania.
On similar grounds we may infer, without much hesitation, that the eruptions of Etna, and the modern earthquakes of Calabria, are a continuation of that action which, at a somewhat earlier period, produced the submarine lavas of the Val di Noto in Sicily. But on the other hand, the lavas of the Euganean hills and the Vicentin, although not wholly beyond the range of earthquakes in Northern Italy, must not be confounded with any existing volcanic system; for when they flowed, the seas were inhabited by animals almost all of them distinct from those now known to live, whether in the Mediterranean or other parts of the globe.
CHAPTER XXIII.
VOLCANIC DISTRICT OF NAPLES.
History of the volcanic eruptions in the district round Naples—Early convulsions in the island of Ischia—Numerous cones thrown up there—Lake Avernus—The Solfatara—Renewal of the eruptions of Vesuvius, A.D. 79—Pliny's description of the phenomena—His silence respecting the destruction of Herculaneum and Pompeii—Subsequent history of Vesuvius—Lava discharged in Ischia in 1302—Pause in the eruptions of Vesuvius—Monte Nuovo thrown up—Uniformity of the volcanic operations of Vesuvius and Phlegræan Fields in ancient and modern times.
I shall next give a sketch of the history of some of the volcanic vents dispersed throughout the great regions before described, and consider the composition and arrangement of their lavas and ejected matter. The only volcanic region known to the ancients was that of the Mediterranean; and even of this they have transmitted to us very imperfect records relating to the eruptions of the three principal districts, namely, that round Naples, that of Sicily and its isles, and that of the Grecian Archipelago. By far the most connected series of records throughout a long period relates to the first of these provinces; and these cannot be too attentively considered, as much historical information is indispensable in order to enable us to obtain a clear view of the connection and alternate mode of action of the different vents in a single volcanic group.
Early convulsions in the Island of Ischia.—-The Neapolitan volcanoes extend from Vesuvius, through the Phlegræan Fields, to Procida and Ischia, in a somewhat linear arrangement, ranging from the northeast to the southwest, as will be seen in the annexed map of the volcanic district of Naples ([fig. 40]). Within the space above limited, the volcanic force is sometimes developed in single eruptions from a considerable number of irregularly scattered points; but a great part of its action has been confined to one principal and habitual vent, Vesuvius or Somma. Before the Christian era, from the remotest periods of which we have any tradition, this principal vent was in a state of inactivity. But terrific convulsions then took place from time to time in Ischia (Pithecusa), and seem to have extended to the neighboring isle of Procida (Prochyta); for Strabo[490] mentions a story of Procida having been torn asunder from Ischia; and Pliny[491] derives its name from its having been poured forth by an eruption from Ischia.
The present circumference of Ischia along the water's edge is eighteen miles, its length from west to east about five, and its breadth from north to south three miles. Several Greek colonies which settled there before the Christian era were compelled to abandon it in consequence of the violence of the eruptions. First the Erythræans, and afterwards the Chalcidians, are mentioned as having been driven out by earthquakes and igneous exhalations. A colony was afterwards established by Hiero, king of Syracuse, about 380 years before the Christian era; but when they had built a fortress, they were compelled by an eruption to fly, and never again returned. Strabo tells us that Timæus recorded a tradition, that, a little before his time, Epomeus, the principal mountain in the centre of the island, vomited fire during great earthquakes; that the land between it and the coast had ejected much fiery matter, which flowed into the sea, and that the sea receded for the distance of three stadia, and then returning, overflowed the island. This eruption is supposed by some to have been that which formed the crater of Monte Corvo on one of the higher flanks of Epomeo, above Foria, the lava-current of which may still be traced, by aid of the scoriæ on its surface, from the crater to the sea.
A. Astroni. B. Monte Barbaro. M. Monte Nuovo. S. The Solfatara.
To one of the subsequent eruptions in the lower parts of the isle, which caused the expulsion of the first Greek colony, Monte Rotaro has been attributed, and it bears every mark of recent origin. The cone, which I examined in 1828, is remarkably perfect, and has a crater on its summit precisely resembling that of Monte Nuovo near Naples; but the hill is larger, and resembles some of the more considerable cones of single eruption near Clermont in Auvergne, and, like some of them, it has given vent to a lava-stream at its base, instead of its summit. A small ravine swept out by a torrent exposes the structure of the cone, which is composed of innumerable inclined and slightly undulating layers of pumice, scoriæ, white lapilli, and enormous angular blocks of trachyte. These last have evidently been thrown out by violent explosions, like those which in 1822 launched from Vesuvius a mass of augitic lava, of many tons' weight, to the distance of three miles, which fell in the garden of Prince Ottajano. The cone of Rotaro is covered with the arbutus, and other beautiful evergreens. Such is the strength of the virgin soil, that the shrubs have become almost arborescent; and the growth of some of the smaller wild plants has been so vigorous, that botanists have scarcely been able to recognize the species.
The eruption which dislodged the Syracusan colony is supposed to have given rise to that mighty current which forms the promontory of Zaro and Caruso. The surface of these lavas is still very arid and bristling, and is covered with black scoriæ; so that it is not without great labor that human industry has redeemed some small spots, and converted them into vineyards. Upon the produce of these vineyards the population of the island is almost entirely supported. It amounted when I was there, in 1828, to about twenty-five thousand, and was on the increase.
Part of Ischia seen from the West.
a. Monte Epomeo or San Niccola.
b. Monte Vico.
c. Another of the minor cones with a crater.[492]
From the date of the great eruption last alluded to, down to our own time, Ischia has enjoyed tranquillity, with the exception of one emission of lava hereafter to be described, which, although it occasioned much local damage, does not appear to have devastated the whole country, in the manner of more ancient explosions. There are, upon the whole, on different parts of Epomeo, or scattered through the lower tracts of Ischia, twelve considerable volcanic cones which have been thrown up since the island was raised above the surface of the deep; and many streams of lava may have flowed, like that of "Arso" in 1302, without cones having been produced; so that this island may, for ages before the period of the remotest traditions, have served as a safety-valve to the whole Terra di Lavoro, while the fires of Vesuvius were dormant.
Lake Avernus.—It seems also clear that Avernus, a circular lake near Puzzuoli, about half a mile in diameter, which is now a salubrious and cheerful spot, once exhaled mephitic vapors, such as are often emitted by craters after eruptions. There is no reason for discrediting the account of Lucretius, that birds could not fly over it without being stifled, although they may now frequent it uninjured.[493] There must have been a time when this crater was in action; and for many centuries afterwards it may have deserved the appellation of "atri jauna Ditis," emitting, perhaps, gases as destructive of animal life as those suffocating vapors given out by Lake Quilotoa, in Quito, in 1797, by which whole herds of cattle on its shores were killed,[494] or as those deleterious emanations which annihilated all the cattle in the island of Lancerote, one of the Canaries, in 1730.[495] Bory St. Vincent mentions, that in the same isle birds fell lifeless to the ground; and Sir William Hamilton informs us that he picked up dead birds on Vesuvius during an eruption.
Solfatara.—The Solfatara, near Puzzuoli, which may be considered as a nearly extinguished crater, appears, by the accounts of Strabo and others, to have been before the Christian era in very much the same state as at present, giving vent continually to aqueous vapor, together with sulphureous and muriatic acid gases, like those evolved by Vesuvius.
Ancient history of Vesuvius.—Such, then, were the points where the subterranean fires obtained vent, from the earliest period to which tradition reaches back, down to the first century of the Christian era; but we then arrive at a crisis in the volcanic action of this district—one of the most interesting events witnessed by man during the brief period throughout which he has observed the physical changes on the earth's surface. From the first colonization of Southern Italy by the Greeks, Vesuvius afforded no other indications of its volcanic character than such as the naturalist might infer, from the analogy of its structure to other volcanoes. These were recognized by Strabo, but Pliny did not include the mountain in his list of active vents. The ancient cone was of a very regular form, terminating not as at present in two peaks, but with a summit which presented, when seen from a distance, the even outline of an abruptly truncated cone. On the summit, as we learn from Plutarch, there was a crater with steep cliffs, and having its interior overgrown with wild vines, and with a sterile plain at the bottom. On the exterior, the flanks of the mountain were clothed with fertile fields richly cultivated, and at its base were the populous cities of Herculaneum and Pompeii. But the scene of repose was at length doomed to cease, and the volcanic fire was recalled to the main channel, which at some former unknown period had given passage to repeated streams of melted lava, sand, and scoriæ.
Renewal of its eruptions.—The first symptom of the revival of the energies of this volcano was the occurrence of an earthquake in the year 63 after Christ, which did considerable injury to the cities in its vicinity. From that time to the year 79 slight shocks were frequent; and in the month of August of that year they became more numerous and violent, till they ended at length in an eruption. The elder Pliny, who commanded the Roman fleet, was then stationed at Misenum; and in his anxiety to obtain a near view of the phenomena, he lost his life, being suffocated by sulphureous vapors. His nephew, the younger Pliny, remained at Misenum, and has given us, in his Letters, a lively description of the awful scene. A dense column of vapor was first seen rising vertically from Vesuvius, and then spreading itself out laterally, so that its upper portion resembled the head, and its lower the trunk of the pine, which characterizes the Italian landscape. This black cloud was pierced occasionally by flashes of fire, as vivid as lightning, succeeded by darkness more profound than night. Ashes fell even upon the ships at Misenum, and caused a shoal in one part of the sea—the ground rocked, and the sea receded from the shores, so that many marine animals were seen on the dry sand. The appearances above described agree perfectly with those witnessed in more recent eruptions, especially those of Monte Nuovo, in 1538, and of Vesuvius in 1822.
The younger Pliny, although giving a circumstantial detail of so many physical facts, and describing the eruption and earthquake, and the shower of ashes which fell at Stabiæ, makes no allusion to the sudden overwhelming of two large and populous cities, Herculaneum and Pompeii. In explanation of this omission, it has been suggested that his chief object was simply to give Tacitus a full account of the particulars of his uncle's death. It is worthy, however, of remark, that had the buried cities never been discovered, the accounts transmitted to us of their tragical end might well have been discredited by the majority, so vague and general are the narratives, or so long subsequent to the event. Tacitus, the friend and contemporary of Pliny, when adverting in general terms to the convulsions, says merely that "cities were consumed or buried."[496]
Suetonius, although he alludes to the eruption incidentally, is silent as to the cities. They are mentioned by Martial, in an epigram, as immersed in cinders; but the first historian who alludes to them by name is Dion Cassius,[497] who flourished about a century and a half after Pliny. He appears to have derived his information from the traditions of the inhabitants, and to have recorded, without discrimination, all the facts and fables which he could collect. He tells us, "that during the eruption a multitude of men of superhuman stature, resembling giants, appeared, sometimes on the mountain, and sometimes in the environs—that stones and smoke were thrown out, the sun was hidden, and then the giants seemed to rise again, while the sounds of trumpets were heard, &c., &c.; and finally," he relates, "two entire cities, Herculaneum and Pompeii, were buried under showers of ashes, while all the people were sitting in the theatre." That many of these circumstances were invented, would have been obvious, even without the aid of Pliny's letters; and the examination of Herculaneum and Pompeii enables us to prove, that none of the people were destroyed in the theatres, and indeed that there were very few of the inhabitants who did not escape from both cities. Yet some lives were lost, and there was ample foundation for the tale in its most essential particulars.
It does not appear that in the year 79 any lava flowed from Vesuvius; the ejected substances, perhaps, consisted entirely of lapilli, sand, and fragments of older lava, as when Monte Nuovo was thrown up in 1538. The first era at which we have authentic accounts of the flowing of a stream of lava, is the year 1036, which is the seventh eruption from the revival of the fires of the volcano. A few years afterwards, in 1049, another eruption is mentioned, and another in 1138 (or 1139), after which a great pause ensued of 168 years. During this long interval of repose, two minor vents opened at distant points. First, it is on tradition that an eruption took place from the Solfatara, in the year 1198, during the reign of Frederick II., Emperor of Germany; and although no circumstantial detail of the event has reached us from those dark ages, we may receive the fact without hesitation.[498] Nothing more, however, can be attributed to this eruption, as Mr. Scrope observes, than the discharge of a light and scoriform trachytic lava, of recent aspect, resting upon the strata of loose tuff which covers the principal mass of trachyte.[499]
Volcanic eruption in Ischia, 1302.—The other occurrence is well authenticated—the eruption, in the year 1302, of a lava-stream from a new vent on the southeast end of the Island of Ischia. During part of 1301, earthquakes had succeeded one another with fearful rapidity; and they terminated at last with the discharge of a lava-stream from a point named the Campo del Arso, not far from the town of Ischia. This lava ran quite down to the sea—a distance of about two miles; in color it varies from iron-gray to reddish black, and is remarkable for the glassy felspar which it contains. Its surface is almost as sterile, after a period of five centuries, as if it had cooled down yesterday. A few scantlings of wild thyme, and two or three other dwarfish plants, alone appear in the interstices of the scoriæ, while the Vesuvian lava of 1767 is already covered with a luxuriant vegetation. Pontanus, whose country-house was burnt and overwhelmed, describes the dreadful scene as having lasted two months.[500] Many houses were swallowed up, and a partial emigration of the inhabitants followed. This eruption produced no cone, but only a slight depression, hardly deserving the name of a crater, where heaps of black and red scoriæ lie scattered around. Until this eruption, Ischia is generally believed to have enjoyed an interval of rest for about seventeen centuries; but Julius Obsequens,[501] who flourished A. D. 214, refers to some volcanic convulsions in the year 662 after the building of Rome (91 B. C.) As Pliny, who lived a century before Obsequens, does not enumerate this among other volcanic eruptions, the statement of the latter author is supposed to have been erroneous; but it would be more consistent, for reasons before stated, to disregard the silence of Pliny, and to conclude, that some kind of subterranean commotion, probably of no great violence, happened at the period alluded to.
History of Vesuvius after 1138.—To return to Vesuvius:—the next eruption occurred in 1306; between which era and 1631 there was only one other (in 1500), and that a slight one. It has been remarked, that throughout this period Etna was in a state of such unusual activity, as to lend countenance to the idea that the great Sicilian volcano may sometimes serve as a channel of discharge to elastic fluids and lava that would otherwise rise to the vents in Campania.
Formation of Monte Nuovo, 1538.—The great pause was also marked by a memorable event in the Phlegræan Fields—the sudden formation of a new mountain in 1538, of which we have received authentic accounts from contemporary writers.
Monte Nuovo, formed in the Bay of Baiæ, Sept. 29th, 1538.
1. Cone of Monte Nuovo.
2. Brim of crater of ditto.
3. Thermal spring, called Baths of Nero, or Stufe di Tritoli.
The height of this mountain, called ever since Monte Nuovo, has been determined by the Italian mineralogist Pini, to be 440 English feet above the level of the bay; its base is about eight thousand feet, or more than a mile and a half in circumference. According to Pini, the depth of the crater is 421 English feet from the summit of the hill, so that its bottom is only nineteen feet above the level of the sea. The cone is declared, by the best authorities, to stand partly on the site of the Lucrine Lake (4, [fig. 43]),[502] which was nothing more than the crater of a pre-existent volcano, and was almost entirely filled during the explosion of 1538. Nothing now remains but a shallow pool, separated from the sea by an elevated beach, raised artificially.
The Phlegræan Fields.
| 1. Monte Nuovo. | 4. Lucrine Lake. |
| 2. Monte Barbaro. | 5. The Solfatara. |
| 3. Lake Avernus. | 6. Puzzuoli. |
7. Bay of Baiæ.
Sir William Hamilton has given us two original letters describing this eruption. The first, by Falconi, dated 1538, contains the following passages.[503] "It is now two years since there have been frequent earthquakes at Puzzuoli, Naples, and the neighboring parts. On the day and in the night before the eruption (of Monte Nuovo), above twenty shocks, great and small, were felt. The eruption began on the 29th of September, 1538. It was on a Sunday, about one o'clock in the night, when flames of fire were seen between the hot baths and Tripergola. In a short time the fire increased to such a degree, that it burst open the earth in this place, and threw up so great a quantity of ashes and pumice-stones, mixed with water, as covered the whole country. The next morning (after the formation of Monte Nuovo) the poor inhabitants of Puzzuoli quitted their habitations in terror, covered with the muddy and black shower which continued the whole day in that country—flying from death, but with death painted in their countenances. Some with their children in their arms, some with sacks full of their goods; others leading an ass, loaded with their frightened family, towards Naples; others carrying quantities of birds, of various sorts, that had fallen dead at the beginning of the eruption; others, again, with fish which they had found, and which were to be met with in plenty on the shore, the sea having left them dry for a considerable time. I accompanied Signor Moramaldo to behold the wonderful effects of the eruption. The sea had retired on the side of Baiæ, abandoning a considerable tract, and the shore appeared almost entirely dry, from the quantity of ashes and broken pumice-stones thrown up by the eruption. I saw two springs in the newly discovered ruins; one before the house that was the queen's, of hot and salt water," &c.
So far Falconi: the other account is by Pietro Giacomo di Toledo, which begins thus:—"It is now two years since this province of Campagna has been afflicted with earthquakes, the country about Puzzuoli much more so than any other parts; but the 27th and the 28th of the month of September last, the earthquakes did not cease day or night in the town of Puzzuoli: that plain which lies between Lake Avernus, the Monte Barbaro, and the sea, was raised a little, and many cracks were made in it, from some of which issued water; at the same time the sea, immediately joining the plain, dried up about two hundred paces, so that the fish were left on the sand a prey to the inhabitants of Puzzuoli. At last, on the 29th of the same month, about two o'clock in the night, the earth opened near the lake, and discovered a horrid mouth, from which were vomited furiously smoke, fire, stones, and mud, composed of ashes, making at the time of its opening a noise like the loudest thunder. The stones which followed were by the flames converted to pumice, and some of these were larger than an ox. The stones went about as high as a cross-bow can carry, and then fell down, sometimes on the edge, and sometimes into the mouth itself. The mud was of the color of ashes, and at first very liquid, then by degrees less so, and in such quantities, that in less than twelve hours, with the help of the above-mentioned stones, a mountain was raised of 1000 paces in height. Not only Puzzuoli and the neighboring country was full of this mud, but the city of Naples also; so that many of its palaces were defaced by it. Now this eruption lasted two nights and two days without intermission, though, it is true, not always with the same force; the third day the eruption ceased, and I went up with many people to the top of the new hill, and saw down into its mouth, which was a round cavity about a quarter of a mile in circumference, in the middle of which, the stones which had fallen were boiling up, just as a caldron of water boils on the fire. The fourth day it began to throw up again, and the seventh much more, but still with less violence than the first night. At this time many persons who were on the hill were knocked down by the stones and killed, or smothered with the smoke. In the day the smoke still continues, and you often see fire in the midst of it in the nighttime."[504]
It will be seen that both these accounts, written immediately after the birth of Monte Nuovo, agree in stating that the sea retired; and one mentions that its bottom was upraised; but they attribute the origin of the new hill exclusively to the jets of mud, showers of scoriæ, and large fragments of rock, cast out from a central orifice, for several days and nights. Baron Von Buch, however, in his excellent work on the Canary Islands, and volcanic phenomena in general, has declared his opinion that the cone and crater of Monte Nuovo were formed, not in the manner above described, but by the upheaval of solid beds of white tuff, which were previously horizontal, but which were pushed up in 1538, so as to dip away in all directions from the centre, with the same inclination as the sloping surface of the cone itself. "It is an error," he says, "to imagine that this hill was formed by eruption, or by the ejection of pumice, scoriæ, and other incoherent matter; for the solid beds of upraised tuff are visible all round the crater, and it is merely the superficial covering of the cone which is made up of ejected scoriæ."[505]
In confirmation of this view, M. Dufrénoy has cited a passage from the works of Porzio, a celebrated physician of that period, to prove that in 1538 the ground where Monte Nuovo stands was pushed up in the form of a great bubble or blister, which on bursting, gave origin to the present deep crater. Porzio, says, "that after two days and nights of violent earthquakes, the sea retired for nearly 200 yards; so that the inhabitants could collect great numbers of fish on this part of the shore, and see some springs of fresh water which rose up there. At length, on the third day of the calends of October (September 29), they saw a large tract of ground intervening between the foot of Monte Barbaro, and part of the sea, near the Lake Avernus, rise, and suddenly assume the form of an incipient hill; and at two o'clock at night, this heap of earth, opening as it were its mouth, vomited, with a loud noise, flames, pumice-stones, and ashes."[506]
So late as the year 1846 a fourth manuscript (written immediately after the eruption) was discovered and published in Germany. It was written in 1538 by Francesco del Nero,[507] who mentions the drying up of the bed of the sea near Puzzuoli, which enabled the inhabitants of the town to carry off loads of fish. About eight o'clock in the morning of the 29th September, the earth sunk down about 14 feet in that place where the volcanic orifice now appears, and there issued forth a small stream of water, at first cold, and afterwards tepid. At noon, on the same day, the earth began to swell up in the same spot where it had sunk down 14 feet, so as to form a hill. About this time fire issued forth, and gave rise to the great gulf, "with such a force, noise, and shining light, that I, who was standing in my garden, was seized with terror. Forty minutes afterwards, although unwell, I got upon a neighboring height, from which I saw all that took place, and by my troth it was a splendid fire, that threw up for a long time much earth and many stones, which fell back again all round the gulf, in a semicircle of from one to three bow-shots in diameter, and, filling up part of the sea, formed a hill nearly of the height of Monte Morello. Masses of earth and stones, as large as an ox, were shot up from the fiery gulf into the air, to a height which I estimate at a mile and a half. When they descended, some were dry, others in a soft muddy state." He concludes by alluding again to the sinking of the ground, and the elevation of it which followed, and says that to him it was inconceivable how such a mass of stones and ashes could have been poured forth from the gulf. He also refers to the account which Porzio was to draw up for the Viceroy.
On comparing these four accounts, recorded by eye-witnesses, there appears to be no real discrepancy between them. It seems clear that the ground first sunk down 14 feet on the site of the future volcano, and after having subsided it was again propelled upwards by the lava mingled with steam and gases, which were about to burst forth. Jets of red-hot lava, fragments of fractured rock, and occasionally mud composed of a mixture of pumice, tuff, and sea-water, were hurled into the air. Some of the blocks of stone were very large, leading us to infer that the ground which sank and rose again was much shattered and torn to pieces by the elastic vapors. The whole hill was not formed at once, but by an intermittent action extending over a week or more. It seems that the chasm opened between Tripergola and the baths in its suburbs, and that the ejected materials fell and buried that small town. A considerable part, however, of the hill was formed in less than twenty-four hours, and in the same manner as on a smaller scale the mud cones of the air volcanoes are produced, with a cavity in the middle. There is no difficulty in conceiving that the pumiceous mud, if so thrown out, may have set into a kind of stone on drying, just as some cements, composed of volcanic ashes, are known to consolidate with facility.
I am informed that Baron Von Buch discovered some marine shells of existing species, such as occur fossil in the tuff of the neighborhood, in beds exposed low down in the walls of the crater of Monte Nuovo. These may have been ejected in the mud mixed with sea-water which was cast out of the boiling gulf; or, as Signor Arcangelo Scacchi has suggested,[508] they may have been derived from the older tuff, which contains marine shells of recent species. The same observer remarks that Porzio's account upon the whole corroborates the doctrine of the cone having been formed by eruption, in proof of which he cites the following passage:—"But what was truly astonishing, a hill of pumice-stones and ashes was heaped up round the gulf to the height of a mile in a single night."[509] Signor Scacchi also adds that the ancient temple of Apollo, now at the foot of Monte Nuovo, and the walls of which still retain their perfect perpendicularity, could not possibly have maintained that position had the cone of Monte Nuovo really been the result of upheaval.
Tripergola was much frequented as a watering-place, and contained a hospital for those who resorted there for the benefit of the thermal springs; and it appears that there were no fewer than three inns in the principal street. Had Porzio stated that any of these buildings, or the ruins of them, were seen by himself or others raised up above the plain, a short time before the first eruption, so as to stand on the summit or slope of a newly-raised hillock, we might have been compelled, by so circumstantial a narrative, to adopt M. Dufrénoy's interpretation.
But in the absence of such evidence, we must appeal to the crater itself, where we behold a section of the whole mountain, without being able to detect any original nucleus of upheaved rock distinct from the rest; on the contrary, the whole mass is similar throughout in composition, and the cone very symmetrical in form; nor are there any clefts, such as might be looked for, as the effect of the sudden upthrow of stony masses. M. C. Prevost has well remarked, that if beds of solid and non-elastic materials had yielded to a violent pressure directed from below upward, we should find not simply a deep empty cavity, but an Fig. 44.
irregular opening, where many rents converged; and these rents would be now seen breaking through the walls of the crater, widening as they approach the centre. (See Fig. 44, a, b.)[510] Not a single fissure of this kind is observable in the interior of Monte Nuovo, where the walls of the crater are continuous and entire; nor are there any dikes implying that rents had existed, which were afterwards filled with lava or other matter.
It has moreover been often urged by Von Buch, De Beaumont, and others, who ascribe the conical form of volcanoes chiefly to upheaval from below, that in such mountains there are a great number of deep rents and ravines, which diverge on all sides like the spokes of a wheel, from near the central axis to the circumference or base of the cone, as in the case of Palma, Cantal, and Teneriffe. Yet the entire absence of such divergent fissures or ravines, in such cases as Monte Nuovo, Somma, or Etna, is passed by unnoticed, and appears to have raised in their minds no objection to their favorite theory.
It is, indeed, admitted by M. Dufrénoy that there are some facts which it is very difficult to reconcile with his own view of Porzio's record. Thus, for example, there are certain Roman monuments at the base of Monte Nuovo, and on the borders of Lake Avernus, such as the temples of Apollo (before mentioned) and Pluto, which do not seem to have suffered in the least degree by the supposed upheaval. "The walls which still exist have preserved their vertical position, and the vaults are in the same state as other monuments on the shores of the Bay of Baiæ. The long gallery which led to the Sibyl's Cave, on the other side of Lake Avernus, has in like manner escaped injury, the roof of the gallery remaining perfectly horizontal, the only change being that the soil of the chamber in which the Sibyl gave out her oracles is now covered by a few inches of water, which merely indicates a slight alteration in the level of Lake Avernus."[511] On the supposition, then, that pre-existing beds of pumiceous tuff were upraised in 1538, so as to form Monte Nuovo, it is acknowledged that the perfectly undisturbed state of the contiguous soil on which these ancient monuments stand, is very different from what might have been expected.
Mr. Darwin, in his "Volcanic Islands," has described several crateriform hills in the Galapagos Archipelago as composed of tuff which has evidently flowed like mud, and yet on consolidating has preserved an inclination of twenty and even thirty degrees. The tuff does not fold in continuous sheets round the hills as would have happened if they had been formed by the upheaval of horizontal layers. The author describes the composition of the tuff as very similar to that of Monte Nuovo, and the high angles at which the beds slope, both those which have flowed and those which have fallen in the form of ashes, entirely removes the difficulty supposed by M. Dufrénoy to exist in regard to the slope of Monte Nuovo, where it exceeds an angle of 18° to 20°.[512] Mr. Dana, also, in his account of the Sandwich Islands,[513] shows that in the "cinder cones" of that region, the strata have an original inclination of between 35° and 40°, while in the "tufa cones" formed near the sea, the beds slope at about an angle of 30°. The same naturalist also observed in the Samoan or Navigator Islands in Polynesia, that fragments of fresh coral had been thrown up together with volcanic matter to the height of 200 feet above the level of the sea in cones of tufa.[514]
I shall again revert to the doctrine of the origin of volcanic cones by upheaval, when speaking of Vesuvius, Etna, and Santorin, and shall now merely add, that, in 1538, the whole coast, from Monte Nuovo to beyond Puzzuoli, was upraised to the height of many feet above the bed of the Mediterranean, and has since retained the greater part of the elevation then acquired. The proofs of these remarkable changes of level will be considered at length when the phenomena of the temple of Serapis are described.[515]
Volcanoes of the Phlegræan Fields.—Immediately adjoining Monte Nuovo is the larger volcanic cone of Monte Barbaro (2, [fig. 43], p. 367), the "Gaurus inanis" of Juvenal—an appellation given to it probably from its deep circular crater, which is about a mile in diameter. Large as is this cone, it was probably produced by a single eruption; and it does not, perhaps, exceed in magnitude some of the largest of those formed in Ischia, within the historical era. It is composed chiefly of indurated tufa like Monte Nuovo, stratified conformably to its conical surface. This hill was once very celebrated for its wines, and is still covered with vineyards; but when the vine is not in leaf it has a sterile appearance, and, late in the year, when seen from the beautiful Bay of Baiæ, it often contrasts so strongly in verdure with Monte Nuovo, which is always clothed with arbutus, myrtle, and other wild evergreens, that a stranger might well imagine the cone of older date to be that thrown up in the sixteenth century.[516]
There is nothing, indeed, so calculated to instruct the geologist as the striking manner in which the recent volcanic hills of Ischia, and that now under consideration, blend with the surrounding landscape. Nothing seems wanting or redundant; every part of the picture is in such perfect harmony with the rest, that the whole has the appearance of having been called into existence by a single effort of creative power. Yet what other result could we have anticipated if nature has ever been governed by the same laws? Each new mountain thrown up—each new tract of land raised or depressed by earthquakes—should be in perfect accordance with those previously formed, if the entire configuration of the surface has been due to a long series of similar disturbances. Were it true that the greater part of the dry land originated simultaneously in its present state, at some era of paroxysmal convulsion, and that additions were afterwards made slowly and successively during a period of comparative repose; then, indeed, there might be reason to expect a strong line of demarcation between the signs of the ancient and modern changes. But the very continuity of the plan, and the perfect identity of the causes, are to many a source of deception; since by producing a unity of effect, they lead them to exaggerate the energy of the agents which operated in the earlier ages. In the absence of all historical information, they are as unable to separate the dates of the origin of different portions of our continents, as the stranger is to determine, by their physical features alone, the distinct ages of Monte Nuovo, Monte Barbara, Astroni, and the Solfatara.
The vast scale and violence of the volcanic operations in Campania, in the olden time, has been a theme of declamation, and has been contrasted with the comparative state of quiescence of this delightful region in the modern era. Instead of inferring, from analogy, that the ancient Vesuvius was always at rest when the craters of the Phlegræan Fields were burning—that each cone rose in succession,—and that many years, and often centuries, of repose intervened between different eruptions,—geologists seem to have generally conjectured that the whole group sprung up from the ground at once, like the soldiers of Cadmus when he sowed the dragon's teeth. As well might they endeavor to persuade us that on these Phlegræan Fields, as the poets feigned, the giants warred with Jove, ere yet the puny race of mortals were in being.
Modern eruptions of Vesuvius.—For nearly a century after the birth of Monte Nuovo, Vesuvius continued in a state of tranquillity. There had been no violent eruption for 492 years; and it appears that the crater was then exactly in the condition of the present extinct volcano of Astroni, near Naples. Bracini, who visited Vesuvius not long before the eruption of 1631, gives the following interesting description of the interior:—"The crater was five miles in circumference, and about a thousand paces deep: its sides were covered with brushwood, and at the bottom there was a plain on which cattle grazed. In the woody parts wild boars frequently harbored. In one part of the plain, covered with ashes, were three small pools, one filled with hot and bitter water, another salter than the sea, and a third hot, but tasteless."[517] But at length these forests and grassy plains were consumed, being suddenly blown into the air, and their ashes scattered to the winds. In December, 1631, seven streams of lava poured at once from the crater, and overflowed several villages, on the flanks and at the foot of the mountain. Resina, partly built over the ancient site of Herculaneum, was consumed by the fiery torrent. Great floods of mud were as destructive as the lava itself,—no uncommon occurrence during these catastrophes; for such is the violence of rains produced by the evolutions of aqueous vapor, that torrents of water descend the cone, and becoming charged with impalpable volcanic dust, and rolling along loose ashes, acquire sufficient consistency to deserve their ordinary appellation of "aqueous lavas."
A brief period of repose ensued, which lasted only until the year 1666, from which time to the present there has been a constant series of eruptions, with rarely an interval of rest exceeding ten years. During these three centuries, no irregular volcanic agency has convulsed other points in this district. Brieslak remarked, that such irregular convulsions had occurred in the Bay of Naples in every second century; as, for example, the eruption of the Solfatara, in the twelfth; of the lava of Arso, in Ischia, in the fourteenth; and of Monte Nuovo in the sixteenth; but the eighteenth has formed an exception to this rule, and this seems accounted for by the unprecedented number of eruptions of Vesuvius during that period; whereas, when the new vents opened, there had always been, as we have seen, a long intermittence of activity in the principal volcano.
CHAPTER XXIV.
VOLCANIC DISTRICT OF NAPLES—continued.
Dimensions and structure of the cone of Vesuvius—Fluidity and motion of lava—Dikes—Alluviums called "aqueous lavas"—Origin and composition of the matter enveloping Herculaneum and Pompeii—Condition and contents of the buried cities—Small number of skeletons—State of preservation of animal and vegetable substances—Rolls of papyrus—Stabiæ—Torre del Greco—Concluding remarks on the Campanian volcanoes.
Structure of the cone of Vesuvius.—Between the end of the eighteenth century and the year 1822, the great crater of Vesuvius had been gradually filled by lava boiling up from below, and by scoriæ falling from the explosions of minor mouths which were formed at intervals on its bottom and sides. In place of a regular cavity, therefore, there was a rough and rocky plain, covered with blocks of lava and scoriæ, and cut by numerous fissures, from which clouds of vapor were evolved. But this state of things was totally changed by the eruption of October, 1822, when violent explosions, during the space of more than twenty days, broke up and threw out all this accumulated mass, so as to leave an immense gulf or chasm, of an irregular, but somewhat elliptical shape, about three miles in circumference when measured along the very sinuous and irregular line of its extreme margin, but somewhat less than three quarters of a mile in its longest diameter, which was directed from N. E. to S. W.[518] The depth of this tremendous abyss has been variously estimated; for from the hour of its formation it increased daily by the dilapidation of its sides. It measured, at first, according to the account of some authors, two thousand feet in depth from the extreme part of the existing summit;[519] but Mr. Scrope, when he saw it, soon after the eruption, estimated its depth at less than half that amount. More than eight hundred feet of the cone was carried away by the explosions, so that the mountain was reduced in height from about 4200 to 3400 feet.[520]
As we ascend the sloping sides, the volcano appears a mass of loose materials—a mere heap of rubbish, thrown together without the slightest order; but on arriving at the brim of the crater, and obtaining a view of the interior, we are agreeably surprised to discover that the conformation of the whole displays in every part the most perfect symmetry and arrangement. The materials are disposed in regular strata, slightly undulating, appearing, when viewed in front, to be disposed in horizontal planes. But, as we make the circuit of the edge of the crater, and observe the cliffs by which it is encircled projecting or receding in salient or retiring angles, we behold transverse sections of the currents of lava and beds of sand and scoriæ, and recognize their true dip. We then discover that they incline outwards from the axis of the cone, at angles varying from 30° to 40°. The whole cone, in fact, is composed of a number of concentric coatings of alternating lavas, sand, and scoriæ. Every shower of ashes which has fallen from above, and every stream of lava descending from the lips of the crater, have conformed to the outward surface of the hill, so that one conical envelope may be said to have been successively folded round another, until the aggregation of the whole mountain was completed. The marked separation into distinct beds results from the different colors and degrees of coarseness in the sands, scoriæ, and lava, and the alternation of these with each other. The greatest difficulty, on the first view, is to conceive how so much regularity can be produced, notwithstanding the unequal distribution of sand and scoriæ, driven by prevailing winds in particular eruptions, and the small breadth of each sheet of lava as it first flows out from the crater.
But, on a closer examination, we find that the appearance of extreme uniformity is delusive; for when a number of beds thin out gradually, and at different points, the eye does not without difficulty recognize the termination of any one stratum, but usually supposes it continuous with some other, which at a short distance may lie precisely in the same plane. The slight undulations, moreover, produced by inequalities on the sides of the hill on which the successive layers were moulded, assist the deception. As countless beds of sand and scoriæ constitute the greater part of the whole mass, these may sometimes mantle continuously round the whole cone; and even lava streams may be of considerable breadth when first they overflow, and since, in some eruptions, a considerable part of the upper portion of the cone breaks down at once, may form a sheet extending as far as the space which the eye usually takes in, in a single section.
The high inclination of some of the beds, and the firm union of the particles even where there is evidently no cement, is another striking feature in the volcanic tuffs and breccias, which seems at first not very easy of explanation. But the last great eruption afforded ample illustration of the manner in which these strata are formed. Fragments of lava, scoriæ, pumice, and sand, when they fall at slight distances from the summit, are only half cooled down from a state of fusion, and are afterwards acted upon by the heat from within, and by fumeroles or small crevices in the cone through which hot vapors are disengaged. Thus heated, the ejected fragments cohere together strongly; and the whole mass acquires such consistency in a few days, that fragments cannot be detached without a smart blow of the hammer. At the same time sand and scoriæ, ejected to a greater distance, remain incoherent.[521]
Sir William Hamilton, in his description of the eruption of 1779, says that jets of liquid lava, mixed with stones and scoriæ, were thrown up to the height of at least ten thousand feet, having the appearance of a column of fire.[522] Some of these were directed by the winds towards Ottajano, and some of them falling almost perpendicularly, still red-hot and liquid, on Vesuvius, covered its whole cone, part of the mountain of Somma, and the valley between them. The falling matter being nearly as vividly inflamed as that which was continually issuing fresh from the crater, formed with it one complete body of fire, which could not be less than two miles and a half in breadth, and of the extraordinary height above mentioned, casting a heat to the distance of at least six miles round it. Dr. Clarke, also, in his account of the eruption of 1793, says that millions of red-hot stones were shot into the air full half the height of the cone itself, and then bending, fell all round in a fine arch. On another occasion he says that, as they fell, they covered nearly half the cone with fire.
The same author has also described the different appearance of the lava at its source, and at some distance from it, when it had descended into the plains below. At the point where it issued, in 1793, from an arched chasm in the side of the mountain, the vivid torrent rushed with the velocity of a flood. It was in perfect fusion, unattended with any scoriæ on its surface, or any gross materials not in a state of complete solution. It flowed with the translucency of honey, "in regular channels, cut finer than art can imitate, and glowing with all the splendor of the sun."—"Sir William Hamilton," he continues, "had conceived that no stones thrown upon a current of lava would make any impression. I was soon convinced of the contrary. Light bodies, indeed, of five, ten, and fifteen pounds' weight, made little or no impression even at the source; but bodies of sixty, seventy, and eighty pounds were seen to form a kind of bed on the surface of the lava, and float away with it. A stone of three hundred weight, that had been thrown out by the crater, lay near the source of the current of lava: I raised it upon one end, and then let it fall in upon the liquid lava; when it gradually sunk beneath the surface, and disappeared. If I wished to describe the manner in which it acted upon the lava, I should say that it was like a loaf of bread thrown into a bowl of very thick honey, which gradually involves itself in the heavy liquid, and then slowly sinks to the bottom.
"The lava, at a small distance from its source, acquires a darker tint upon its surface, is less easily acted upon, and, as the stream widens, the surface, having lost its state of perfect solution, grows harder and harder, and cracks into innumerable fragments of very porous matter, to which they give the name of scoriæ, and the appearance of which has led many to suppose that it proceeded thus from the mountain. There is, however, no truth in this. All lava, at its first exit from its native volcano, flows out in a liquid state, and all equally in fusion. The appearance of the scoriæ is to be attributed only to the action of the external air, and not to any difference in the materials which compose it, since any lava whatever, separated from its channel, and exposed to the action of the external air, immediately cracks, becomes porous, and alters its form. As we proceeded downwards, this became more and more evident; and the same lava which at its original source flowed in perfect solution, undivided, and free from incumbrances of any kind, a little farther down had its surface loaded with scoriæ in such a manner, that, upon its arrival at the bottom of the mountain, the whole current resembled nothing so much as a heap of unconnected cinders from an iron-foundry." In another place he says that "the rivers of lava in the plain resembled a vast heap of cinders, or the scoriæ of an iron-foundry, rolling slowly along, and falling with a rattling noise over one another."[523] Von Buch, who was in company with MM. de Humboldt and Gay-Lussac, describes the lava of 1805 (the most fluid on record) as shooting suddenly before their eyes from top to bottom of the cone in one single instant. Professor J. D. Forbes remarks that the length of the slope of the cone proper being about 1300 feet, this motion must correspond to a velocity of many hundred feet in a few seconds, without interpreting Von Buch's expression literally. The same lava, when it reached the level road at Torre del Greco, moved at the rate of only eighteen inches per minute, or three-tenths of an inch per second.[524] "Although common lava," observes Professor Forbes, "is nearly as liquid as melted iron, when it issues from the orifice of the crater, its fluidity rapidly diminishes, and as it becomes more and more burdened by the consolidated slag through which it has to force its way, its velocity of motion diminishes in an almost inconceivable degree; and at length, when it ceases to present the slightest external trace of fluidity, its movement can only be ascertained by careful and repeated observations, just as in the case of a glacier."[525]
It appears that the intensity of the light and heat of the lava varies considerably at different periods of the same eruption, as in that of Vesuvius in 1819 and 1820, when Sir H. Davy remarked different degrees of vividness in the white heat at the point where the lava originated.[526]
When the expressions "flame" and "smoke" are used in describing volcanic appearances, they must generally be understood in a figurative sense. We are informed, indeed, by M. Abich, that he distinctly saw, in the eruption of Vesuvius in 1834, the flame of burning hydrogen;[527] but what is usually mistaken for flame consists of vapor or scoriæ, and impalpable dust illuminated by that vivid light which is emitted from the crater below, where the lava is said to glow with the splendor of the sun. The clouds of apparent smoke are formed either of aqueous and other vapor, or of finely comminuted scoriæ.
Dikes in the recent cone, how formed.—The inclined strata before mentioned which dip outwards in all directions from the axis of the cone of Vesuvius, are intersected by veins or dikes of compact lava, for the most part in a vertical position. In 1828 these were seen to be about seven in number, some of them not less than four or five hundred feet in height, and thinning out before they reached the uppermost part of the cone. Being harder than the beds through which they pass, they have decomposed less rapidly, and therefore stand out in relief. When I visited Vesuvius, in November, 1828, I was prevented from descending into the crater by the constant ejections then thrown out; so that I got sight of three only of the dikes; but Signor Monticelli had previously had drawings made of the whole, which he showed me. The dikes which I saw were on that side of the cone which is encircled by Somma. The eruption before mentioned, of 1828, began in March, and in the November following the ejected matter had filled up nearly one-third of the deep abyss formed at the close of the eruption of 1822. In November I found a single black cone at the bottom of the crater continually throwing out scoriæ, while on the exterior of the cone I observed the lava of 1822, which had flowed out six years before, not yet cool, and still evolving much heat and vapor from crevices.
Hoffmann, in 1832, saw on the north side of Vesuvius, near the peak called Palo, a great many parallel bands of lava, some from six to eight feet thick, alternating with scoriæ and conglomerate. These beds, he says, were cut through by many dikes, some of them five feet broad. They resemble those of Somma, the stone being composed of grains of leucite and augite.[528]
There can be no doubt that the dikes above mentioned have been produced by the filling up of open fissures with liquid lava; but of the date of their formation we know nothing farther than that they are all subsequent to the year 79, and, relatively speaking, that they are more modern than all the lavas and scoriæ which they intersect. A considerable number of the upper strata are not traversed by them. That the earthquakes, which almost invariably precede eruptions, occasion rents in the mass, is well known; and, in 1822, three months before the lava flowed out, open fissures, evolving hot vapors, were numerous. It is clear that such rents must be ejected with melted matter when the column of lava rises, so that the origin of the dikes is easily explained, as also the great solidity and crystalline nature of the rock composing them, which has been formed by lava cooling slowly under great pressure.
It has been suggested that the frequent rending of volcanic cones during eruptions may be connected with the gradual and successive upheaval of the whole mass in such a manner as to increase the inclination of the beds composing the cone; and in accordance with the hypothesis before proposed for the origin of Monte Nuovo, Von Buch supposes that the present cone of Vesuvius was formed in the year 79, not by eruption, but by upheaval. It was not produced by the repeated superposition of scoriæ and lava cast out or flowing from a central source, but by the uplifting of strata previously horizontal. The entire cone rose at once, such as we now see it, from the interior and middle of Somma, and has since received no accession of height, but, on the contrary, has ever since been diminishing in elevation.[529]
Although I consider this hypothesis of Von Buch to be quite untenable, I may mention some facts which may at first sight seem to favor it. These are recorded by M. Abich in his account of the Vesuvian eruptions of 1833 and 1834, a work illustrated by excellent engravings of the volcanic phenomena which he witnessed.[530] It appears that, in the year 1834, the great crater of Vesuvius had been filled up nearly to the top with lava, which had consolidated and formed a level and unbroken plain, except that a small cone thrown up by the ejection of scoriæ rose in the middle of it like an island in a lake. At length this plain of lava was broken by a fissure which passed from N. E. to S. W., and along this line a great number of minute cones emitting vapor were formed. The first act of formation of these minor cones is said to have consisted of a partial upheaval of beds of lava previously horizontal, and which had been rendered flexible by the heat and tension of elastic fluids, which, rising from below, escaped from the centre of each new monticule. There would be considerable analogy between this mode of origin and that ascribed by Von Buch to Vesuvius and Somma, if the dimensions of the upraised masses were not on so different a scale, and if it was safe to reason from the inflation of bladders of half-fused lava, from fifteen to twenty-five feet in height, to mountains attaining an altitude of several thousand feet, and having their component strata strengthened by intersecting dikes of solid lava.
At the same time M. Abich mentions, that when, in August, 1834, a great subsidence took place in the platform of lava within the great crater, so that the structure of the central cone was laid open, it was seen to have been evidently formed, not by upheaval, but by the fall of cinders and scoriæ which had been thrown out during successive eruptions.[531]
Previous to the year 79, Vesuvius appears, from the description of its figure given by Strabo, to have been a truncated cone, having a level and even outline as seen from a distance. That it had a crater on its summit, we may infer from a passage in Plutarch, on which Dr. Daubeny has judiciously commented in his treatise on volcanoes.[532] The walls of the crater were evidently entire, except on one side, where there was a single narrow breach. When Spartacus, in the year 72, encamped his gladiators in this hollow, Clodius, the prætor, besieged him there, keeping the single outlet carefully guarded, and then let down his soldiers by scaling-ladders over the steep precipices which surrounded the crater, at the bottom of which the insurgents were encamped. On the side towards the sea, the walls of this original cavity, which must have been three miles in diameter, have been destroyed, and Brieslak was the first to announce the opinion, that this destruction happened during the tremendous eruption which occurred in 79, when the new cone, now called Vesuvius, was thrown up, which stands encircled on three sides by the ruins of the ancient cone, called Monte Somma.
Supposed section of Vesuvius and Somma.
a, Monte Somma, or the remains of the ancient cone of Vesuvius.
b, The Pedamentina, a terrace-like projection, encircling the base of the recent cone of Vesuvius on the south side.
c, Atrio del Cavallo.[533]
d, e, Crater left by eruption of 1822.
f, Small cone thrown up in 1828, at the bottom of the great crater.
g, g, Dikes intersecting Somma.
h, h, Dikes intersecting the recent cone of Vesuvius.
In the annexed diagram ([fig. 45]) it will be seen that on the side of Vesuvius opposite to that where a portion of the ancient cone of Somma (a) still remains, is a projection (b) called the Pedamentina, which some have supposed to be part of the circumference of the ancient crater broken down towards the sea, and over the edge of which the lavas of the modern Vesuvius have poured; the axis of the present cone of Vesuvius being, according to Visconti, precisely equidistant from the escarpment of Somma and the Pedamentina.
In the same diagram I have represented the slanting beds of the cone of Vesuvius as becoming horizontal in the Atrio del Cavallo (at c), where the base of the new cone meets the precipitous escarpment of Somma; for when the lava flows down to this point, as happened in 1822, its descending course is arrested, and it then runs in another direction along this small valley, circling round the base of the cone. Sand and scoriæ, also, blown by the winds, collect at the base of the cone, and are then swept away by torrents; so that there is always here a flatish plain, as represented. In the same manner, the small interior cone (f) must be composed of sloping beds, terminating in a horizontal plain; for, while this monticule was gradually gaining height by successive ejections of lava and scoriæ, in 1828, it was always surrounded by a flat pool of semi-fluid lava, into which scoriæ and sand were thrown.
In the steep simicircular escarpment of Somma, which faces the modern Vesuvius, we see a great number of sheets of lava inclined at an angle of about 26°. They alternate with scoriæ, and are intersected by numerous dikes, which, like the sheets of lava, are composed chiefly of augite, with crystals of leucite, but the rock in the dikes is more compact, having cooled and consolidated under greater pressure. Some of the dikes cut through and shift others, so that they have evidently been formed during successive eruptions. While the higher region of Somma is made up of these igneous products, there appear on its flanks, for some depth from the surface, as seen in a ravine called the "Fossa Grande," beds of white pumiceous tuff, resembling the tuff which, at Pausilippo, and other places, near Naples, contain shells of living Mediterranean species. It is supposed by Pilla, Von Buch, and others, that the tufaceous beds, which rise in Somma to more than half the height of that mountain, are, in like manner, of submarine origin, because a few sea-shells have been found in them, here and there, together with serpulæ of recent species attached to included blocks of limestone.[534]
It is contended, therefore, that as these strata were once accumulated beneath the sea, they may have been subjected as they rose to such an upward movement as may have given rise to a conical hill; and this hypothesis, it is said, acquires confirmation from the fact, that the sheets of lava near the summit of Somma are so compact and crystalline, and of such breadth individually, as would not have been the case had they run down a steep slope. They must, therefore, have consolidated on a nearly level surface, and have been subsequently uplifted into their present inclined position.
Unfortunately there are no sections of sufficient depth and continuity on the flanks of Somma, to reveal to us clearly the relations of the lava, scoriæ, and associated dikes, forming the highest part of the mountain, with the marine tuffs observed on its declivity. Both may, perhaps, have been produced contemporaneously when Somma raised its head, like Stromboli, above the sea, its sides and base being then submerged. Such a state of things may be indicated by a fact noticed by Von Buch, namely, that the pumiceous beds of Naples, when they approach Somma, contain fragments of the peculiar leucitic lava proper to that mountain, which are not found in the same tuff at a greater distance.[535] Portions, therefore, of this lava were either thrown out by explosions, or torn off by the waves, during the deposition of the pumiceous strata beneath the sea.
We have as yet but a scanty acquaintance with the laws which regulate the flow of lava beneath water, or the arrangement of scoriæ and volcanic dust on the sides of a submarine cone. There can, however, be little doubt that showers of ejected matter may settle on a steep slope, and may include shells and the remains of aquatic animals, which flourish in the intervals between eruptions. Lava under the pressure of water would be less porous; but, as Dr. Daubeny suggests, it may retain its fluidity longer than in the open air; for the rapidity with which heated bodies are cooled by being plunged into water arises chiefly from the conversion of the lower portions of water into steam, which steam absorbing much heat, immediately ascends, and is reconverted into water. But under the pressure of a deep ocean, the heat of the lava would be carried off more slowly, and only by the circulation of ascending and descending currents of water, those portions nearest the source of heat becoming specifically light, and consequently displacing the water above. This kind of circulation would take place with much less rapidity than in the atmosphere, inasmuch as the expansion of water by equal increments of heat is less considerable than that of air.[536]
We learn from the valuable observations made by Mr. Dana on the active volcanoes of the Sandwich Islands, that large sheets of compact basaltic lava have been poured out of craters at the top or near the summits of flattened domes higher than Etna, as in the case of Mount Loa for example, where a copious stream two miles broad and twenty-five miles long proceeded from an opening 13,000 feet above the level of the sea. The usual slope of these sheets of lava is between 5° and 10°; but Mr. Dana convinced himself that, owing to the suddenness with which they cool in the air, some lavas may occasionally form on slopes equalling 25°, and still preserve a considerable compactness of texture. It is even proved, he says, from what he saw in the great lateral crater of Kilauea, on the flanks of Mount Loa, that a mass of such melted rock may consolidate at an inclination of 30°, and be continuous for 300 or 400 feet. Such masses are narrow, he admits, "but if the source had been more generous, they would have had a greater breadth, and by a succession of ejections overspreading each cooled layer, a considerable thickness might have been attained."[537] The same author has also shown, as before mentioned, that in the "cinder cones" of the Sandwich Islands, the strata have an original inclination of between 35° and 40°.[538]
Mr. Scrope, writing in 1827, attributed the formation of a volcanic cone chiefly to matter ejected from a central orifice, but partly to the injection of lava into dikes, and "to that force of gaseous expansion, the intensity of which, in the central parts of the cone, is attested by local earthquakes, which so often accompany eruptions.[539] It is the opinion of MM. Von Buch, De Beaumont, and Dufrénoy, that the sheets of lava on Somma are so uniform and compact, that their original inclination did not exceed four or five degrees, and that four-fifths, therefore, of their present slope is due to their having been subsequently tilted and upraised. Notwithstanding the light thrown by M. de Beaumont on the laws regulating the flow and consolidation of lava, I do not conceive that these laws are as yet sufficiently determined to warrant us in assigning so much of the inclined position of the beds of Somma to the subsequent rending and dislocation of the cone. Even if this were admitted, it is far more in harmony with the usual mode of development of volcanic forces to suppose the movement which modified the shape of the cone to have been intermittent and gradual, and not to have consisted of a single effort, or one sudden and violent convulsion.[540]
Vesuvian lavas.—The lavas of Somma are characterized by containing disseminated crystals of leucite (called, by the French, amphigène), a mineral said to be very rare in the modern lavas of Vesuvius, which are in general much more scoriaceous and less crystalline than those of Somma.[541]
At the fortress near Torre del Greco a section is exposed, fifteen feet in height, of a current which ran into the sea; and it evinces, especially in the lower part, a decided tendency to divide into rude columns. A still more striking example may be seen to the west of Torre del Annunziata, near Forte Scassato, where the mass is laid open to the depth of twenty feet. In both these cases, however, the rock may rather be said to be divided into numerous perpendicular fissures, than to be prismatic, although the same picturesque effect is produced. In the lava-currents of Central France (those of the Vivarais, in particular), the uppermost portion, often forty feet or more in thickness, is an amorphous mass passing downwards into lava irregularly prismatic; and under this there is a foundation of regular and vertical columns; but these lavas are often one hundred feet or more in thickness. We can scarcely expect to discover the same phenomenon in the shallow currents of Vesuvius, where the lowest part has cooled more rapidly, although it may be looked for in modern streams in Iceland, which exceed even those of ancient France in volume.
Mr. Scrope mentions that, in the cliffs encircling the modern crater of Vesuvius, he saw many currents offering a columnar division, and some almost as regularly prismatic as any ranges of the older basalts; and he adds, that in some the spheroidal concretionary structure, on a large scale, was equally conspicuous.[542] Brieslak[543] also informs us that, in the siliceous lava of 1737, which contains augite, leucite, and crystals of felspar, he found very regular prisms in a quarry near Torre del Greco; an observation confirmed by modern authorities.[544]
Effects of decomposition on lavas.—The decomposition of some of the felspathic lavas, either by simple weathering, or by gaseous emanations, converts them from a hard to a soft clayey state, so that they no longer retain the smallest resemblance to rocks cooled down from a state of fusion. The exhalations of sulphuretted hydrogen and muriatic acid, which are disengaged continually from the Solfatara, also produce curious changes on the trachyte of that nearly extinct volcano: the rock is bleached, and becomes porous, fissile, and honey-combed, till at length it crumbles into a white siliceous powder.[545] Numerous globular concretions, composed of concentric laminæ, are also formed by the same vapors in this decomposed rock.[546]
Vesuvian minerals.—A great variety of minerals are found in the lavas of Vesuvius and Somma; augite, leucite, felspar, mica, olivine, and sulphur are most abundant. It is an extraordinary fact, that in an area of three square miles round Vesuvius, a greater number of simple minerals have been found than in any spot of the same dimensions on the surface of the globe. Häuy enumerated only 380 species of simple minerals as known to him; and no less than eighty-two had been found on Vesuvius and in the tuffs on the flanks of Somma before the end of the year 1828.[547] Many of these are peculiar to that locality. Some mineralogists have conjectured that the greater part of these were not of Vesuvian origin, but thrown up in fragments from some older formation, through which the gaseous explosions burst. But none of the older rocks in Italy, or elsewhere, contain such an assemblage of mineral products; and the hypothesis seems to have been prompted by a disinclination to admit that, in times so recent in the earth's history, the laboratory of nature could have been so prolific in the creation of new and rare compounds. Had Vesuvius been a volcano of high antiquity, formed when nature
Wanton'd as in her prime, and play'd at will Her virgin fancies,
it would have been readily admitted that these, or a much greater variety of substances, had been sublimed in the crevices of lava, just as several new earthy and metallic compounds are known to have been produced by fumeroles, since the eruption of 1822.
Mass enveloping Herculaneum and Pompeii.—In addition to the ejections which fall on the cone, and that much greater mass which finds its way gradually to the neighboring sea, there is a third portion, often of no inconsiderable thickness, composed of alluviums, spread over the valleys and plains at small distances from the volcano. Aqueous vapors are evolved copiously from volcanic craters during eruptions, and often for a long time subsequently to the discharge of scoriæ and lava: these vapors are condensed in the cold atmosphere surrounding the high volcanic peak, and heavy rains are thus caused. The floods thus occasioned, sweep along the impalpable dust and light scoriæ, till a current of mud is produced, which is called in Campania "lava d' acqua," and is often more dreaded than an igneous stream (lava di fuoco), from the greater velocity with which it moves. So late as the 27th of October, 1822, one of these alluviums descended the cone of Vesuvius, and, after overspreading much cultivated soil, flowed suddenly into the villages of St. Sebastian and Massa, where, filling the streets and interior of some of the houses, it suffocated seven persons. It will, therefore, happen very frequently that, towards the base of a volcanic cone, alternations will be found of lava, alluvium, and showers of ashes.
To which of these two latter divisions the mass enveloping Herculaneum and Pompeii should be referred, has been a question of the keenest controversy; but the discussion might have been shortened, if the combatants had reflected that, whether volcanic sand and ashes were conveyed to the towns by running water, or through the air, during an eruption, the interior of buildings, so long as the roofs remain entire, together with all underground vaults and cellars, could be filled only by an alluvium. We learn from history, that a heavy shower of sand, pumice, and lapilli, sufficiently great to render Pompeii and Herculaneum uninhabitable, fell for eight successive days and nights in the year 79, accompanied by violent rains.[548] We ought, therefore, to find a very close resemblance between the strata covering these towns and those composing the minor cones of the Phlegræan Fields, accumulated rapidly, like Monte Nuovo, during a continued shower of ejected matter; with this difference however, that the strata incumbent on the cities would be horizontal, whereas those on the cones are highly inclined; and that large angular fragments of rock, which are thrown out near the vent, would be wanting at a distance where small lapilli only can be found. Accordingly, with these exceptions, no identity can be more perfect than the form, and distribution of the matter at the base of Monte Nuovo, as laid open by the encroaching sea, and the appearance of the beds superimposed on Pompeii. That city is covered with numerous alternations of different horizontal beds of tuff and lapilli, for the most part thin, and subdivided into very fine layers. I observed the following section near the amphitheatre, in November, 1828—(descending series):—
| Feet | Inches. | |
| 1. Black sparkling sand from the eruption of 1822, containing minute regularly formed crystals of augite and tourmaline | 0 | 2½ |
| 2. Vegetable mould | 3 | 0 |
| 3. Brown incoherent tuff, full of pisolitic globules in layers, from half an inch to three inches in thickness | 1 | 6 |
| 4. Small scoriæ and white lapilli | 0 | 3 |
| 5. Brown earthy tuff, with numerous pisolitic globules | 0 | 9 |
| 6. Brown earthy tuff, with lapilli divided into layers | 4 | 0 |
| 7. Layer of whitish lapilli | 0 | 1 |
| 8. Gray solid tuff | 0 | 3 |
| 9. Pumice and white lapilli | 0 | 3 |
| —— | —— | |
| 10 | 3½ | |
| —— | —— |
Many of the ashes in these beds are vitrified, and harsh to the touch. Crystals of leucite, both fresh and farinaceous, have been found intermixed.[549] The depth of the bed of ashes above the houses is variable, but seldom exceeds twelve or fourteen feet, and it is said that the higher part of the amphitheatre always projected above the surface; though if this were the case, it seems inexplicable that the city should never have been discovered till the year 1750. It will be observed in the above section that two of the brown, half-consolidated tuffs are filled with small pisolitic globules. This circumstance is not alluded to in the animated controversy which the Royal Academy of Naples maintained with one of their members, Signor Lippi, as to the origin of the strata incumbent on Pompeii. The mode of aggregation of these globules has been fully explained by Mr. Scrope, who saw them formed in great numbers in 1822, by rain falling during the eruption on fine volcanic sand, and sometimes also produced like hail in the air, by the mutual attraction of the minutest particles of fine damp sand. Their occurrence, therefore, agrees remarkably well with the account of heavy rain, and showers of sand and ashes recorded in history.[550]
Lippi entitled his work, "Fù il fuoco o l' acqua che sotterò Pompei ed Ercolano?"[551] and he contended that neither were the two cities destroyed in the year 79, nor by a volcanic eruption, but purely by the agency of water charged with transported matter. His letters, wherein he endeavored to dispense, as far as possible, with igneous agency, even at the foot of the volcano, were dedicated, with great propriety, to Werner, and afford an amusing illustration of the polemic style in which geological writers of that day indulged themselves. His arguments were partly of an historical nature, derived from the silence of contemporary historians, respecting the fate of the cities, which, as we have already stated, is most remarkable, and partly drawn from physical proofs. He pointed out with great clearness the resemblance of the tufaceous matter in the vaults and cellars at Herculaneum and Pompeii to aqueous alluviums, and its distinctness from ejections which had fallen through the air. Nothing, he observes, but moist pasty matter could have received the impression of a woman's breast, which was found in a vault at Pompeii, or have given the cast of a statue discovered in the theatre at Herculaneum. It was objected to him, that the heat of the tuff in Herculaneum and Pompeii was proved by the carbonization of the timber, corn, papyrus-rolls, and other vegetable substances there discovered; but Lippi replied with truth, that the papyri would have been burnt up if they had come in contact with fire, and that their being only carbonized was a clear demonstration of their having been enveloped, like fossil wood, in a sediment deposited from water. The Academicians, in their report on his pamphlet, assert, that when the amphitheatre was first cleared out, the matter was arranged on the steps in a succession of concave layers, accommodating themselves to the interior form of the building, just as snow would lie if it had fallen there. This observation is highly interesting, and points to the difference between the stratification of ashes in an open building and of mud derived from the same in the interior of edifices and cellars. Nor ought we to call the allegation in question, because it could not be substantiated at the time of the controversy after the matter had been all removed; although Lippi took advantage of this removal, and met the argument of his antagonists by requiring them to prove the fact. There is decisive evidence that no stream of lava has ever reached Pompeii since it was first built, although the foundations of the town stand upon the old leucitic lava of Somma; several streams of which, with tuff interposed, had been cut through in excavations.
Infusorial beds covering Pompeii.—A most singular and unexpected discovery has been recently made (1844-5) by Professor Ehrenberg, respecting the remote origin of many of the layers of ashes and pumice enveloping Pompeii. They are, he says, in great part, of organic and freshwater origin, consisting of the siliceous cases of microscopic infusoria. What is still more surprising, this fact proves to be by no means an isolated or solitary example of an intimate relation between organic life and the results of volcanic activity. On the Rhine, several beds of tuff and pumiceous conglomerate, resembling the mass incumbent upon Pompeii and closely connected with extinct volcanoes, are now ascertained to be made up to a great extent of the siliceous cases of infusoria (or Diatomaceæ), invisible to the naked eye, and often half fused.[552] No less than 94 distinct species have already been detected in one mass of this kind, more than 150 feet thick, at Hochsimmer, on the left bank of the Rhine, near the Laacher-see. Some of these Rhenish infusorial accumulations appear to have fallen in showers, others to have been poured out of lake-craters in the form of mud, as in the Brohl valley.
In Mexico, Peru, the Isle of France, and several other volcanic regions, analogous phenomena have been observed, and everywhere the species of infusoria belong to freshwater and terrestrial genera, except in the case of the Patagonian pumiceous tuffs, specimens of which, brought home by Mr. Darwin, are found to contain the remains of marine animalcules. In various kinds of pumice ejected by volcanoes, the microscope has revealed to Professor Ehrenberg the siliceous cases of infusoria often half obliterated by the action of heat, and the fine dust thrown out into the air during eruptions, is sometimes referable to these most minute organic substances, brought up from considerable depths, and sometimes mingled with small particles of vegetable matter.
In what manner did the solid coverings of these most minute plants and animalcules, which can only originate and increase at the surface of the earth, sink down and penetrate into subterranean cavities, so as to be ejected from the volcanic orifices? We have of late years become familiar with the fact, in the process of boring Artesian wells, that the seeds of plants, the remains of insects, and even small fish, with other organic bodies, are carried in an uninjured state by the underground circulation of waters, to the depth of many hundred feet. With still greater facility in a volcanic region we may conjecture, that water and mud full of invisible infusoria may be sucked down, from time to time, into subterranean rents and hollows in cavernous lava which has been permeated by gases, or in rocks dislocated by earthquakes. It often happens that a lake which has endured for centuries in a volcanic crater, disappears suddenly on the approach of a new eruption. Violent shocks agitate the surrounding region, and ponds, rivers, and wells are dried up. Large cavities far below may thus become filled with fen-mud chiefly composed of the more indestructible and siliceous portions of infusoria, destined perhaps to be one day ejected in a fragmentary or half-fused state, yet without the obliteration of all traces of organic structure.[553]
Herculaneum.—It was remarked that no lava has flowed over the site of Pompeii, since that city was built, but with Herculaneum the case is different. Although the substance which fills the interior of the houses and the vaults must have been introduced in a state of mud, like that found in similar situations in Pompeii; yet the superincumbent mass differs wholly in composition and thickness. Herculaneum was situated several miles nearer to the volcano, and has, therefore, been always more exposed to be covered, not only by showers of ashes, but by alluviums and streams of lava. Accordingly, masses of both have accumulated on each other above the city, to a depth of nowhere less than 70, and in many places of 112 feet.[554]
The tuff which envelops the buildings consists of comminuted volcanic ashes, mixed with pumice. A mask imbedded in this matrix has left a cast, the sharpness of which was compared by Hamilton to those in plaster of Paris; nor was the mask in the least degree scorched, as if it had been imbedded in heated matter. This tuff is porous; and, when first excavated, is soft and easily worked, but acquires a considerable degree of induration on exposure to the air. Above this lowest stratum is placed, according to Hamilton, "the matter of six eruptions," each separated from the other by veins of good soil. In these soils Lippi states that he collected a considerable number of land shells—an observation which is no doubt correct; for many snails burrow in soft soils, and some Italian species descend, when they hybernate, to the depth of five feet and more from the surface. Della Torre also informs us that there is in one part of this superimposed mass a bed of true siliceous lava (lava di pietra dura); and, as no such current is believed to have flowed till near one thousand years after the destruction of Herculaneum, we must conclude, that the origin of a large part of the covering of Herculaneum was long subsequent to the first inhumation of the place. That city, as well as Pompeii, was a seaport. Herculaneum is still very near the shore, but a tract of land, a mile in length, intervenes between the borders of the Bay of Naples and Pompeii. In both cases the gain of land is due to the filling up of the bed of the sea with volcanic matter, and not to elevation by earthquakes, for there has been no change in the relative level of land and sea. Pompeii stood on a slight eminence composed of the lavas of the ancient Vesuvius, and flights of steps led down to the water's edge. The lowermost of these steps are said to be still on an exact level with the sea.
Condition and contents of the buried cities.—After these observations on the nature of the strata enveloping and surrounding the cities, we may proceed to consider their internal condition and contents, so far at least as they offer facts of geological interest. Notwithstanding the much greater depth at which Herculaneum was buried, it was discovered before Pompeii, by the accidental circumstance of a well being sunk, in 1713, which came right down upon the theatre, where the statues of Hercules and Cleopatra were soon found. Whether this city or Pompeii, both of them founded by Greek colonies, was the more considerable, is not yet determined; but both are mentioned by ancient authors as among the seven most flourishing cities in Campania. The walls of Pompeii were three miles in circumference; but we have, as yet, no certain knowledge of the dimensions of Herculaneum. In the latter place the theatre alone is open for inspection; the Forum, Temple of Jupiter, and other buildings, having been filled up with rubbish as the workmen proceeded, owing to the difficulty of removing it from so great a depth below ground. Even the theatre is only seen by torchlight, and the most interesting information, perhaps, which the geologist obtains there, is the continual formation of stalactite in the galleries cut through the tuff; for there is a constant percolation of water charged with carbonate of lime mixed with a small portion of magnesia. Such mineral waters must, in the course of time, create great changes in many rocks; especially in lavas, the pores of which they may fill with calcareous spar, so as to convert them into amygdaloids. Some geologists, therefore, are unreasonable when they expect that volcanic rocks of remote eras should accord precisely with those of modern date; since it is obvious that many of those produced in our own time will not long retain the same aspect and internal composition.
Both at Herculaneum and Pompeii, temples have been found with inscriptions commemorating the rebuilding of the edifices after they had been thrown down by an earthquake.[555] This earthquake happened in the reign of Nero, sixteen years before the cities were overwhelmed. In Pompeii, one-fourth of which is now laid open to the day, both the public and private buildings bear testimony to the catastrophe. The walls are rent, and in many places traversed by fissures still open. Columns are lying on the ground only half hewn from huge blocks of travertin, and the temple for which they were designed is seen half repaired. In some few places the pavement had sunk in, but in general it was undisturbed, consisting of large irregular flags of lava joined neatly together, in which the carriage wheels have often worn ruts an inch and a half deep. In the wider streets, the ruts are numerous and irregular; in the narrower, there are only two, one on each side, which are very conspicuous. It is impossible not to look with some interest even on these ruts, which were worn by chariot wheels more than seventeen centuries ago; and, independently of their antiquity, it is remarkable to see such deep incisions so continuous in a stone of great hardness.
Small number of skeletons.—A very small number of skeletons have been discovered in either city; and it is clear that most of the inhabitants not only found time to escape, but also to carry with them the principal part of their valuable effects. In the barracks at Pompeii were the skeletons of two soldiers chained to the stocks, and in the vaults of a country-house in the suburbs were the skeletons of seventeen persons, who appear to have fled there to escape from the shower of ashes. They were found inclosed in an indurated tuff, and in this matrix was preserved a perfect cast of a woman, perhaps the mistress of the house, with an infant in her arms. Although her form was imprinted on the rock, nothing but the bones remained. To these a chain of gold was suspended, and on the fingers of the skeletons were rings with jewels. Against the sides of the same vault was ranged a long line of earthen amphoræ.
The writings scribbled by the soldiers on the walls of their barracks, and the names of the owners of each house written over the doors, are still perfectly legible. The colors of fresco paintings on the stuccoed walls in the interior of buildings are almost as vivid as if they were just finished. There are public fountains decorated with shells laid out in patterns in the same fashion as those now seen in the town of Naples; and in the room of a painter, who was perhaps a naturalist, a large collection of shells was found, comprising a great variety of Mediterranean species, in as good a state of preservation as if they had remained for the same number of years in a museum. A comparison of these remains, with those found so generally in a fossil state would not assist us in obtaining the least insight into the time required to produce a certain degree of decomposition or mineralization; for, although under favorable circumstances much greater alteration might doubtless have been brought about in a shorter period, yet the example before us shows that an inhumation of seventeen centuries may sometimes effect nothing towards the reduction of shells to the state in which fossils are usually found.
The wooden beams in the houses at Herculaneum are black on the exterior, but, when cleft open, they appear to be almost in the state of ordinary wood, and the progress made by the whole mass towards the state of lignite is scarcely appreciable. Some animal and vegetable substances of more perishable kinds have of course suffered much change and decay, yet the state of preservation of these is truly remarkable. Fishing-nets are very abundant in both cities, often quite entire; and their number at Pompeii is the more interesting from the sea being now, as we stated, a mile distant. Linen has been found at Herculaneum, with the texture well defined; and in a fruiterer's shop in that city were discovered vessels full of almonds, chestnuts, walnuts, and fruit of the "carubiere," all distinctly recognizable from their shape. A loaf, also, still retaining its form, was found in a baker's shop, with his name stamped upon it. On the counter of an apothecary was a box of pills converted into a fine earthy substance; and by the side of it a small cylindrical roll evidently prepared to be cut into pills. By the side of these was a jar containing medicinal herbs. In 1827, moist olives were found in a square glass-case, and "caviare," or roe of a fish, in a state of wonderful preservation. An examination of these curious condiments has been published by Covelli of Naples, and they are preserved hermetically sealed in the museum there.[556]
Papyri.—There is a marked difference in the condition and appearance of the animal and vegetable substances found at Pompeii and Herculaneum; those of Pompeii being penetrated by a gray pulverulent tuff, those in Herculaneum seeming to have been first enveloped by a paste which consolidated round them, and then allowed them to become slowly carbonized. Some of the rolls of papyrus at Pompeii still retain their form; but the writing, and indeed almost all the vegetable matter, appear to have vanished, and to have been replaced by volcanic tuff somewhat pulverulent. At Herculaneum the earthy matter has scarcely ever penetrated; and the vegetable substance of the papyrus has become a thin friable black matter, almost resembling in appearance the tinder which remains when stiff paper has been burnt, in which the letters may still be sometimes traced. The small bundles of papyri, composed of five or six rolls tied up together, had sometimes lain horizontally, and were pressed in that direction, but sometimes they had been placed in a vertical position. Small tickets were attached to each bundle, on which the title of the work was inscribed. In one case only have the sheets been found with writing on both sides of the pages. So numerous are the obliterations and corrections, that many must have been original manuscripts. The variety of handwritings is quite extraordinary: nearly all are written in Greek, but there are a few in Latin. They were almost all found in a suburban villa in the library of one private individual; and the titles of four hundred of those least injured, which have been read, are found to be unimportant works, but all entirely new, chiefly relating to music, rhetoric, and cookery. There are two volumes of Epicurus "On Nature," and the others are mostly by writers of the same school, only one fragment having been discovered, by an opponent of the Epicurean system, Chrysippus.[557]
Probability of future discoveries of MSS.—In the opinion of some antiquaries, not one-hundredth part of the city has yet been explored: and the quarters hitherto cleared out at a great expense, are those where there was the least probability of discovering manuscripts. As Italy could already boast her splendid Roman amphitheatres and Greek temples, it was a matter of secondary interest to add to their number those in the dark and dripping galleries of Herculaneum; and having so many of the masterpieces of ancient art, we could have dispensed with the inferior busts and statues which could alone have been expected to reward our researches in the ruins of a provincial town. But from the moment that it was ascertained that rolls of papyrus preserved in this city could still be deciphered, every exertion ought to have been steadily and exclusively directed towards the discovery of other libraries. Private dwellings should have been searched, before so much labor and expense were consumed in examining public edifices. A small portion of that zeal and enlightened spirit which prompted the late French and Tuscan expedition to Egypt might long ere this, in a country nearer home, have snatched from oblivion some of the lost works of the Augustan age, or of eminent Greek historians and philosophers. A single roll of papyrus might have disclosed more matter of intense interest than all that was ever written in hieroglyphics.
Stabiæ.—Besides the cities already mentioned, Stabiæ, a small town about six miles from Vesuvius, and near the site of the modern Castel-a-Mare (see [map] of volcanic district of Naples), was overwhelmed during the eruption of 79. Pliny mentions that, when his uncle was there, he was obliged to make his escape, so great was the quantity of falling stones and ashes. In the ruins of this place, a few skeletons have been found buried in volcanic ejections, together with some antiquities of no great value, and rolls of papyrus, which, like those of Pompeii, were illegible.
Torre del Greco overflowed by lava.—Of the towns hitherto mentioned, Herculaneum alone has been overflowed by a stream of melted matter; but this did not, as we have seen, enter or injure the buildings, which were previously enveloped or covered over with tuff. But burning torrents have often taken their course through the streets of Torre del Greco, and consumed or inclosed a large portion of the town in solid rock. It seems probable that the destruction of three thousand of its inhabitants in 1631, which some accounts attribute to boiling water, was principally due to one of those alluvial floods which we before mentioned: but, in 1737, the lava itself flowed through the eastern side of the town, and afterwards reached the sea; and, in 1794, another current, rolling over the western side, filled the streets and houses, and killed more than four hundred persons. The main street is now quarried through this lava, which supplied building stones for new houses erected where others had been annihilated. The church was half buried in a rocky mass, but the upper portion served as the foundation of a new edifice.
The number of the population at present is estimated at fifteen thousand; and a satisfactory answer may readily be returned to those who inquire how the inhabitants can be so "inattentive to the voice of time and the warnings of nature,"[558] as to rebuild their dwellings on a spot so often devastated. No neighboring site unoccupied by a town, or which would not be equally insecure, combines the same advantages of proximity to the capital, to the sea, and to the rich lands on the flanks of Vesuvius. If the present population were exiled, they would immediately be replaced by another, for the same reason that the Maremma of Tuscany and the Campagna di Roma will never be depopulated, although the malaria fever commits more havoc in a few years than the Vesuvian lavas in as many centuries. The district around Naples supplies one amongst innumerable examples, that those regions where the surface is most frequently renewed, and where the renovation is accompanied, at different intervals of time, by partial destruction of animal and vegetable life, may nevertheless be amongst the most habitable and delightful on our globe.
I have already made a similar remark when speaking of tracts where aqueous causes are now most active; and the observation applies as well to parts of the surface which are the abode of aquatic animals, as to those which support terrestrial species. The sloping sides of Vesuvius give nourishment to a vigorous and healthy population of about eighty thousand souls; and the surrounding hills and plains, together with several of the adjoining isles, owe the fertility of their soil to matter ejected by prior eruptions. Had the fundamental limestone of the Apennines remained uncovered throughout the whole area, the country could not have sustained a twentieth part of its present inhabitants. This will be apparent to every geologist who has marked the change in the agricultural character of the soil the moment he has passed the utmost boundary of the volcanic ejections, as when, for example, at the distance of about seven miles from Vesuvius, he leaves the plain and ascends the declivity of the Sorrentine Hills.
Yet, favored as this region has been by Nature from time immemorial, the signs of the changes imprinted on it during the period that it has served as the habitation of man may appear in after-ages to indicate a series of unparalleled disasters. Let us suppose that at some future time the Mediterranean should form a gulf of the great ocean, and that the waves and tidal current should encroach on the shores of Campania, as it now advances upon the eastern coast of England; the geologist will then behold the towns already buried, and many more which will evidently be entombed hereafter, laid open in the steep cliffs, where he will discover buildings superimposed above each other, with thick intervening strata of tuff or lava—some unscathed by fire, like those of Herculaneum and Pompeii; others half melted down, as in Torre del Greco; and many shattered and thrown about in strange confusion, as in Tripergola, beneath Monte Nuovo. Among the ruins will be seen skeletons of men, and impressions of the human form stamped in solid rocks of tuff. Nor will the signs of earthquakes be wanting. The pavement of part of the Domitian Way, and the temple of the Nymphs, submerged at high tide, will be uncovered at low water, the columns remaining erect and uninjured. Other temples which had once sunk down, like that of Serapis, will be found to have been upraised again by subsequent movements. If they who study these phenomena, and speculate on their causes, assume that there were periods when the laws of Nature or the whole course of natural events differed greatly from those observed in their own time, they will scarcely hesitate to refer the wonderful monuments in question to those primeval ages. When they consider the numerous proofs of reiterated catastrophes to which the region was subject, they may, perhaps, commiserate the unhappy fate of beings condemned to inhabit a planet during its nascent and chaotic state, and feel grateful that their favored race has escaped such scenes of anarchy and misrule.
Yet what was the real condition of Campania during those years of dire convulsion? "A climate where heaven's breath smells sweet and wooingly—a vigorous and luxuriant nature unparalleled in its productions—a coast which was once the fairy-land of poets, and the favorite retreat of great men. Even the tyrants of the creation loved this alluring region, spared it, adorned it, lived in it, died in it."[559] The inhabitants, indeed, have enjoyed no immunity from the calamities which are the lot of mankind; but the principal evils which they have suffered must be attributed to moral, not to physical, causes—to disastrous events over which man might have exercised a control, rather than to the inevitable catastrophes which result from subterranean agency. When Spartacus encamped his army of ten thousand gladiators in the old extinct crater of Vesuvius, the volcano was more justly a subject of terror to Campania, than it has ever been since the rekindling of its fires.
CHAPTER XXV.
ETNA.
External physiognomy of Etna—Lateral cones—Their successive obliteration—Early eruptions—Monti Rossi in 1669—Towns overflowed by lava—Part of Catania overflowed—Mode of advance of a current of lava—Subterranean caverns—Marine strata at base of Etna—Val del Bove not an ancient crater—Its scenery—Form, composition, and origin of the dikes—Linear direction of cones formed in 1811 and 1819—Lavas and breccias—Flood produced by the melting of snow by lava—Glacier covered by a lava stream—Val del Bove how formed—Structure and origin of the cone of Etna—Whether the inclined sheets of lava were originally horizontal—Antiquity of Etna—Whether signs of diluvial waves are observable on Etna.
External physiognomy of Etna.—After Vesuvius, our most authentic records relate to Etna, which rises near the sea in solitary grandeur to the height of nearly eleven thousand feet.[560] The base of the cone is almost circular, and eighty-seven English miles in circumference; but if we include the whole district over which its lavas extend, the circuit is probably twice that extent.
Divided into three regions.—The cone is divided by nature into three distinct zones, called the fertile, the woody, and the desert regions. The first of these, comprising the delightful country around the skirts of the mountain, is well cultivated, thickly inhabited, and covered with olives, vines, corn, fruit-trees, and aromatic herbs. Higher up, the woody region encircles the mountain—an extensive forest six or seven miles in width, affording pasturage for numerous flocks. The trees are of various species, the chestnut, oak, and pine being most luxuriant; while in some tracts are groves of cork and beech. Above the forest is the desert region, a waste of black lava and scoriæ; where, on a kind of plain, rises a cone of eruption to the height of about eleven hundred feet, from which sulphureous vapors are continually evolved.
Cones produced by lateral eruption.—The most grand and original feature in the physiognomy of Etna is the multitude of minor cones which are distributed over its flanks, and which are most abundant in the woody region. These, although they appear but trifling irregularities when viewed from a distance as subordinate parts of so imposing and colossal a mountain, would, nevertheless, be deemed hills of considerable altitude in almost any other region. Without enumerating numerous monticules of ashes thrown out at different points, there are about eighty of these secondary volcanoes, of considerable dimensions; fifty-two on the west and north, and twenty-seven on the east side of Etna. One of the largest, called Monte Minardo, near Bronte, is upwards of 700 feet in height, and a double hill near Nicolosi, called Monti Rossi, formed in 1669, is 450 feet high, and the base two miles in circumference; so that it somewhat exceeds in size Monte Nuovo, before described. Yet it ranks only as a cone of the second magnitude amongst those produced by the lateral eruptions of Etna. On looking down from the lower borders of the desert region, these volcanoes present us with one of the most delightful and characteristic scenes in Europe. They afford every variety of height and size, and are arranged in beautiful and picturesque groups. However uniform they may appear when seen from the sea, or the plains below, nothing can be more diversified than their shape when we look from above into their craters, one side of which is generally broken down. There are, indeed, few objects in nature more picturesque than a wooded volcanic crater. The cones situated in the higher parts of the forest zone are chiefly clothed with lofty pines; while those at a lower elevation are adorned with chestnuts, oaks, beech, and holm.
Successive obliteration of these cones.—The history of the eruptions of Etna, imperfect and interrupted as it is, affords us, nevertheless, much insight into the manner in which the whole mountain has successively attained its present magnitude and internal structure. The principal cone has more than once fallen in and been reproduced. In 1444 it was 320 feet high, and fell in after the earthquakes of 1537. In the year 1693, when a violent earthquake shook the whole of Sicily, and killed sixty thousand persons, the cone lost so much of its height, says Boccone, that it could not be seen from several places in Valdemone, from which it was before visible. The greater number of eruptions happen either from the great crater, or from lateral openings in the desert region. When hills are thrown up in the middle zone, and project beyond the general level, they gradually lose their height during subsequent eruptions; for when lava runs down from the upper parts of the mountain, and encounters any of these hills, the stream is divided, and flows round them so as to elevate the gently sloping grounds from which they rise. In this manner a deduction is often made at once of twenty or thirty feet, or even more, from their height. Thus, one of the minor cones, called Monte Peluso, was diminished in altitude by a great lava stream which encircled it in 1444; and another current has recently taken the same course—yet this hill still remains four or five hundred feet high.
There is a cone called Monte Nucilla near Nicolosi, round the base of which several successive currents have flowed, and showers of ashes have fallen, since the time of history, till at last, during an eruption in 1536, the surrounding plain was so raised, that the top of the cone alone was left projecting above the general level. Monte Nero, situated above the Grotta dell' Capre, was in 1766 almost submerged by a current: and Monte Capreolo afforded, in the year 1669, a curious example of one of the last stages of obliteration; for a lava stream, descending on a high ridge which had been built up by the continued superposition of successive lavas, flowed directly into the crater, and nearly filled it. The lava, therefore, of each new lateral cone tends to detract from the relative height of lower cones above their base: so that the flanks of Etna, sloping with a gentle inclination, envelop in succession a great multitude of minor volcanoes, while new ones spring up from time to time.
Early eruptions of Etna.—Etna appears to have been in activity from the earliest times of tradition; for Diodorus Siculus mentions an eruption which caused a district to be deserted by the Sicani before the Trojan war. Thucydides informs us, that in the sixth year of the Peloponnesian war, or in the spring of the year 425 B. C., a lava stream ravaged the environs of Catania, and this he says was the third eruption which had happened in Sicily since the colonization of that island by the Greeks.[561] The second of the three eruptions alluded to by the historian took place in the year 475 B. C., and was that so poetically described by Pindar, two years afterwards, in his first Pythian ode:—
κιον Δ' ουρανια συνεχει Νιφοεσς' Αιτνα, πανετες Χιονος οξειας τιθηνα.
In these and the seven verses which follow, a graphic description is given of Etna, such as it appeared five centuries before the Christian era, and such as it has been seen when in eruption in modern times. The poet is only making a passing allusion to the Sicilian volcano, as the mountain under which Typhœus lay buried, yet by a few touches of his master-hand every striking feature of the scene has been faithfully portrayed. We are told of "the snowy Etna, the pillar of heaven—the nurse of everlasting frost, in whose deep caverns lie concealed the fountains of unapproachable fire—a stream of eddying smoke by day—a bright and ruddy flame by night; and burning rocks rolled down with loud uproar into the sea."
Minor cones on the flanks of Etna.
1. Monti Rossi, near Nicolosi, formed in 1669. 2. Vampeluso?[562]
Eruption of 1669—Monti Rossi formed.—The great eruption which happened in the year 1669 is the first which claims particular attention. An earthquake had levelled to the ground all the houses in Nicolosi, a town situated near the lower margin of the woody region, about twenty miles from the summit of Etna, and ten from the sea at Catania. Two gulfs then opened near that town, from whence sand and scoriæ were thrown up in such quantity, that in the course of three or four months a double cone was formed, called Monti Rossi, about 450 feet high. But the most extraordinary phenomenon occurred at the commencement of the convulsion in the plain of S. Lio. A fissure six feet broad, and of unknown depth, opened with a loud crash, and ran in a somewhat tortuous course to within a mile of the summit of Etna. Its direction was from north to south, and its length twelve miles. It emitted a most vivid light. Five other parallel fissures of considerable length afterwards opened, one after the other, and emitted smoke, and gave out bellowing sounds which were heard at the distance of forty miles. This case seems to present the geologist with an illustration of the manner in which those continuous dikes of vertical porphyry were formed, which are seen to traverse some of the older lavas of Etna; for the light emitted from the great rent of S. Lio appears to indicate that the fissure was filled to a certain height with incandescent lava, probably to the height of an orifice not far distant from Monti Rossi, which at that time opened and poured out a lava current. When the melted matter in such a rent has cooled, it must become a solid wall or dike, intersecting the older rocks of which the mountain is composed; similar rents have been observed during subsequent eruptions, as in 1832, when they ran in all directions from the centre of the volcano. It has been justly remarked by M. Elie de Beaumont, that such star-shaped fractures may indicate a slight upheaval of the whole of Etna. They may be the signs of the stretching of the mass, which may thus be raised gradually by a force from below.[563]
The lava current of 1669, before alluded to, soon reached in its course a minor cone called Mompiliere, at the base of which it entered a subterranean grotto, communicating with a suite of those caverns which are so common in the lavas of Etna. Here it appears to have melted down some of the vaulted foundations of the hill, so that the whole of that cone became slightly depressed and traversed by numerous open fissures.
Part of Catania destroyed.—The lava, after overflowing fourteen towns and villages, some having a population of between three and four thousand inhabitants, arrived at length at the walls of Catania. These had been purposely raised to protect the city; but the burning flood accumulated till it rose to the top of the rampart, which was sixty feet in height, and then it fell in a fiery cascade and overwhelmed part of the city. The wall, however, was not thrown down, but was discovered long afterwards by excavations made in the rock by the Prince of Biscari; so that the traveller may now see the solid lava curling over the top of the rampart as if still in the very act of falling.
This great current performed the first thirteen miles of its course in twenty days, or at the rate of 162 feet per hour, but required twenty-three days for the last two miles, giving a velocity of only twenty-two feet per hour; and we learn from Dolomieu that the stream moved during part of its course at the rate of 1500 feet an hour, and in others it took several days to cover a few yards.[564] When it entered the sea it was still six hundred yards broad, and forty feet deep. It covered some territories in the environs of Catania which had never before been visited by the lavas of Etna. While moving on, its surface was in general a mass of solid rock; and its mode of advancing, as is usual with lava streams, was by the occasional fissuring of the solid walls. A gentleman of Catania, named Pappalardo, desiring to secure the city from the approach of the threatening torrent, went out with a party of fifty men whom he had dressed in skins to protect them from the heat, and armed with iron crows and hooks. They broke open one of the solid walls which flanked the current near Belpasso, and immediately forth issued a rivulet of melted matter which took the direction of Paternó; but the inhabitants of that town, being alarmed for their safety, took up arms and put a stop to farther operations.[565]
As another illustration of the solidity of the walls of an advancing lava stream, I may mention an adventure related by Recupero, who, in 1766, had ascended a small hill formed of ancient volcanic matter, to behold the slow and gradual approach of a fiery current, two miles and a half broad; when suddenly two small threads of liquid matter issuing from a crevice detached themselves from the main stream, and ran rapidly towards the hill. He and his guide had just time to escape, when they saw the hill, which was fifty feet in height, surrounded, and in a quarter of an hour melted down into the burning mass, so as to flow on with it.
But it must not be supposed that this complete fusion of rocky matter coming in contact with lava is of universal, or even common, occurrence. It probably happens when fresh portions of incandescent matter come successively in contact with fusible materials. In many of the dikes which intersect the tuffs and lavas of Etna, there is scarcely any perceptible alteration effected by heat on the edges of the horizontal beds, in contact with the vertical and more crystalline mass. On the side of Mompiliere, one of the towns overflowed in the great eruption above described, an excavation was made in 1704; and by immense labor the workmen reached, at the depth of thirty-five feet, the gate of the principal church, where there were three statues, held in high veneration. One of these, together with a bell, some money, and other articles, were extracted in a good state of preservation from beneath a great arch formed by the lava. It seems very extraordinary that any works of art, not encased with tuff, like those in Herculaneum, should have escaped fusion in hollow spaces left open in this lava-current, which was so hot at Catania eight years after it entered the town, that it was impossible to hold the hand in some of the crevices.
Subterranean caverns on Etna.—Mention was made of the entrance of a lava-stream into a subterranean grotto, whereby the foundations of a hill were partially undermined. Such underground passages are among the most curious features on Etna, and appear to have been produced by the hardening of the lava, during the escape of great volumes of elastic fluids, which are often discharged for many days in succession, after the crisis of the eruption is over. Near Nicolosi, not far from Monti Rossi, one of these great openings may be seen, called the Fossa della Palomba, 625 feet in circumference at its mouth, and seventy-eight deep. After reaching the bottom of this, we enter another dark cavity, and then others in succession, sometimes descending precipices by means of ladders. At length the vaults terminate in a great gallery ninety feet long, and from fifteen to fifty broad, beyond which there is still a passage, never yet explored; so that the extent of these caverns remains unknown.[566] The walls and roofs of these great vaults are composed of rough and bristling scoriæ, of the most fantastic forms.
Marine strata at base of Etna.—If we skirt the fertile region at the base of Etna on its southern and eastern sides, we behold marine strata of clay sand, and volcanic tuff, cropping out from beneath the modern lavas. The marine fossil shells occurring in these strata are all of them, or nearly all, identical with species now inhabiting the Mediterranean; and as they appear at the height of from 600 to 800 feet above the sea near Catania, they clearly prove that there has been in this region, as in other parts of Sicily farther to the south, an upward movement of the ancient bed of the sea. It is fair, therefore, to infer that the whole mountain, with the exception of those parts which are of very modern origin, has participated in this upheaval.
If we view Etna from the south, we see the marine deposits above alluded to, forming a low line of hills (e, e, Fig. 47), or a steep inland slope or cliff (f), as in the annexed drawing taken from the limestone platform of Primosole. It should be observed however, in reference to this view, that the height of the volcanic cone is ten times greater than the hills at its base (e, e), although it appears less elevated, because the summit of the cone is ten or twelve times more distant from the plain of Catania than is Licodia.
View of Etna from the summit of the limestone platform of Primosole.
a, Highest cone. b, Montagnuola.
c, Monte Minardo, with smaller lateral cones above.
d, Town of Licodia dei Monaci.
e, Marine formation called creta, argillaceous and sandy beds with a few shells, and associated volcanic rocks.
f, Escarpment of stratified subaqueous volcanic tuff, &c., northwest of Catania.
g, Town of Catania.
h i, Dotted line expressing the highest boundary along which the marine strata are occasionally seen.
k, Plain of Catania.
l, Limestone platform of Primosole of the Newer Pliocene period.
m, La Motta di Catania.
The mountain is in general of a very symmetrical form, a flattened cone broken on its eastern side, by a deep valley, called the Val del Bove, or in the provincial dialect of the peasants, "Val di Bué," for here the herdsman
—— "in reducta valle mugientium Prospectat errantes greges."
Dr. Buckland was, I believe, the first English geologist who examined this valley with attention, and I am indebted to him for having described it to me, before I visited Sicily, as more worthy of attention than any single spot in that island, or perhaps in Europe.
PLATE III.
VIEW LOOKING UP THE VAL DEL BOVE, ETNA.
The Val del Bove commences near the summit of Etna, and descending into the woody region, is farther continued on one side by a second and narrower valley, called the Val di Calanna. Below this another, named the Val di St. Giacomo, begins,—a long narrow ravine, which is prolonged to the neighborhood of Zaffarana (e, [fig. 48]), on the confines of the fertile region. These natural incisions into the side of the volcano are of such depth that they expose to view a great part of the structure of the entire mass, which, in the Val del Bove, is laid open to the depth of from 3000 to above 4000 feet from the summit of Etna. The geologist thus enjoys an opportunity of ascertaining how far the internal conformation of the cone corresponds with what he might have anticipated as the result of that mode of increase which has been witnessed during the historical era.
Great valley on the east side of Etna.
| a, Highest cone. | b, Montagnuola. |
| c, Head of Val del Bove. | d, d, Serre del Solfizio. |
| e, Village of Zaffarana on the lower border of the woody region. | |
| f, One of the lateral cones. | g, Monti Rossi. |
Description of Plate III.—The accompanying view (Pl. III.) is part of a panoramic sketch which I made in November, 1828, and may assist the reader in comprehending some topographical details to be alluded to in the sequel, although it can convey no idea of the picturesque grandeur of the scene.
The great lava-currents of 1819 and 1811 are seen pouring down from the higher parts of the valley, overrunning the forests of the great plain, and rising up in the foreground on the left with a rugged surface, on which many hillocks and depressions appear, such as often characterize a lava-current immediately after its consolidation.
The small cone, No. 7, was formed in 1811, and was still smoking when I saw it in 1828. The other small volcano to the left, from which vapor is issuing, was, I believe, one of those formed in 1819.
The following are the names of some of the other points indicated in the sketch:—
| 1, Montagnuola. | 5, Finocchio. | 9, Musara. |
| 2, Torre del Filosofo. | 6, Capra. | 10, Zocolaro. |
| 3, Highest cone. | 7, Cone of 1811. | 11, Rocca di Calanna. |
| 4, Lepra. | 8, Cima del Asino. |
Description of Plate IV.—The second view (Pl. IV.) represents the same valley as seen from above, or looking directly down the Val del Bove, from the summit of the principal crater formed in 1819.[567] I am unable to point out the precise spot which this crater would occupy in the view represented in Plate III.; but I conceive that it would appear in the face of the great precipice, near which the smoke issuing from the cone No. 7 is made to terminate. There are many ledges of rock on the face of that precipice where eruptions have occurred.
The circular form of the Val del Bove is well shown in this view. (Pl. IV.) To the right and left are the lofty precipices which form the southern and northern sides of the great valley, and which are intersected by dikes projecting in the manner afterwards to be described. In the distance appears the "fertile region" of Etna, extending like a great plain along the sea-coast.
The spots particularly referred to in the plate are the following:—
a, Cape Spartivento, in Italy, of which the outline is seen in the distance. b, The promontory of Taormino, on the Sicilian coast. c, The river Alcantra. d, The small village of Riposto. f, The town of Aci Reale. g, Cyclopian islands, or "Faraglioni," in the Bay of Trezza. h, The great harbor of Syracuse. k, The Lake of Lentini. i, The city of Catania, near which is marked the course of the lava which flowed from the Monti Rossi in 1669, and destroyed part of the city. l, To the left of the view is the crater of 1811, which is also shown at No. 7 in Plate III. m, Rock of Musara, also seen at No. 9 in Plate III. e, Valley of Calanna.
The Val del Bove is of truly magnificent dimensions, a vast amphitheatre four or five miles in diameter, surrounded by nearly vertical precipices, varying from 1000 to above 3000 feet in height, the loftiest being at the upper end, and the height gradually diminishing on both sides. The feature which first strikes the geologist as distinguishing the boundary cliffs of this valley, is the prodigious multitude of verticle dikes which are seen in all directions traversing the volcanic beds. The circular form of this great chasm, and the occurrence of these countless dikes, amounting perhaps to several thousands in number, so forcibly recalled to my mind the phenomena of the Atrio del Cavallo, on Vesuvius, that I at first imagined that I had entered a vast crater, on a scale as far exceeding that of Somma, as Etna surpasses Vesuvius in magnitude.
But I was soon undeceived when I had attentively explored the different sides of the great amphitheatre, in order to satisfy myself whether the semicircular wall of the Val del Bove had ever formed the boundary of a crater, and whether the beds had the same quâquâ-versal dip which is so beautifully exhibited in the escarpment of Somma. Had the supposed analogy between Somma and the Val del Bove held true, the tufts and lavas at the head of the valley would have dipped to the west, those on the north side towards the north, and those on the southern side to the south. But such I did not find to be the inclination of the beds; they all dip towards the sea, or nearly east, as in the valleys of St. Giacomo and Calanna below.
PLATE IV.
VIEW OF THE VAL DEL BOVE, ETNA, AS SEEN FROM ABOVE, OR FROM THE CRATER OF 1819.
Scenery of the Val del Bove.—Let the reader picture to himself a large amphitheatre, five miles in diameter, and surrounded on three sides by precipices from 2000 to 3000 feet in height. If he has beheld that most picturesque scene in the chain of the Pyrenees, the celebrated "cirque of Gavarnie," he may form some conception of the magnificent circle of precipitous rocks which inclose, on three sides, the great plain of the Val del Bove. This plain has been deluged by repeated streams of lava; and although it appears almost level, when viewed from a distance, it is, in fact, more uneven than the surface of the most tempestuous sea. Besides the minor irregularities of the lava, the valley is in one part interrupted by a ridge of rocks, two of which, Musara and Capra, are very prominent. It can hardly be said that they
——"like giants stand To sentinel enchanted land;"
for although, like the Trosachs, in the Highlands of Scotland, they are of gigantic dimensions, and appear almost isolated, as seen from many points, yet the stern and severe grandeur of the scenery which they adorn is not such as would be selected by a poet for a vale of enchantment. The character of the scene would accord far better with Milton's picture of the infernal world; and if we imagine ourselves to behold in motion, in the darkness of the night, one of those fiery currents which have so often traversed the great valley, we may well recall
——"yon dreary plain, forlorn and wild, The seat of desolation, void of light, Save what the glimmering of these livid flames Casts pale and dreadful."
The face of the precipices already mentioned is broken in the most picturesque manner by the vertical walls of lava which traverse them. These masses visually stand out in relief, are exceedingly diversified in form, and of immense altitude. In the autumn, their black outline may often be seen relieved by clouds of fleecy vapor which settle behind them, and do not disperse until mid-day, continuing to fill the valley while the sun is shining on every other part of Sicily, and on the higher regions of Etna.
As soon as the vapors begin to rise, the changes of scene are varied in the highest degree, different rocks being unveiled and hidden by turns, and the summit of Etna often breaking through the clouds for a moment with its dazzling snows, and being then as suddenly withdrawn from the view.
An unusual silence prevails; for there are no torrents dashing from the rocks, nor any movement of running water in this valley such as may almost invariably be heard in mountainous regions. Every drop of water that falls from the heavens, or flows from the melting ice and snow, is instantly absorbed by the porous lava; and such is the dearth of springs, that the herdsman is compelled to supply his flocks, during the hot season, from stores of snow laid up in hollows of the mountain during winter.
The strips of green herbage and forest land, which have here and there escaped the burning lavas, serve, by contrast, to heighten the desolation of the scene. When I visited the valley, nine years after the eruption of 1819, I saw hundreds of trees, or rather the white skeletons of trees, on the borders of the black lava, the trunks and branches being all leafless, and deprived of their bark by the scorching heat emitted from the melted rock; an image recalling those beautiful lines:—
——"As when heaven's fire Hath scath'd the forest oaks, or mountain pines, With singed top their stately growth, though bare, Stands on the blasted heath."
Dikes at the base of the Serre del Solfizio, Etna.
Form, composition, and origin of the dikes.—But without indulging the imagination any longer in descriptions of scenery, I may observe that the dikes before mentioned form unquestionably the most interesting geological phenomenon in the Val del Bove. Some of these are composed of trachyte, others of compact blue basalt with olivine. They vary in breadth from two to twenty feet and upwards, and usually project from the face of the cliffs, as represented in the annexed drawing ([fig. 49]). They consist of harder materials than the strata which they traverse, and therefore waste away less rapidly under the influence of that repeated congelation and thawing to which the rocks in this zone of Etna are exposed. The dikes are for the most part vertical, but sometimes they run in a tortuous course through the tuffs and breccias, as represented in [fig. 50]. In the escarpment of Somma, where similar walls of lava cut through alternating beds of sand and scoriæ, a coating of coal-black rock, approaching in its nature and appearance to pitchstone, is seen at the contact of the dike with the intersected beds. I did not observe such parting layers at the junction of the Etnean dikes which I examined, but they may perhaps be discoverable.
Tortuous veins of lava at Punto di Giumento, Etna.
The geographical position of these dikes is most interesting, as they are very numerous near the head of the Val del Bove, where the cones of 1811 and 1819 were thrown up, as also in that zone of the mountain where lateral eruptions are frequent; whereas in the valley of Calanna, which is below that parallel, and in a region where lateral eruptions are extremely rare, scarcely any dikes are seen, and none whatever still lower in the valley of St. Giacomo. This is precisely what we might have expected, if we consider the vertical fissures now filled with rock to have been the feeders of lateral cones, or, in other words, the channels which gave passage to the lava-currents and scoriæ that have issued from vents in the forest zone. In other parts of Etna there may be numerous dikes at as low a level as the Valley of Calanna, because the line of lateral eruptions is not everywhere at the same height above the sea; but in the section above alluded to, there appeared to me an obvious connection between the frequency of dikes and of lateral eruptions.
Some fissures may have been filled from above, but I did not see any which, by terminating downwards, gave proof of such an origin. Almost all the isolated masses in the Val del Bove, such as Capra, Musara, and others, are traversed by dikes, and may, perhaps, have partly owed their preservation to that circumstance, if at least the action of occasional floods has been one of the destroying causes in the Val del Bove; for there is nothing which affords so much protection to a mass of strata against the undermining action of running water as a perpendicular dike of hard rock.
In the accompanying drawing ([fig. 51]), the flowing of the lavas of 1811 and 1819, between the rocks Finochio, Capra, and Musara, is represented. The height of the two last-mentioned isolated masses has been much diminished by the elevation of their base, caused by these currents. They may, perhaps, be the remnants of lateral cones which existed before the Val del Bove was formed, and may hereafter be once more buried by the lavas that are now accumulating in the valley.
View of the rocks Finochio, Capra, and Musara, Val del Bove.
From no point of view are the dikes more conspicuous than from the summit of the highest cone of Etna; a view of some of them is given in the annexed drawing. (Fig. 52.)
Eruption of 1811.—I have alluded to the streams of lava which were poured forth in 1811 and 1819. Gemmellaro, who witnessed these eruptions, informs us that the great crater in 1811 first testified by its loud detonations that a column of lava had ascended to near the summit of the mountain. A violent shock was then felt, and a stream broke out from the side of the cone, at no great distance from its apex. Shortly after this had ceased to flow, a second stream burst forth at another opening, considerably below the first; then a third still lower, and so on till seven different issues had been thus successively formed, all lying upon the same straight line. It has been supposed that this line was a perpendicular rent in the internal framework of the mountain, which rent was probably not produced at one shock, but prolonged successively downwards, by the lateral pressure and intense heat of the internal column of lava, as it subsided by gradual discharge through each vent.[568]
Eruption of 1819.—In 1819 three large mouths or caverns opened very near those which were formed in the eruptions of 1811, from which flames, red-hot cinders, and sand were thrown up with loud explosions. A few minutes afterwards another mouth opened below, from which flames and smoke issued; and finally a fifth, lower still, whence a torrent of lava flowed, which spread itself with great velocity over the deep and broad valley called "Val del Bove." This stream flowed two miles in the first twenty-four hours, and nearly as far in the succeeding day and night. The three original mouths at length united into one large crater, and sent forth lava, as did the inferior apertures, so that an enormous torrent poured down the "Val del Bove." When it arrived at a vast and almost perpendicular precipice, at the head of the Valley of Calanna, it poured over in a cascade, and, being hardened in its descent, made an inconceivable crash as it was dashed against the bottom. So immense was the column of dust raised by the abrasion of the tufaceous hill over which the hardened mass descended, that the Catanians were in great alarm, supposing a new eruption to have burst out in the woody region, exceeding in violence that near the summit of Etna.
View from the summit of Etna into the Val del Bove.[569]
Mode of advance of the lava.—Of the cones thrown up during this eruption, not more than two are of sufficient magnitude to be numbered among those eighty which were before described as adorning the flanks of Etna. The surface of the lava which deluged the "Val del Bove," consists of rocky and angular blocks, tossed together in the utmost disorder. Nothing can be more rugged, or more unlike the smooth and even superficies, which those who are unacquainted with volcanic countries may have pictured to themselves, in a mass of matter which had consolidated from a liquid state. Mr. Scrope observed this current in the year 1819, slowly advancing down a considerable slope, at the rate of about a yard an hour, nine months after its emission. The lower stratum being arrested by the resistance of the ground, the upper or central part gradually protruded itself, and, being unsupported, fell down. This in its turn was covered by a mass of more liquid lava, which swelled over it from above. The current had all the appearance of a huge heap of rough and large cinders rolling over and over upon itself by the effect of an extremely slow propulsion from behind. The contraction of the crust as it solidified, and the friction of the scoriform cakes against one another, produced a crackling sound. Within the crevices a dull red heat might be seen by night, and vapor issuing in considerable quantity was visible by day.[570]
It was stated that when the lava of 1819 arrived at the head of the Valley of Calanna, after flowing down the Val del Bove, it descended in a cascade. This stream, in fact, like many previous currents of lava which have flowed down successively from the higher regions of Etna, was turned by a great promontory projecting from the southern side of the Val del Bove. This promontory consists of the hills called Zocolaro and Calanna, and of a ridge of inferior height which connects them. (See [fig. 53].)
A, Zocolaro.
B, Monte di Calanna.
C, Plain at the head of the Valley of Calanna.
a, Lava of 1819 descending the precipice and flowing through the valley.
b, Lavas of 1811 and 1819 flowing round the hill of Calanna.
It happened in 1811 and 1819 that the flows of lava overtopped the ridge intervening between the hills of Zocolaro and Calanna, so that they fell in a cascade over a lofty precipice, and began to fill up the valley of Calanna (a, [fig. 53]). Other portions of the same lava-current (b) flowed round the promontory, and they exhibit one of the peculiar characteristics of such streams, namely that of becoming solid externally, even while yet in motion. Instead of thinning out gradually at their edges, their sides may often be compared to two rocky walls which are sometimes inclined at an angle of between thirty and forty degrees. When such streams are turned from their course by a projecting rock, they move right onwards in a new direction; and in the Valley of Calanna a considerable space has thus been left between the steep sides of the lavas b b, so deflected, and the precipitous escarpment of Zocolaro, A, which bounds the plain C.
Lavas and breccias.—In regard to the volcanic masses which are intersected by dikes in the Val del Bove, they consist in great part of graystone lavas, of an intermediate character between basalt and trachyte, and partly of porphyritic lava resembling trachyte, but to which that name cannot, according to Von Buch and G. Rose, be in strictness applied, because the felspar belongs to the variety called Labradorite. There is great similarity in the composition of the ancient and modern lavas of Etna, both consisting of felspar, augite, olivine, and titaniferous iron. The alternating breccias are made up of scoriæ, sand, and angular blocks of lava. Many of these fragments may have been thrown out by volcanic explosions, which, falling on the hardened surface of moving lava-currents, may have been carried to a considerable distance. It may also happen that when lava advances very slowly, in the manner of the flow of 1819, the angular masses resulting from the frequent breaking of the mass as it rolls over upon itself, may produce these breccias. It is at least certain that the upper portion of the lava-currents of 1811 and 1819 now consist of angular masses to the depth of many yards. D'Aubuisson has compared the surface of one of the ancient lavas of Auvergne to that of a river suddenly frozen over by the stoppage of immense fragments of drift-ice, a description perfectly applicable to these modern Etnean flows. The thickness of the separate beds of conglomerate or breccia which are seen in the same vertical section, is often extremely different, varying from 3 to nearly 50 feet, as I observed in the hill of Calanna.
Flood produced by the melting of snow by lava.—It is possible that some of the breccias or conglomerates may be referred to aqueous causes, as great floods occasionally sweep down the flanks of Etna, when eruptions take place in winter, and when the snows are melted by lava. It is true that running water in general exerts no power on Etna, the rain which falls being immediately imbibed by the porous lavas; so that, vast as is the extent of the mountain, it feeds only a few small rivulets, and these, even, are dry throughout the greater portion of the year. The enormous rounded boulders, therefore, of felspar-porphyry and basalt, a line of which can be traced from the sea, from near Giardini, by Mascali, and Zafarana, to the "Val del Bove," would offer a perplexing problem to the geologist, if history had not preserved the memorials of a tremendous flood which happened in this district in the year 1755. It appears that two streams of lava flowed in that year, on the 2d of March, from the highest crater; they were immediately precipitated upon an enormous mass of snow which then covered the whole mountain, and was extremely deep near the summit. The sudden melting of this frozen mass, by a fiery torrent three miles in length, produced a frightful inundation, which devastated the sides of the mountain for eight miles in length, and afterwards covered the lower flanks of Etna, where they were less steep, together with the plains near the sea, with great deposits of sand, scoriæ, and blocks of lava.
Many absurd stories circulated in Sicily respecting this event; such as that the water was boiling, and that it was vomited from the highest crater; that it was as salt as the sea, and full of marine shells; but these were mere inventions, to which Recupero, although he relates them as tales of the mountaineers, seems to have attached rather too much importance.
Floods of considerable violence have also been produced on Etna by the fall of heavy rains, aided, probably, by the melting of snow. By this cause alone, in 1761, sixty of the inhabitants of Acicatena were killed, and many of their houses swept away.[571]
Glacier covered by a lava-stream.—A remarkable discovery was made on Etna in 1828 of a great mass of ice, preserved for many years, perhaps for centuries, from melting, by the singular accident of a current of red-hot lava having flowed over it. The following are the facts in attestation of a phenomenon which must at first sight appear of so paradoxical a character. The extraordinary heat experienced in the South of Europe, during the summer and autumn of 1828, caused the supplies of snow and ice which had been preserved in the spring of that year, for the use of Catania and the adjoining parts of Sicily and the island of Malta, to fail entirely. Great distress was consequently felt for want of a commodity regarded in those countries as one of the necessaries of life rather than an article of luxury, and the abundance of which contributes in some of the larger cities to the salubrity of the water and the general health of the community. The magistrates of Catania applied to Signor M. Gemmellaro, in the hope that his local knowledge of Etna might enable him to point out some crevice or natural grotto on the mountain, where drift-snow was still preserved. Nor were they disappointed; for he had long suspected that a small mass of perennial ice at the foot of the highest cone was part of a large and continuous glacier covered by a lava-current. Having procured a large body of workmen, he quarried into this ice, and proved the superposition of the lava for several hundred yards, so as completely to satisfy himself that nothing but the subsequent flowing of the lava over the ice could account for the position of the glacier. Unfortunately for the geologist, the ice was so extremely hard, and the excavation so expensive, that there is no probability of the operations being renewed.
On the first of December, 1828, I visited this spot, which is on the southeast side of the cone, and not far above the Casa Inglese; but the fresh snow had already nearly filled up the new opening, so that it had only the appearance of the mouth of a grotto. I do not, however, question the accuracy of the conclusion of Signer Gemmellaro, who, being well acquainted with all the appearances of drift-snow in the fissures and cavities of Etna, had recognized, even before the late excavations, the peculiarity of the position of the ice in this locality. We may suppose that, at the commencement of the eruption, a deep mass of drift-snow had been covered by volcanic sand showered down upon it before the descent of the lava. A dense stratum of this fine dust mixed with scoriæ is well known to be an extremely bad conductor of heat; and the shepherds in the higher regions of Etna are accustomed to provide water for their flocks during summer, by strewing a layer of volcanic sand a few inches thick over the snow, which effectually prevents the heat of the sun from penetrating.
Suppose the mass of snow to have been preserved from liquefaction until the lower part of the lava had consolidated, we may then readily conceive that a glacier thus protected, at the height of ten thousand feet above the level of the sea, would endure as long as the snows of Mont Blanc, unless melted by volcanic heat from below. When I visited the great crater in the beginning of winter (December 1st, 1828), I found the crevices in the interior incrusted with thick ice, and in some cases hot vapors were actually streaming out between masses of ice and the rugged and steep walls of the crater.[572]
After the discovery of Signor Gemmellaro, it would not be surprising to find in the cones of the Icelandic volcanoes, which are covered for the most part with perpetual snow, repeated alternations of lava-streams and glaciers. We have, indeed, Lieutenant Kendall's authority for the fact that Deception Island, in New South Shetland, lat. 62° 55' S., is principally composed of alternate layers of volcanic ashes and ice.[573]
Origin of the Val del Bove.—It is recorded, as will be stated in the history of earthquakes (ch. 29), that in the year 1772 a great subsidence took place on Papandayang, the largest volcano in the island of Java; an extent of ground fifteen miles in length, and six in breadth, covered by no less than forty villages, was engulphed, and the cone lost 4000 feet of its height. In like manner the summit of Carguairazo, one of the loftiest of the Andes of Quito, fell in on the 19th July, 1698; and another mountain of still greater altitude in the same chain, called Capac Urcu, a short time before the conquest of America by the Spaniards.
It will also be seen in the next chapter that, so late as the year 1822, during a violent earthquake and volcanic eruption in Java, one side of the mountain called Galongoon, which was covered by a dense forest, became an enormous gulf in the form of a semicircle. The new cavity was about midway between the summit and the plain, and surrounded by steep rocks.
Now we might imagine a similar event, or a series of subsidences to have formerly occurred on the eastern side of Etna, although such catastrophes have not been witnessed in modern times, or only on a very trifling scale. A narrow ravine, about a mile long, twenty feet wide, and from twenty to thirty-six in depth, has been formed, within the historical era, on the flanks of the volcano, near the town of Mascalucia; and a small circular tract, called the Cisterna, near the summit, sank down in the year 1792, to the depth of about forty feet, and left on all sides of the chasm a vertical section of the beds, exactly resembling those which are seen in the precipices of the Val del Bove. At some remote periods, therefore, we might suppose more extensive portions of the mountain to have fallen in during great earthquakes.
But we ought not to exclude entirely from our speculations another possible agency, by which the great cavity may in part at least have been excavated, namely, the denuding action of the sea. Whether its waves may once have had access to the great valley before the ancient portion of Etna was upheaved to its present elevation, is a question which will naturally present itself to every geologist. Marine shells have been traced to a height of 800 feet above the base of Etna, and would doubtless be seen to ascend much higher, were not the structure of the lower region of the mountain concealed by floods of lava. We cannot ascertain to what extent a change in the relative level of land and sea may have been carried in this spot, but we know that some of the tertiary strata in Sicily of no ancient date reach a height of 3000 feet, and the marine deposits on the flanks of Etna, full of recent species of shells, may ascend to equal or greater heights. The narrow Valley of Calanna leading out of the Val del Bove, and that of San Giacomo lower down, have much the appearance of ravines swept out by aqueous action.
Structure and origin of the cone of Etna.—Our data for framing a correct theory of the manner in which the cone of Etna has acquired its present dimensions and internal structure are very imperfect, because it is on its eastern side only, in the Val del Bove above described, that we see a deep section exposed. Even here we obtain no insight into the interior composition of the mountain beyond a depth of between three and four thousand feet below the base of that highest cone, which has been several times destroyed and renewed. The precipices seen at the head of the Val del Bove, in the escarpment called the Serre del Solfizio, exhibit merely the same series of alternating lavas and breccias, which, descending with a general dip towards the sea, form the boundary cliffs of all other parts of the Val del Bove. If then we estimate the height of Etna at about 11,000 feet, we may say that we know from actual observation less than one-half of its component materials, assuming it to extend downwards to the level of the sea; namely, first, the highest cone, which is about 1000 feet above its base; and, secondly, the alternations of lava, tuff, and volcanic breccia, which constitute the rocks between the Cisterna, near the base of the upper cone, and the foot of the precipices at the head of the Val del Bove. At the lowest point to which the vertical section extends, there are no signs of any approach to a termination of the purely volcanic mass, which may perhaps penetrate many thousand feet farther downwards. There is, indeed, a rock called Rocca Gianicola, near the foot of the great escarpment, which consists of a large mass between 150 and 200 feet wide, not divided into beds, and almost resembling granite in its structure, although agreeing very closely in mineral composition with the lavas of Etna in general.[574] This mass may doubtless be taken as a representative of those crystalline or plutonic formations which would be met with in abundance if we could descend to greater depths in the direction of the central axis of the mountain. For a great body of geological evidence leads us to conclude, that rocks of this class result from the consolidation, under great pressure, of melted matter, which has risen up and filled rents and chasms, such, for example, as may communicate with the principal and minor vents of eruption in a volcano like Etna.
But, if we speculate on the nature of the formation which the lava may have pierced in its way upwards, we may fairly presume that a portion of these consist of marine tertiary rocks, like those of the neighboring Val di Noto, or those which skirt the borders of the Etnean cone, on its southern and eastern sides. Etna may, in fact, have been at first an insular volcano, raising its summit but slightly above the level of the sea; but we have no grounds for concluding that any of the beds exposed in the deep section of the Val del Bove have formed a part of such a marine accumulation. On the contrary, all the usual signs of subaqueous origin are wanting; and even if we believe the foundations of the mountain to have been laid in the sea, we could not expect this portion to be made visible in sections which only proceed downwards from the summit through one-half the thickness of the mountain, especially as the highest points attained by the tertiary strata in other parts of Sicily very rarely exceed 3000 feet above the sea.
On the eastern and southern base of Etna, a marine deposit, already alluded to, is traced up to the height of 800 or 1000 feet, before it becomes concealed beneath that covering of modern lavas which is continually extending its limits during successive eruptions, and prevents us from ascertaining how much higher the marine strata may ascend. As the imbedded shells belong almost entirely to species now inhabiting the Mediterranean, it is evident that there has been here an upheaval of the region at the base of Etna at a very modern period. It is fair, therefore, to infer that the volcanic nucleus of the mountain, partly perhaps of submarine, and partly of subaerial origin, participated in this movement, and was carried up bodily. Now, in proportion as a cone gains height by such a movement, combined with the cumulative effects of eruptions, throwing out matter successively from one or more central vents, the hydrostatic pressure of the columns of lava augments with their increasing height, until the time arrives when the flanks of the cone can no longer resist the increased pressure; and from that period they give way more readily, lateral outbursts becoming more frequent. Hence, independently of any local expansion of the fractured volcanic mass, those general causes by which the modern tertiary strata of a great part of Sicily have been raised to the height of several thousand feet above their original level, would tend naturally to render the discharge of lava and scoriæ from the summit of Etna less copious, and the lateral discharge greater.
If, then, a conical or dome-shaped mass of volcanic materials was accumulated to the height of 4000, or perhaps 7000 feet, before the upward movement began, or, what is much more probable, during the continuance of the upward movement, that ancient mass would not be buried under the products of newer eruptions, because these last would then be poured out chiefly at a lower level.
Since I visited Etna in 1828, M. de Beaumont has published a most valuable memoir on the structure and origin of that mountain, which he examined in 1834;[575] and an excellent description of it has also appeared in the posthumous work of Hoffmann.[576]
In M. de Beaumont's essay, in which he has explained his views with uncommon perspicuity and talent, he maintains that all the alternating stony and fragmentary beds, more than 3000 feet thick, which are exposed in the Val del Bove, were formed originally on a surface so nearly flat that the slope never exceeded three degrees. From this horizontal position they were at length heaved up suddenly (d'un seul coup) into a great mountain, to which no important additions have since been made. Prior to this upthrow, a platform is supposed to have existed above the level of the sea, in which various fissures opened; and from these melted matter was poured forth again and again, which spread itself around in thin sheets of uniform thickness. From the same rents issued showers of scoriæ and fragmentary matter, which were spread out so as to form equally uniform and horizontal beds, intervening between the sheets of lava. But although, by the continued repetition of these operations, a vast pile of volcanic matter, 4000 feet or more in thickness, was built up precisely in that region where Etna now rises, and to which nothing similar was produced elsewhere in Sicily, still we are told that Etna was not yet a mountain. No hypothetical diagram has been given to help us to conceive how this great mass of materials of supramarine origin could have been disposed of in horizontal beds, so as not to constitute an eminence towering far above the rest of Sicily; but it is assumed that a powerful force from below at length burst suddenly through the horizontal formation, uplifted it to a considerable height, and caused the beds to be, in many places, highly inclined. This elevatory force was not all expended on a single central point as Von Buch has imagined in the case of Palma, Teneriffe, or Somma, but rather followed for a short distance a linear direction.[577]
Among other objections that may be advanced against the theory above proposed, I may mention, first, that the increasing number of dikes as we approach the head of the Val del Bove, or the middle of Etna, and the great thickness of lava, scoriæ, and conglomerates in that region, imply that the great centre of eruption was always where it now is, or nearly at the same point, and there must, therefore, have been a tendency, from the beginning, to a conical or dome-shaped arrangement in the ejected materials. Secondly, were we to admit a great number of separate points of eruption, scattered over a plain or platform, there must have been a great number of cones thrown up over these different vents; and these hills, some of which would probably be as lofty as those now seen on the flanks of Etna, or from 300 to 750 feet in height, would break the continuity of the sheets of lava, while they would become gradually enveloped by them. The ejected materials, moreover, would slope at a high angle on the sides of these cones, and where they fell on the surrounding plain, would form strata thicker near the base of each cone than at a distance.
What then are the facts, it will be asked, to account for which this hypothesis of original horizontality, followed by a single and sudden effort of upheaval, which gave to the beds their present slope, has been invented? M. de Beaumont observes, that in the boundary precipices of the Val del Bove, sheets of lava and intercalated beds of cinders, mixed with pulverulent and fragmentary matter evidently cast out during eruptions, are sometimes inclined at steep angles, varying from 15° to 27°. It is impossible, he says, that the lavas could have flowed originally on planes so steeply inclined, for streams which descend a slope even of 10° form narrow stripes, and never acquire such a compact texture. Their thickness, moreover, always inconsiderable, varies with every variation of steepness, in the declivity down which they flow; whereas, in several parts of the Val del Bove, the sheets of lava are continuous for great distances, in spite of their steep inclination, and are often compact, and perfectly parallel one to the other, even where there are more than 100 beds of interpolated fragmentary matter.
The intersecting dikes also terminate upwards in many instances, at different elevations, and blend (or, as M. de Beaumont terms it, articulate) with sheets of lava, which they meet at right angles. It is therefore assumed that such dikes were the feeders of the streams of lava with which they unite, and they are supposed to prove that the platform, on the surface of which the melted matter was poured out, was at first so flat, that the fluid mass spread freely and equally in every direction, and not towards one point only of the compass, as would happen if it had descended the sloping sides of a cone. This argument is ingeniously and plainly put in the following terms:—"Had the melted matter poured down an inclined plane, after issuing from a rent, the sheet of lava would, after consolidation, have formed an elbow with the dike, like the upper bar of the letter F, instead of extending itself on both sides like that of a T."[578] It is also contended that a series of sheets of lava, formed on a conical or dome-shaped mountain, would have been more numerous at points farthest from the central axis, since every dike which had been the source of a lava-stream, must have poured its contents downwards, and never upwards.
Fig. 54.
Dikes as they would now appear had they been originally perpendicular.
In reference to the facts here stated, I may mention that the dikes which I saw in the Val del Bove were either vertical, or made almost all of them a near approach to the perpendicular, which could not have been the case had they been the feeders of horizontal beds of lava, and had they consequently joined them originally at right angles, for then the dikes, as at a, b, c, [fig. 54], ought subsequently to have acquired a considerable slope, like the beds which they intersect. I may also urge another objection to the views above set forth, namely, that had the dikes been linear vents, or orifices of eruption, we must suppose the inter-stratified scoriæ and lapilli, as well as the lavas, to have come out of them, and in that case the irregular heaping up of fragmentary matter around the vents would, as before hinted, have disturbed that uniform thickness and parallelism of the beds which M. de Beaumont describes.
If, however, some of the sheets of lava join the dikes in such a manner, as to imply that they were in a melted state simultaneously with the contents of the fissures,—a point not easily ascertained, where the precipices are for the most part inaccessible,—the fact may admit of a different interpretation from that proposed by the French geologists. Rents like those before alluded to (p. 399), which opened in the plain of S. Lio in 1669, filled below with incandescent lava, may have lain in the way of currents of melted matter descending from higher openings. In that case, the matter of the current would have flowed into the fissure and mixed with the lava at its bottom. Numerous open rents of this kind are described by Mr. Dana as having been caused, during a late eruption, in one of the volcanic domes of the Sandwich Islands. They remained open at various heights on the slopes of the great cone, running in different directions, and demonstrate the possibility of future junctions of slightly inclined lava-streams with perpendicular walls of lava.
To me, therefore, it appears far more easy to explain the uniform thickness and parallelism of so many lavas and beds of fragmentary matter seen in the Val del Bove, by supposing them to have issued successively out of one or more higher vents near the summit of a great dome, than to imagine them to have proceeded from lateral dikes or rents opening in a level plain. In the Sandwich Islands, we have examples of volcanic domes 15,000 feet high, produced by successive outpourings from vents at or near the summit. One of these, Mount Loa, has a slope in all directions of 6° 30'; another, Mount Kea, a mean inclination of 7° 46'. That their lavas may occasionally consolidate on slopes of 25°, and even more, and still preserve considerable solidity of texture, has been already stated; see above, p. [383].
We know not how large a quantity of modern lava may have been poured into the bottom of the Val del Bove, yet we perceive that eruptions breaking forth near the centre of Etna have already made some progress in filling up this great hollow. Even within the memory of persons now living, the rocks of Musara and Capra have, as before stated, lost much of their height and picturesque grandeur by the piling up of recent lavas round their base (see [fig. 51], p. 408), and the great chasm has intercepted many streams which would otherwise have deluged the fertile region below, as has happened on the side of Catania. The volcanic forces are now laboring, therefore, to repair the breach which subsidence has caused on one side of the great cone; and unless their energy should decline, or a new sinking take place, they may in time efface this inequality. In that event, the restored portion will always be unconformable to the more ancient part, yet it will consist, like it, of alternating beds of lava, scoriæ;, and conglomerates, which, with all their irregularities, will have a general slope from the centre and summit of Etna towards the sea.
I shall conclude, then, by remarking that I conceive the general inclination of the alternating stony and fragmentary beds of the Val del Bove, from the axis of Etna towards its circumference or base, and the greater thickness of the volcanic pile as we approach the central parts of the mountain, to be due to the preponderance of eruptions from that centre. These gave rise, from the first, to a dome-shaped mass, which has ever since been increasing in height and area, being fractured again and again by the expansive force of vapors, and the several parts made to cohere together more firmly after the solidification of the lava with which every open fissure and chasm has been filled. At the same time the cone may have gained a portion of its height by the elevatory effect of such dislocating movements, and the sheets of lava may have acquired in some places a greater, in others a less, inclination than that which at first belonged to them.
Non-volcanic protuberance and valley of elevation.
But had the mountain been due solely, or even principally, to upheaval, its structure would have resembled that which geologists have so often recognized in dome-shaped hills, or certain elevated regions, which all consider as having been thrust up by a force from below. In this case there is often an elliptical cavity at the summit, due partly to the fracture of the upraised rocks, but still more to aqueous denudation, as they rose out of the sea. The central cavity, or valley, exposes to view the subjacent formation c, [fig. 55], and the incumbent mass dips away on all sides from the axis, but has no tendency to thin out near the base of the dome, or at x, x; whereas at this point the volcanic mass terminates (see [fig. 56]) and allows the fundamental rock c to appear at the surface. In the last diagram, the more ordinary case is represented of a great hollow or crater at the summit of the volcanic cone; but instead of this, we have seen that in the case of Etna there is a deep lateral depression, called the Val del Bove, the upper part of which approaches near to the central axis, and the origin of which we have attributed to subsidence.
Volcanic mountain and crater.
Antiquity of the cone of Etna.—It was before remarked that confined notions in regard to the quantity of past time have tended, more than any other prepossessions, to retard the progress of sound theoretical views in geology;[579] the inadequacy of our conceptions of the earth's antiquity having cramped the freedom of our speculations in this science, very much in the same way as a belief in the existence of a vaulted firmament once retarded the progress of astronomy. It was not until Descartes assumed the indefinite extent of the celestial spaces, and removed the supposed boundaries of the universe, that just opinions began to be entertained of the relative distances of the heavenly bodies; and until we habituate ourselves to contemplate the possibility of an indefinite lapse of ages having been comprised within each of the modern periods of the earth's history, we shall be in danger of forming most erroneous and partial views in geology.
If history had bequeathed to us a faithful record of the eruptions of Etna, and a hundred other of the principal active volcanoes of the globe, during the last three thousand years,—if we had an exact account of the volume of lava and matter ejected during that period, and the times of their production,—we might, perhaps, be able to form a correct estimate of the average rate of the growth of a volcanic cone. For we might obtain a mean result from the comparison of the eruptions of so great a number of vents, however irregular might be the development of the igneous action in any one of them, if contemplated singly during a brief period.
It would be necessary to balance protracted periods of inaction against the occasional outburst of paroxysmal explosions. Sometimes we should have evidence of a repose of seventeen centuries, like that which was interposed in Ischia, between the end of the fourth century B. C., and the beginning of the fourteenth century of our era.[580] Occasionally a tremendous eruption, like that of Jorullo, would be recorded, giving rise, at once, to a considerable mountain.
If we desire to approximate to the age of a cone such as Etna, we ought first to obtain some data in regard to the thickness of matter which has been added during the historical era, and then endeavor to estimate the time required for the accumulation of such alternating lavas and beds of sand and scoriæ as are superimposed upon each other in the Val del Bove; afterwards we should try to deduce, from observations on other volcanoes, the more or less rapid increase of burning mountains in all the different stages of their growth.
There is a considerable analogy between the mode of increase of a volcanic cone and that of trees of exogenous growth. These trees augment, both in height and diameter, by the successive application externally of cone upon cone of new ligneous matter; so that if we make a transverse section near the base of the trunk, we intersect a much greater number of layers than nearer to the summit. When branches occasionally shoot out from the trunk, they first pierce the bark, and then, after growing to a certain size, if they chance to be broken off, they may become inclosed in the body of the tree, as it augments in size, forming knots in the wood, which are themselves composed of layers of ligneous matter, cone within cone.
In like manner, a volcanic mountain, as we have seen, consists of a succession of conical masses enveloping others, while lateral cones, having a similar internal structure, often project, in the first instance, like branches from the surface of the main cone, and then becoming buried again, are hidden like the knots of a tree.
We can ascertain the age of an oak or pine by counting the number of concentric rings of annual growth seen in a transverse section near the base, so that we may know the date at which the seedling began to vegetate. The Baobab-tree of Senegal (Adansonia digitata) is supposed to exceed almost any other in longevity. Adanson inferred that one which he measured, and found to be thirty feet in diameter, had attained the age of 5150 years. Having made an incision to a certain depth, he first counted three hundred rings of annual growth, and observed what thickness the tree had gained in that period. The average rate of growth of younger trees, of the same species, was then ascertained, and the calculation made according to a supposed mean rate of increase. De Candolle considers it not improbable that the celebrated Taxodium of Chapultepec, in Mexico (Cupressus disticha, Linn.), which is 117 feet in circumference, may be still more aged.[581]
It is, however, impossible, until more data are collected respecting the average intensity of the volcanic action, to make any thing like an approximation to the age of a cone like Etna; because, in this case, the successive envelopes of lava and scoriæ are not continuous, like the layers of wood in a tree, and afford us no definite measure of time. Each conical envelope is made up of a great number of distinct lava-currents and showers of sand and scoriæ, differing in quantity, and which may have been accumulated in unequal periods of time. Yet we cannot fail to form the most exalted conception of the antiquity of this mountain, when we consider that its base is about ninety miles in circumference; so that it would require ninety flows of lava, each a mile in breadth at their termination, to raise the present foot of the volcano as much as the average height of one lava-current.
There are no records within the historical era which lead to the opinion that the altitude of Etna has materially varied within the last two thousand years. Of the eighty most conspicuous minor cones which adorn its flanks, only one of the largest, Monti Rossi, has been produced within the times of authentic history. Even this hill, thrown up in the year 1669, although 450 feet in height, only ranks as a cone of second magnitude. Monte Minardo, near Bronte, rises, even now, to the height of 750 feet, although its base has been elevated by more modern lavas and ejections. The dimensions of these larger cones appear to bear testimony to paroxysms of volcanic activity, after which we may conclude, from analogy, that the fires of Etna remained dormant for many years—since nearly a century of rest has sometimes followed a violent eruption in the historical era. It must also be remembered, that of the small number of eruptions which occur in a century, one only is estimated to issue from the summit of Etna for every two that proceed from the sides. Nor do all the lateral eruptions give rise to such cones as would be reckoned amongst the smallest of the eighty hills above enumerated; some of them produce merely insignificant monticules, which are soon afterwards buried by showers of ashes.
How many years then must we not suppose to have been expended in the formation of the eighty cones? It is difficult to imagine that a fourth part of them have originated during the last thirty centuries. But if we conjecture the whole of them to have been formed in twelve thousand years, how inconsiderable an era would this portion of time constitute in the history of the volcano! If we could strip off from Etna all the lateral monticules now visible, together with the lavas and scoriæ that have been poured out from them, and from the highest crater, during the period of their growth, the diminution of the entire mass would be extremely slight: Etna might lose, perhaps, several miles in diameter at its base, and some hundreds of feet in elevation; but it would still be the loftiest of Sicilian mountains, studded with other cones, which would be recalled, as it were, into existence by the removal of the rocks under which they are now buried.
There seems nothing in the deep sections of the Val del Bove to indicate that the lava-currents of remote periods were greater in volume than those of modern times; and there are abundant proofs that the countless beds of solid rock and scoriæ were accumulated, as now, in succession. On the grounds, therefore, already explained, we must infer that a mass so many thousand feet in thickness must have required an immense series of ages anterior to our historical periods for its growth; yet the whole must be regarded as the product of a modern portion of the tertiary epoch. Such, at least, is the conclusion that seems to follow from geological data, which show that the oldest parts of the mountain, if not of posterior date to the marine strata around its base, were at least of coeval origin.
Some geologists contend, that the sudden elevation of large continents from beneath the waters of the sea have again and again produced waves which have swept over vast regions of the earth.[582] But it is clear that no devastating wave has passed over the forest zone of Etna since any of the lateral cones before mentioned were thrown up; for none of these heaps of loose sand and scoriæ could have resisted for a moment the denuding action of a violent flood. To some, perhaps, it may appear that hills of such incoherent materials cannot be of very great antiquity, because the mere action of the atmosphere must, in the course of several thousand years, have obliterated their original forms. But there is no weight in this objection; for the older hills are covered with trees and herbage, which protect them from waste; and, in regard to the newer ones, such is the porosity of their component materials, that the rain which falls upon them is instantly absorbed; and for the same reason that the rivers on Etna have a subterranean course, there are none descending the sides of the minor cones.
No sensible alteration has been observed in the form of these cones since the earliest periods of which there are memorials; and there seems no reason for anticipating that in the course of the next ten thousand or twenty thousand years they will undergo any great alteration in their appearance, unless they should be shattered by earthquakes or covered by volcanic ejections.
In other parts of Europe, as in Auvergne and Velay, in France, similar loose cones of scoriæ, probably of as high antiquity as the whole mass of Etna, stand uninjured at inferior elevations above the level of the sea.
CHAPTER XXVI.
Volcanic eruption in Iceland in 1783—New island thrown up—Lava currents of Skaptár Jokul, in same year—their immense volume—Eruption of Jorullo in Mexico—Humboldt's theory of the convexity of the plain of Malpais—Eruption of Galongoon in Java—Submarine volcanoes—Graham island, formed in 1831—Volcanic archipelagoes—Submarine eruptions in mid-Atlantic—The Canaries—Teneriffe—Cones thrown up in Lancerote, 1730-36—Santorin and its contiguous isles—Barren island in the Bay of Bengal—Mud volcanoes—Mineral composition of volcanic products.
Volcanic eruptions in Iceland.—With the exception of Etna and Vesuvius, the most complete chronological records of a series of eruptions are those of Iceland, for their history reaches as far back as the ninth century of our era; and, from the beginning of the twelfth century, there is clear evidence that, during the whole period, there has never been an interval of more than forty, and very rarely one of twenty years, without either an eruption or a great earthquake. So intense is the energy of the volcanic action in this region, that some eruptions of Hecla have lasted six years without ceasing. Earthquakes have often shaken the whole island at once, causing great changes in the interior, such as the sinking down of hills, the rending of mountains, the desertion by rivers of their channels, and the appearance of new lakes.[583] New islands have often been thrown up near the coast, some of which still exist; while others have disappeared, either by subsidence or the action of the waves.
In the interval between eruptions, innumerable hot springs afford vent to subterranean heat, and solfataras discharge copious streams of inflammable matter. The volcanoes in different parts of this island are observed, like those of the Phlegræan Fields, to be in activity by turns, one vent often serving for a time as a safety-valve to the rest. Many cones are often thrown up in one eruption, and in this case they take a linear direction, running generally from northeast to southwest, from the northeastern part of the island, where the volcano Krabla lies, to the promontory Reykianas.
New island thrown up in 1783.—The convulsions of the year 1783 appear to have been more tremendous than any recorded in the modern annals of Iceland; and the original Danish narrative of the catastrophe, drawn up in great detail, has since been substantiated by several English travellers, particularly in regard to the prodigious extent of country laid waste, and the volume of lava produced.[584] About a month previous to the eruption on the mainland, a submarine volcano burst forth in the sea in lat. 63° 25' N., long. 23° 44' W., at a distance of thirty miles in a southwest direction from Cape Reykianas, and ejected so much pumice, that the ocean was covered with that substance to the distance of 150 miles, and ships were considerably impeded in their course. A new island was thrown up, consisting of high cliffs, within which fire, smoke, and pumice were emitted from two or three different points. This island was claimed by his Danish Majesty, who denominated it Nyöe, or the New Island; but before a year had elapsed, the sea resumed its ancient domain, and nothing was left but a reef of rocks from five to thirty fathoms under water.
Great eruption of Skaptár Jokul.—Earthquakes which had long been felt in Iceland, became violent on the 11th of June, 1783, when Skaptár Jokul, distant nearly 200 miles from Nyöe, threw out a torrent of lava which flowed down into the river Skaptâ, and completely dried it up. The channel of the river was between high rocks, in many places from four hundred to six hundred feet in depth, and near two hundred in breadth. Not only did the lava fill up this great defile to the brink, but it overflowed the adjacent fields to a considerable extent. The burning flood, on issuing from the confined rocky gorge, was then arrested for some time by a deep lake, which formerly existed in the course of the river, between Skaptardal and Aa, which it entirely filled. The current then advanced again, and reaching some ancient lava full of subterraneous caverns, penetrated and melted down part of it; and in some places, where the steam could not gain vent, it blew up the rock, throwing fragments to the height of more than 150 feet. On the 18th of June another ejection of liquid lava rushed from the volcano, which flowed down with amazing velocity over the surface of the first stream. By the damming up of the mouths of some of the tributaries of the Skaptâ, many villages were completely overflowed with water, and thus great destruction of property was caused. The lava, after flowing for several days, was precipitated down a tremendous cataract called Stapafoss, where it filled a profound abyss, which that great waterfall had been hollowing out for ages, and after this, the fiery current again continued its course.
On the third of August, fresh floods of lava still pouring from the volcano, a new branch was sent off in a different direction; for the channel of the Skaptâ was now so entirely choked up, and every opening to the west and north so obstructed, that the melted matter was forced to take a new course, so that it ran in a southeast direction, and discharged itself into the bed of the river Hverfisfliot, where a scene of destruction scarcely inferior to the former was occasioned. These Icelandic lavas (like the ancient streams which are met with in Auvergne, and other provinces of Central France), are stated by Stephenson to have accumulated to a prodigious depth in narrow rocky gorges; but when they came to wide alluvial plains, they spread themselves out into broad burning lakes, sometimes from twelve to fifteen miles wide, and one hundred feet deep. When the "fiery lake" which filled up the lower portion of the valley of the Skaptâ, had been augmented by new supplies, the lava flowed up the course of the river to the foot of the hills from whence the Skaptâ takes its rise. This affords a parallel case to one which can be shown to have happened at a remote era in the volcanic region of the Vivarais in France, where lava issued from the cone of Thueyts, and while one branch ran down, another more powerful stream flowed up the channel of the river Ardêche.
The sides of the valley of the Skaptâ present superb ranges of basaltic columns of older lava, resembling those which are laid open in the valleys descending from Mont Dor, in Auvergne, where more modern lava-currents, on a scale very inferior in magnitude to those of Iceland, have also usurped the beds of the existing rivers. The eruption of Skaptár Jokul did not entirely cease till the end of two years; and when Mr. Paulson visited the tract eleven years afterwards, in 1794, he found columns of smoke still rising from parts of the lava, and several rents filled with hot water.[585]
Although the population of Iceland was very much scattered, and did not exceed fifty thousand, no less than twenty villages were destroyed, besides those inundated by water; and more than nine thousand human beings perished, together with an immense number of cattle, partly by the depredations of the lava, partly by the noxious vapors which impregnated the air, and, in part, by the famine caused by showers of ashes throughout the island, and the desertion of the coasts by the fish.
Immense volume of the lava.—But the extraordinary volume of melted matter produced in this eruption deserves the particular attention of the geologist. Of the two branches, which flowed in nearly opposite directions, the greatest was fifty, and the lesser forty miles in length. The extreme breadth which the Skaptâ branch attained in the low countries was from twelve to fifteen miles, that of the other about seven. The ordinary height of both currents was one hundred feet, but in narrow defiles it sometimes amounted to six hundred. Professor Bischoff has calculated that the mass of lava brought up from the subterranean regions by this single eruption "surpassed in magnitude the bulk of Mont Blanc."[586] But a more distinct idea will be formed of the dimensions of the two streams, if we consider how striking a feature they would now form in the geology of England, had they been poured out on the bottom of the sea after the deposition and before the elevation of our secondary and tertiary rocks. The same causes which have excavated valleys through parts of our marine strata, once continuous, might have acted with equal force on the igneous rocks, leaving, at the same time, a sufficient portion undestroyed to enable us to discover their former extent. Let us, then, imagine the termination of the Skaptá branch of lava to rest on the escarpment of the inferior and middle oolite, where it commands the vale of Gloucester. The great platform might be one hundred feet thick, and from ten to fifteen miles broad, exceeding any which can be found in Central France. We may also suppose great tabular masses to occur at intervals, capping the summit of the Cotswold Hills between Gloucester and Oxford, by Northleach, Burford, and other towns. The wide valley of the Oxford clay would then occasion an interruption for many miles; but the same rocks might recur on the summit of Cumnor and Shotover Hills, and all the other oolitic eminences of that district. On the chalk of Berkshire, extensive plateaus, six or seven miles wide, would again be formed; and lastly, crowning the highest sands of Highgate and Hampstead, we might behold some remnants of the current five or six hundred feet in thickness, causing those hills to rival, or even to surpass, in height, Salisbury Craigs and Arthur's Seat.
The distance between the extreme points here indicated would not exceed ninety miles in a direct line; and we might then add, at the distance of nearly two hundred miles from London, along the coast of Dorsetshire and Devonshire, for example, a great mass of igneous rocks, to represent those of contemporary origin, which were produced beneath the level of the sea, where the island of Nyöe rose up.
Volume of ancient and modern flows of lava compared.—Yet, gigantic as must appear the scale of these modern volcanic operations, we must be content to regard them as perfectly insignificant in comparison to currents of the primeval ages, if we embrace the theoretical views of many geologists, which were not inaccurately expressed by the late Professor Alexander Brongniart, when he declared that "aux époques géognostiques anciennes, tous les phénomènes géologiques se passoient dans des dimensions centuples de celles qu'ils présentent aujourd'hui."[587] Had Skaptár Jokul, therefore, been a volcano of the olden time, it would have poured forth lavas at a single eruption a hundred times more voluminous than those which were witnessed by the present generation in 1783. But it may, on the contrary, be affirmed that, among the older formations, no igneous rock of such colossal magnitude has yet been met with; nay, it would be most difficult to point out a mass of ancient date (distinctly referable to a single eruption) which would even rival in volume the matter poured out from Skaptár Jokul in 1783.
Eruption of Jorullo in 1759.—As another example of the stupendous scale of modern volcanic eruptions, I may mention that of Jorullo in Mexico, in 1759. The great region to which this mountain belongs has already been described. The plain of Malpais forms part of an elevated platform, between two and three thousand feet above the level of the sea, and is bounded by hills composed of basalt, trachyte, and volcanic tuff, clearly indicating that the country had previously, though probably at a remote period, been the theatre of igneous action. From the era of the discovery of the New World to the middle of the last century, the district had remained undisturbed, and the space, now the site of the volcano, which is thirty-six leagues distant from the nearest sea, was occupied by fertile fields of sugar-cane and indigo, and watered by the two brooks Cuitimba and San Pedro. In the month of June, 1759, hollow sounds of an alarming nature were heard, and earthquakes succeeded each other for two months, until, at the end of September, flames issued from the ground, and fragments of burning rocks were thrown to prodigious heights. Six volcanic cones, composed of scoriæ and fragmentary lava, were formed on the line of a chasm which ran in the direction from N. N. E. to S. S. W. The least of these cones was 300 feet in height; and Jorullo, the central volcano, was elevated 1600 feet above the level of the plain. It sent forth great streams of basaltic lava, containing included fragments of granitic rocks, and its ejections did not cease till the month of February, 1760.[588]
a, Summit of Jorullo. b, c, Inclined plane sloping at an angle of 6° from the base of the cones.
Humboldt visited the country more than forty years after this occurrence, and was informed by the Indians, that when they returned, long after the catastrophe, to the plain, they found the ground uninhabitable from the excessive heat. When he himself visited the place, there appeared, around the base of the cones, and spreading from them, as from a centre, over an extent of four square miles, a mass of matter of a convex form, about 550 feet high at its junction with the cones, and gradually sloping from them in all directions towards the plain. This mass was still in a heated state, the temperature in the fissures being on the decrease from year to year, but in 1780 it was still sufficient to light a cigar at the depth of a few inches. On this slightly convex protuberance, the slope of which must form an angle of about 6° with the horizon, were thousands of flattish conical mounds, from six to nine feet high, which, as well as large fissures traversing the plain, acted as fumeroles, giving out clouds of sulphurous acid and hot aqueous vapor. The two small rivers before mentioned disappeared during the eruption, losing themselves below the eastern extremity of the plain, and reappearing as hot springs at its western limit.
Cause of the convexity of the plain of Malpais.—Humboldt attributed the convexity of the plain to inflation from below; supposing the ground, for four square miles in extent, to have risen up in the shape of a bladder to the elevation of 550 feet above the plain in the highest part. But Mr. Scrope has suggested that the phenomena may be accounted for far more naturally, by supposing that lava flowing simultaneously from the different orifices, and principally from Jorullo, united into a sort of pool or lake. As they were poured forth on a surface previously flat, they would, if their liquidity was not very great, remain thickest and deepest near their source, and diminish in bulk from thence towards the limits of the space which they covered. Fresh supplies were probably emitted successively during the course of an eruption which lasted more than half a year; and some of these, resting on those first emitted, might only spread to a small distance from the foot of the cone, where they would necessarily accumulate to a great height. The average slope of the great dome-shaped volcanoes of the Sandwich Islands, formed almost exclusively of lava, with scarce any scoriæ, is between 6° 30' and 7° 46', so that the inclination of the convex mass around Jorullo, if we adopt Mr. Scrope's explanation (see [fig. 57]), is quite in accordance with the known laws which govern the flow of lava.
The showers, also, of loose and pulverulent matter from the six craters, and principally from Jorullo, would be composed of heavier and more bulky particles near the cones, and would raise the ground at their base, where, mixing with rain, they might have given rise to the stratum of black clay, which is described as covering the lava. The small conical mounds (called "hornitos," or little ovens) may resemble those five or six small hillocks which existed in 1823 on the Vesuvian lava, and sent forth columns of vapor, having been produced by the disengagement of elastic fluids heaping up small dome-shaped masses of lava. The fissures mentioned by Humboldt as of frequent occurrence, are such as might naturally accompany the consolidation of a thick bed of lava, contracting as it congeals; and the disappearance of rivers is the usual result of the occupation of the lower part of a valley or plain by lava, of which there are many beautiful examples in the old lava-currents of Auvergne. The heat of the "hornitos" is stated to have diminished from the first; and Mr. Bullock, who visited the spot many years after Humboldt, found the temperature of the hot spring very low,—a fact which seems clearly to indicate the gradual congelation of a subjacent bed of lava, which from its immense thickness may have been enabled to retain its heat for half a century. The reader may be reminded, that when we thus suppose the lava near the volcano to have been, together with the ejected ashes, more than five hundred feet in depth, we merely assign a thickness which the current of Skaptár Jokul attained in some places in 1783.
Hollow sound of the plain when struck.—Another argument adduced in support of the theory of inflation from below, was, the hollow sound made by the steps of a horse upon the plain; which, however, proves nothing more than that the materials of which the convex mass is composed are light and porous. The sound called "rimbombo" by the Italians is very commonly returned by made ground when struck sharply; and has been observed not only on the sides of Vesuvius and other volcanic cones where there is a cavity below, but in such regions as the Campagna di Roma, composed in a great measure of tuff and porous volcanic rocks. The reverberation, however, may perhaps be assisted by grottoes and caverns, for these may be as numerous in the lavas of Jorullo as in many of those of Etna; but their existence would lend no countenance to the hypothesis of a great arched cavity, four square miles in extent, and in the centre 550 feet high.[589]
No recent eruptions of Jorullo.—In a former edition I stated that I had been informed by Captain Vetch, that in 1819 a tower at Guadalaxara was thrown down by an earthquake, and that ashes, supposed to have come from Jorullo, fell at the same time at Guanaxuato, a town situated 140 English miles from the volcano. But Mr. Burkhardt, a German director of mines, who examined Jorullo in 1827, ascertained that there had been no eruption there since Humboldt's visit in 1803. He went to the bottom of the crater, and observed a slight evolution of sulphurous acid vapors, but the "hornitos" had entirely ceased to send forth steam. During the twenty-four years intervening between his visit and that of Humboldt, vegetation had made great progress on the flanks of the new hills; the rich soil of the surrounding country was once more covered with luxuriant crops of sugar-cane and indigo, and there was an abundant growth of natural underwood on all the uncultivated tracts.[590]
Galongoon, Java, 1822.—The mountain of Galongoon (or Galung Gung) was in 1822 covered by a dense forest, and situated in a fruitful and thickly-peopled part of Java. There was a circular hollow at its summit, but no tradition existed of any former eruption. In July, 1822, the waters of the river Kunir, one of those which flowed from its flanks, became for a time hot and turbid. On the 8th of October following a loud explosion was heard, the earth shook, and immense columns of hot water and boiling mud, mixed with burning brimstone, ashes, and lapilli, of the size of nuts, were projected from the mountain like a waterspout, with such prodigious violence that large quantities fell beyond the river Tandoi, which is forty miles distant. Every valley within the range of this eruption became filled with a burning torrent, and the rivers, swollen with hot water and mud, overflowed their banks, and carried away great numbers of the people, who were endeavoring to escape, and the bodies of cattle, wild beasts, and birds. A space of twenty-four miles between the mountain and the river Tandoi was covered to such a depth with bluish mud that people were buried in their houses, and not a trace of the numerous villages and plantations throughout that extent was visible. Within this space the bodies of those who perished were buried in mud and concealed, but near the limits of the volcanic action they were exposed, and strewed over the ground in great numbers, partly boiled and partly burnt.
It was remarked, that the boiling mud and cinders were projected with such violence from the mountain, that while many remote villages were utterly destroyed and buried, others much nearer the volcano were scarcely injured.
The first eruption lasted nearly five hours, and on the following days the rain fell in torrents, and the rivers, densely charged with mud, deluged the country far and wide. At the end of four days (October 12th) a second eruption occurred more violent than the first, in which hot water and mud were again vomited, and great blocks of basalt were thrown to the distance of seven miles from the volcano. There was at the same time a violent earthquake, and in one account it is stated that the face of the mountain was utterly changed, its summits broken down, and one side, which had been covered with trees, became an enormous gulf in the form of a semicircle. This cavity was about midway between the summit and the plain, and surrounded by steep rocks, said to be newly heaped up during the eruption. New hills and valleys are said to have been formed, and the rivers Banjarang and Wulan changed their course, and in one night (October 12th) 2000 persons were killed.
The first intimation which the inhabitants of Bandong received of this calamity on the 8th of October, was the news that the river Wulna was bearing down into the sea the dead bodies of men, and the carcasses of stags, rhinoceroses, tigers, and other animals. The Dutch painter Payen determined to travel from thence to the volcano, and he found that the quantity of the ashes diminished as he approached the base of the mountain. He alludes to the altered form of the mountain after the 12th, but does not describe the new semicircular gulf on its side.
The official accounts state that 114 villages were destroyed, and above 4000 persons killed.[591]
Submarine volcanoes.—Although we have every reason to believe that volcanic eruptions as well as earthquakes are common in the bed of the sea, it was not to be expected that many opportunities would occur to scientific observers of witnessing the phenomena. The crews of vessels have sometimes reported that they have seen in different places sulphur ous smoke, flame, jets of water, and steam, rising up from the sea, or they have observed the waters greatly discolored, and in a state of violent agitation as if boiling. New shoals have also been encountered, or a reef of rocks just emerging above the surface, where previously there was always supposed to have been deep water. On some few occasions the gradual formation of an island by a submarine eruption has been observed, as that of Sabrina, in the year 1811, off St. Michael's in the Azores. The throwing up of ashes in that case, and the formation of a cone about three hundred feet in height, with a crater in the centre, closely resembled the phenomena usually accompanying a volcanic eruption on land. Sabrina was soon washed away by the waves. Previous eruptions in the same part of the sea were recorded to have happened in 1691 and 1720. The rise of Nyöe, also, a small island off the coast of Iceland, in 1783, has already been alluded to; and another volcanic isle was produced by an eruption near Reikiavig, on the same coast, in June, 1830.[592]
Graham Island[593], 1831.—We have still more recent and minute information respecting the appearance, in 1831, of a new volcanic island in the Mediterranean, between the S. W. coast of Sicily and that projecting part of the African coast where ancient Carthage stood. The site of the island was not any part of the great shoal, or bank, called "Nerita," as was first asserted, but a spot where Captain W. H. Smyth had found, in his survey a few years before, a depth of more than one hundred fathoms water.[594]
Form of the cliffs of Graham Island, as seen from S. S. E., distant one mile, 7th August, 1831.[596]
View of the interior of Graham Island, 29th Sept., 1831.
Graham Island, 29th Sept., 1831.[597]
The position of the island (lat. 37° 8' 30" N., long. 12° 42' 15" E.) was about thirty miles S. W. of Sciacca, in Sicily, and thirty-three miles N. E. of Pantellaria.[595] On the 28th of June, about a fortnight before the eruption was visible, Sir Pulteney Malcolm, in passing over the spot in his ship, felt the shocks of an earthquake, as if he had struck on a sand-bank; and the same shocks were felt on the west coast of Sicily, in a direction from S. W. to N. E. About the 10th of July, John Corrao, the captain of a Sicilian vessel, reported that, as he passed near the place, he saw a column of water like a water-spout, sixty feet high, and 800 yards in circumference, rising from the sea, and soon afterwards a dense steam in its place, which ascended to the height of 1800 feet. The same Corrao, on his return from Girgenti, on the 18th of July, found a small island, twelve feet high with a crater in its centre, ejecting volcanic matter, and immense columns of vapor; the sea around being covered with floating cinders and dead fish. The scoriæ were of a chocolate color, and the water which boiled in the circular basin was of a dingy red. The eruption continued with great violence to the end of the same month; at which time the island was visited by several persons, and among others by Capt. Swinburne, R. N., and M. Hoffmann, the Prussian geologist. It was then from fifty to ninety feet in height, and three-quarters of a mile in circumference. By the 4th of August it became, according to some accounts, above 200 feet high, and three miles in circumference; after which it began to diminish in size by the action of the waves, and it was only two miles round on the 25th of August; and on the 3d of September, when it was carefully examined by Captain Wodehouse, only three-fifths of a mile in circumference; its greatest height being then 107 feet. At this time the crater was about 780 feet in circumference. On the 29th of September, when it was visited by Mons. C. Prevost, its circumference was reduced to about 700 yards. It was composed entirely of incoherent ejected matter, scoriæ, pumice, and lapilli, forming regular strata, some of which are described as having been parallel to the steep inward slope of the crater, while the rest were inclined outwards, like those of Vesuvius.[598] When the arrangement of the ejected materials has been determined by their falling continually on two steep slopes, that of the external cone and that of the crater, which is always a hollow inverted cone, a transverse section would probably resemble that given in the annexed figure ([61]). But when I visited Vesuvius, in 1828, I saw no beds of scoriæ inclined towards the axis of the cone. (See [fig. 45], p. 381.) Such may have once existed; but the explosions or subsidences, or whatever causes produced the great crater of 1822, had possibly destroyed them.
Few of the pieces of stone thrown out from Graham Island exceeded a foot in diameter. Some fragments of dolomitic limestone were intermixed; but these were the only non-volcanic substances. During the month of August, there occurred on the S. W. side of the new island a violent ebullition and agitation of the sea, accompanied by the constant ascension of a column of dense white steam, indicating the existence of a second vent at no great depth from the surface. Towards the close of October, no vestige of the crater remained, and the island was nearly levelled with the surface of the ocean, with the exception, at one point, of a small monticule of sand and scoriæ. It was reported that, at the commencement of the year following (1832), there was a depth of 150 feet where the island had been: but this account was quite erroneous; for in the early part of that year Captain Swinburne found a shoal and discolored water there, and towards the end of 1833 a dangerous reef existed of an oval figure, about three-fifths of a mile in extent. In the centre was a black rock, of the diameter of about twenty-six fathoms, from nine to eleven feet under water; and round this rock are banks of black volcanic stones and loose sand. At the distance of sixty fathoms from this central mass, the depth increased rapidly. There was also a second shoal at the distance of 450 feet S. W. of the great reef, with fifteen feet water over it, also composed of rock, surrounded by deep sea. We can scarcely doubt that the rock in the middle of the larger reef is solid lava, which rose up in the principal crater, and that the second shoal marks the site of the submarine eruption observed in August, 1831, to the S. W. of the island.
From the whole of the facts above detailed, it appears that a hill eight hundred feet or more in height was formed by a submarine volcanic vent, of which the upper part (only about two hundred feet high) emerged above the waters, so as to form an island. This cone must have been equal in size to one of the largest of the lateral volcanoes on the flanks of Etna, and about half the height of the mountain Jorullo in Mexico, which was formed in the course of nine months, in 1759. In the centre of the new volcano a large cavity was kept open by gaseous discharges, which threw out scoriæ; and fluid lava probably rose up in this cavity. It is not uncommon for small subsidiary craters to open near the summit of a cone, and one of these may have been formed in the case of Graham Island; a vent, perhaps, connected with the main channel of discharge which gave passage in that direction to elastic fluids, scoriæ, and melted lava. It does not appear that, either from this duct, or from the principal vent, there was any overflowing of lava; but melted rock may have flowed from the flanks or base of the cone (a common occurrence on land), and may have spread in a broad sheet over the bottom of the sea.
Supposed section of Graham Island. (C. Maclaren.[599])
The dotted lines in the annexed figure are an imaginary restoration of the upper part of the cone, now removed by the waves: the strong lines represent the part of the volcano which is still under water: in the centre is a great column, or dike, of solid lava, two hundred feet in diameter, supposed to fill the space by which the gaseous fluids rose; and on each side of the dike is a stratified mass of scoriæ and fragmentary lava. The solid nucleus of the reef, where the black rock is now found, withstands the movements of the sea; while the surrounding loose tuffs are cut away to a somewhat lower level. In this manner the lava, which was the lowest part of the island, or, to speak more correctly, which scarcely ever rose above the level of the sea when the island existed, has now become the highest point in the reef.
No appearances observed, either during the eruption or since the island disappeared, gave the least support to the opinion promulgated by some writers, that part of the ancient bed of the sea had been lifted up bodily.
The solid products, says Dr. John Davy, whether they consisted of sand, light cinders, or vesicular lava, differed more in form than in composition. The lava contained augite; and the specific gravity was 2·07 and 2·70. When the light spongy cinder, which floated on the sea, was reduced to fine powder by trituration, and the greater part of the entangled air got rid of, it was found to be of the specific gravity 2·64; and that of some of the sand which fell in the eruption was 2·75;[600] so that the materials equalled ordinary granites in weight and solidity. The only gas evolved in any considerable quantity was carbonic acid.[601]
Submarine eruptions in mid-Atlantic.—In the Nautical Magazine for 1835, p. 642, and for 1838, p. 361, and in the Comptes Rendus, April, 1838, accounts are given of a series of volcanic phenomena, earthquakes, troubled water, floating scoriæ and columns of smoke, which have been observed at intervals since the middle of the last century, in a space of open sea between longitudes 20° and 22° west, about half a degree south of the equator. These facts, says Mr. Darwin, seem to show, that an island or an archipelago is in process of formation in the middle of the Atlantic; a line joining St. Helena and Ascension would, if prolonged, intersect this slowly nascent focus of volcanic action.[602] Should land be eventually formed here, it will not be the first that has been produced by igneous action in this ocean since it was inhabited by the existing species of testacea. At Porto Praya in St. Jago, one of the Azores, a horizontal, calcareous stratum occurs, containing shells of recent marine species, covered by a great sheet of basalt eighty feet thick.[603] It would be difficult to estimate too highly the commercial and political importance which a group of islands might acquire, if in the next two or three thousand years they should rise in mid-ocean between St. Helena and Ascension.
CANARY ISLANDS.
Eruption in Lancerote, 1730 to 1736.—The effects of an eruption which happened in Lancerote, one of the Canary Islands, between the years 1730 and 1736, were very remarkable; and a detailed description has been published by Von Buch, who had an opportunity, when he visited that island in 1815, of comparing the accounts transmitted to us of the event, with the present state and geological appearances of the country.[604] On the 1st of September, 1730, the earth split open on a sudden two leagues from Yaira. In one night a considerable hill of ejected matter was thrown up; and, a few days later, another vent opened, and gave out a lava-stream, which overran Chinanfaya and other villages. It flowed first rapidly, like water, but became afterwards heavy and slow, like honey. On the 7th of September an immense rock was protruded from the bottom of the lava with a noise like thunder, and the stream was forced to change its course from N. to N. W., so that St. Catalina and other villages were overflowed.
Whether this mass was protruded by an earthquake, or was a mass of ancient lava, blown up like that before mentioned in 1783 in Iceland, is not explained.
On the 11th of September more lava flowed out, and covered the village of Maso entirely, and for the space of eight days precipitated itself with a horrible roar into the sea. Dead fish floated on the waters in indescribable multitudes, or were thrown dying on the shore. After a brief interval of repose, three new openings broke forth immediately from the site of the consumed St. Catalina, and sent out an enormous quantity of lapilli, sand, and ashes. On the 28th of October the cattle throughout the whole country dropped lifeless to the ground, suffocated by putrid vapors, which condensed and fell down in drops. On the 1st of December a lava-stream reached the sea, and formed an island, round which dead fish were strewed.
Number of cones thrown up.—It is unnecessary here to give the details of the overwhelming of other places by fiery torrents, or of a storm which was equally new and terrifying to the inhabitants, as they had never known one in their country before. On the 10th of January, 1731, a high hill was thrown up, which, on the same day, precipitated itself back again into its own crater; fiery brooks of lava flowed from it to the sea. On the 3d of February a new cone arose. Others were thrown up in March, and poured forth lava-streams. Numerous other volcanic cones were subsequently formed in succession, till at last their number amounted to about thirty. In June, 1731, during a renewal of the eruptions, all the banks and shores in the western part of the island were covered with dying fish, of different species, some of which had never before been seen. Smoke and flame arose from the sea, with loud detonations. These dreadful commotions lasted without interruption for five successive years, so that a great emigration of the inhabitants became necessary.
Their linear direction.—As to the height of the new cones, Von Buch was assured that the formerly great and flourishing St. Catalina lay buried under hills 400 feet in height; and he observes that the most elevated cone of the series rose 600 feet above its base, and 1378 feet above the sea, and that several others were nearly as high. The new vents were all arranged in one line, about two geographical miles long, and in a direction nearly east and west. If we admit the probability of Von Buch's conjecture, that these vents opened along the line of a cleft, it seems necessary to suppose that this subterranean fissure was only prolonged upwards to the surface by degrees, and that the rent was narrow at first, as is usually the case with fissures caused by earthquakes. Lava and elastic fluids might escape from some point on the rent where there was least resistance, till, the first aperture becoming obstructed by ejections and the consolidation of lava, other orifices burst open in succession along the line of the original fissure. Von Buch found that each crater was lowest on that side on which lava had issued; but some craters were not breached, and were without any lava streams. In one of these were open fissures, out of which hot vapors rose, which in 1815 raised the thermometer to 145° Fahrenheit, and was probably at the boiling point lower down. The exhalations seemed to consist of aqueous vapor; yet they could not be pure steam, for the crevices were incrusted on either side by siliceous sinter (an opal-like hydrate of silica of a white color), which extended almost to the middle. This important fact attests the length of time during which chemical processes continue after eruptions, and how open fissures may be filled up laterally by mineral matter, sublimed from volcanic exhalations. The lavas of this eruption covered nearly a third of the whole island, often forming on slightly inclined planes great horizontal sheets several square leagues in area, resembling very much the basaltic platforms of Auvergne.
Pretended distinction between ancient and modern lavas.—One of the new lavas was observed to contain masses of olivine of an olive-green color, resembling those which occur in one of the lavas of the Vivarais. Von Buch supposes the great crystals of olivine to have been derived from a previously existing basalt melted up by the new volcanoes; but we have scarcely sufficient data to bear out such a conjecture. The older rocks of the island consist, in a great measure, of that kind of basaltic lava called dolerite, sometimes columnar, and partly of common basalt and amygdaloid. Some recent lavas assumed, on entering the sea, a prismatic form, and so much resembled the older lavas of the Canaries, that the only geological distinction which Von Buch appears to have been able to draw between them was, that they did not alternate with conglomerates, like the ancient basalts. Some modern writers have endeavored to discover, in the abundance of these conglomerates, a proof of the dissimilarity of the volcanic action in ancient and modern times; but this character is more probably attributable to the difference between submarine operations and those on the land. All the blocks and imperfectly rounded fragments of lava, transported during the intervals of eruption, by rivers and torrents, into the adjoining sea, or torn by the continued action of the waves from cliffs which are undermined, must accumulate in stratified breccias and conglomerates, and be covered again and again by other lavas. This is now taking place on the shores of Sicily, between Catania and Trezza, where the sea breaks down and covers the shore with blocks and pebbles of the modern lavas of Etna; and on parts of the coast of Ischia, where numerous currents of trachyte are in like manner undermined in lofty precipices. So often, then, as an island is raised in a volcanic archipelago by earthquakes from the deep, the fundamental and (relatively to all above) the oldest lava will often be distinguishable from those formed by subsequent eruptions on dry land, by their alternation with beds of sandstone and fragmentary rocks.
The supposed want of identity, then, between the volcanic phenomena of different epochs resolves itself partly at least into the marked difference between the operations simultaneously in progress, above and below the waters. Such, indeed, is the source, as was before stated in the First Book (Chap. V.), of many of our strongest theoretical prejudices in geology. No sooner do we study and endeavor to explain submarine appearances, than we feel, to use a common expression, out of our element; and unwilling to concede that our extreme ignorance of processes now continually going on can be the cause of our perplexity, we take refuge in a "pre-existent order of nature."
Recent formation of oolitic travertin in Lancerote.—Throughout a considerable part of Lancerote, the old lavas are covered by a thin stratum of limestone, from an inch to two feet in thickness. It is of a hard stalactitic nature, sometimes oolitic, like the Jura limestone, and contains fragments of lava and terrestrial shells, chiefly helices and spiral bulimi. It sometimes rises to the height of 800 feet above the level of the sea. Von Buch imagines that this remarkable superstratum has been produced by the furious northwest storms, which in winter drive the spray of the sea in clouds over the whole island; from whence calcareous particles may be deposited stalactitically. Mr. Darwin informs me that he found a limestone in St. Helena, the harder parts of which correspond precisely to the stone of Lancerote. He attributes the origin of this rock in St. Helena not to the spray of the sea, but to drifting by violent winds of the finer particles of shells from the sea-beach. Some parts of this drift are subsequently dissolved by atmospheric moisture, and redeposited, so as to convert calcareous sand into oolite.
Recent eruption in Lancerote.—From the year 1736 to 1815, when Von Buch visited Lancerote, there had been no eruption; but, in August, 1824, a crater opened near the port of Rescif, and formed by its ejections, in the space of twenty-four hours, a considerable hill. Violent earthquakes preceded and accompanied this eruption.[605]
Teneriffe.—The Peak of Teneriffe is about 12,000 feet high, and stands, says Von Buch, like a tower encircled by its fosse and bastion. The bastion consists, like the semicircular escarpment of Somma turned towards Vesuvius, of precipitous cliffs, composed of trachyte, basalt, coarse conglomerates, and tuffs, traversed by volcanic dikes, mostly vertical, and of basalt. These cliffs vary in height from 1000 to 1800 feet, and are supposed by Von Buch to have been heaved up into their present position by a force exerted from below, in accordance with the theory proposed by the same author for the origin of the cones of Vesuvius and Etna. According to the observations of M. Deville in 1839[606], the trachytes are often granitoid in their aspect, and contain instead of glassy felspar the allied mineral called oligoclase, which had been previously considered as characteristic of more ancient igneous rocks. The same traveller supposes, although he found no limestone or trace of fossils in any of the rocks of Teneriffe, that the alternating trachytes and trachytic conglomerates originated beneath the sea. If this opinion be correct, and it is at least very probable, geologists may still speculate on two modes in which the mass of the island acquired its present form and elevation above the sea. 1st, The advocates of Von Buch's crater-of-elevation hypothesis may imagine that a succession of horizontally superimposed beds were upheaved by a sudden movement, and tilted so as to dip in all directions outwards from the centre of a new dome-shaped eminence, in the middle of which a large opening or bowl-shaped cavity was produced. 2dly, Or according to the theory which to me appears preferable, a submarine hill in the form of a flattened dome may have gradually accumulated, partly below the waters and partly above by the continued outpourings of sheets of lava and the ejection of ashes from a central orifice. In this case the dikes would represent the fissures, which were filled during successive eruptions, and the original inclination of the beds may have been increased by the distension and upheaval of the mass during reiterated convulsions, acting most forcibly at or near the channel of discharge, which would become partially sealed up with lava from time to time, and then be burst open again during eruptions. At length the whole island may have been raised bodily out of the sea by a gradual upward movement.
Whatever theory we adopt, we must always explain the abrupt termination of the dikes and layers of trachyte and basalt in the steep walls of the escarpments surrounding the great crater by supposing the removal of part of the materials once prolonged farther inward towards the centre. If, according to the elevation-crater hypothesis, a series of sheets of lava and ashes originally spread over a level and even surface have been violently broken and uplifted, why do not the opposite walls of the chasm correspond in such a manner as to imply by their present outline that they were formerly united? It is evident that the precipices on opposite sides of the crateriform hollow would not fit if brought together, there being no projecting masses in one wall to enter into indentations in the other, as would happen with the sides of many mineral veins, trap-dikes, and faults, could we extract the intrusive matter now separating them, and reunite the rocks which have been fractured and disjoined.
The highest crater of the peak has merely disengaged sulphureous vapors ever since it has been known to Europeans; but an eruption happened in June, 1798, not far from the summit, and others are recorded, which poured out streams of lava from great heights, besides many which have broken out nearer the level of the sea. All these, however, seem to be dependent on one great centre of eruption, or on that open channel communicating between the interior of the earth and the atmosphere, which terminates in the highest crater of the peak.
We may consider Teneriffe, then, as having been from a remote period the principal and habitual vent of the volcanic archipelago of the Canaries. The discharges which have taken place in the contiguous isles of Palma, Lancerote, and the rest, may be of a subsidiary kind, and have probably been most frequent and violent when the greater crater has been partially sealed up, just as the violent eruptions of Ischia or that of Monte Nuovo coincided with the dormant state of Vesuvius.
SANTORIN.
The Gulf of Santorin, in the Grecian Archipelago, has been for two thousand years a scene of active volcanic operations. The largest of the three outer islands of the group (to which the general name of Santorin is given) is called Thera (or sometimes Santorin), and forms more than two-thirds of the circuit of the gulf (see Map, [fig. 63], p. 442). The length of the exterior coast-line of this and the other two islands named Therasia and Aspronisi, taken together, amounts to about thirty miles, and that of the inner coast-line of the same islands to about eighteen miles. In the middle of the gulf are three other islands, called the Little, the New, and the Old "Kaimenis," or "Burnt Islands." The accompanying map has been reduced from a recent survey executed in 1848 by Captain Graves, R. N., and shortly to be published by the Admiralty.
Map of Santorin in the Grecian Archipelago, from a Survey in 1848, by Captain Graves, R. N.
The soundings are given in fathoms.
A, Shoal formed by submarine volcanic eruption in 1650.
B, Northern entrance.
C, Mansell's Rock.
D, Mount St. Elias, 1887 feet high.
Section of Santorin, in a N. E. and S. W. direction, from Thera through the Kaimenia to Aspronisi.
Part of the section, [fig. 64], enlarged.
Pliny informs us that the year 186, B. C., gave birth to the Old Kaimeni, also called Hiera, or the "Sacred Isle," and in the year 19 of our era "Thia" (the Divine) made its appearance above water, and was soon joined by subsequent eruptions to the older island, from which it was only 250 paces distant. The Old Kaimeni also increased successively in size in 726 and in 1427. A century and a half later, in 1573, another eruption produced the cone and crater called Micra-Kaimeni, or "the Small Burnt Island." The next great event which we find recorded occurred in 1650, when a submarine outbreak violently agitated the sea, at a point three and a half miles to the N. E. of Thera, and which gave rise to a shoal (see A in the map) carefully examined during the late survey in 1848 by Captain Graves, and found to have ten fathoms water over it, the sea deepening around it in all directions. This eruption lasted three months, covering the sea with floating pumice. At the same time an earthquake destroyed many houses in Thera, while the sea broke upon the coast and overthrew two churches, exposing to view two villages, one on each side of the mountain of St. Stephen, both of which must have been overwhelmed by showers of volcanic matter during some previous eruptions of unknown date.[607] The accompanying evolution of sulphur and hydrogen issuing from the sea killed more than fifty persons, and above 1000 domestic animals. A wave, also, 50 feet high, broke upon the rocks of the Isle of Nia, about four leagues distant, and advanced 450 yards into the interior of the Island of Sikino. Lastly, in 1707 and 1709, Nea-Kaimeni, or the New Burnt Island, was formed between the two others, Palaia and Micra, the Old and Little isles. This isle was composed originally of two distinct parts; the first which rose was called the White Island, composed of a mass of pumice, extremely porous. Gorce, the Jesuit, who was then in Santorin, says that the rock "cut like bread," and that, when the inhabitants landed on it, they found a multitude of full-grown fresh oysters adhering to it, which they ate.[608] This mass was afterwards covered, in great part, by the matter ejected from the crater of a twin-island formed simultaneously, and called Black Island, consisting of brown trachyte. The trachytic lava which rose on this spot appears to have been a long time in an intumescent state, for the New Kaimeni was sometimes lowered on one side while it gained height on the other, and rocks rose up in the sea at different distances from the shore and then disappeared again. The eruption was renewed at intervals during the years 1711 and 1712, and at length a cone was piled up to the height of 330 feet above the level of the sea, its exterior slope forming an angle of 33° with the horizon, and the crater on its summit being 80 yards in diameter. In addition to the two points of subaerial eruption on the New and Little Kaimenis, two other cones, indicating the sites of submarine outbursts of unknown date, were discovered under water near the Kaimenis during the late survey.
In regard to the "White Island," which was described and visited by Gorce in 1707, we are indebted to Mr. Edward Forbes for having, in 1842, carefully investigated the layer of pumiceous ash of which it is constituted. He obtained from it many shells of marine genera, Pectunculus, Arca, Cardita, Trochus, and others, both univalve and bivalve, all of recent Mediterranean species. They were in a fine state of preservation, the bivalves with the epidermis remaining, and valves closed, showing that they had been suddenly destroyed. Mr. Forbes, from his study of the habits of the mollusca living at different depths in the Mediterranean, was able to decide that such an assemblage of species could not have lived at a less depth than 220 feet, so that a bodily upheaval of the mass to that amount must have taken place in order to bring up this bed of ashes and shells to the level of the sea, and they now rise five or six feet above that level.[609]
We may compare this partial elevation of solid matter to the rise of a hardened crust of scoriæ, such as is usually formed on the surface of lava-currents, even while they are in motion, and which, although stony and capable of supporting heavy weights, may be upraised without bursting by the intumescence of the melted matter below. That the upheaval was merely local is proved by the fact that the neighboring Kaimenis did not participate in the movement, still less the three more distant or outer islands before mentioned. The history, therefore, of the Kaimenis shows that they have been the result of intermittent action, and it lends no support to the hypothesis of the sudden distension of horizontal beds blown up like a bladder by a single paroxysmal effort of expansive gases.
It will be seen by the accompanying map and sections, that the Kaimenis are arranged in a linear direction, running N. E. and S. W., in a manner different from that represented in the older charts. In their longest diameter they form at their base a ridge nearly bisecting the gulf or crater (see sections, figs. [64], [65]).
On considering these facts we are naturally led to compare the smaller and newer islands in the centre of the gulf to the modern cone of Vesuvius, surrounded by the older semicircular escarpment of Somma, or to liken them to the Peak of Teneriffe before described, as surrounded by its "fosse and bastion." This idea will appear to be still more fully confirmed when we study the soundings taken during the late hydrographical survey. Thera, which constitutes alone more than two-thirds of the outer circuit, presents everywhere towards the gulf, high and steep precipices composed of rocks of volcanic origin. In all places near the base of its cliffs, a depth of from 800 to 1000 feet of water was found, and Lieut. Leycester informs us[610] that if the gulf, which is six miles in diameter, could be drained, a bowl-shaped cavity would appear with walls 2449 feet high in some places, and even on the southwest side, where it is lowest, nowhere less than 1200 feet high; while the Kaimenis would be seen to form in the centre a huge mountain five and a half miles in circumference at its base, with three principal summits (the Old, the New, and the Little Burnt Islands) rising severally to the heights of 1251, 1629, and 1158 feet above the bottom of the abyss. The rim of the great caldron thus exposed would be observed to be in all parts perfect and unbroken, except at one point where there is a deep and long chasm or channel, known by mariners as "the northern entrance" (B, [fig. 63]) between Thera and Therasia, and called by Lieut. Leycester "the door into the crater." It is no less than 1170 feet deep, and constitutes, as will appear by the soundings (see map), a remarkable feature in the bed of the sea. There is no corresponding channel passing out from the gulf into the Mediterranean at any other point in the circuit between the outer islands, the greatest depth there ranging from 7 to 66 feet.
We may conceive, therefore, if at some former time the whole mass of Santorin stood at a higher level by 1200 feet, that this single ravine or narrow valley now forming "the northern entrance," was the passage by which the sea entered a circular bay and swept out in the form of mud and pebbles, the materials derived by denudation from wasting cliffs. In this manner the original crater may have been slowly widened and deepened, after which the whole archipelago may have been partially submerged to its present depth.
That such oscillations of level may in the course of ages have taken place, will be the more readily admitted when we state that part of Thera has actually sunk down in modern times, as, for example, during the great earthquake before alluded to, which happened in 1650. The subsidence alluded to is proved not only by tradition, but by the fact that a road which formerly led between two places on the east coast of Thera is now twelve fathoms under water.
MM. Boblaye and Virlet mention,[611] that the waves are constantly undermining and encroaching on the cliffs of Therasia and Aspronisi, and shoals or submarine ledges were found, during the late survey, to occur round a great part of these islands, attesting the recent progress of denudation. M. Virlet also remarks, in regard to the separation of the three islands forming the walls of the crater, that the channels between them are all to the W. and N. W., the quarter most exposed to the waves and currents.
Mr. Darwin, in his work on volcanic islands, has shown that in the Mauritius and in Santiago, there is an external circle of basaltic rocks of vast diameter, in the interior of which more modern eruptions have taken place, the older rocks dipping away from the central space in every direction, as in the outer islands of Santorin. He refers the numerous breaches, some of them very wide in the external ramparts of those islands, to the denuding action of the sea. Every geologist, therefore, will be prepared to call in the aid of the same powerful cause, to account for the removal of a large part of the rocks which must once have occupied the interior space, in the same manner as they attribute the abstraction of matter from elliptical "valleys of elevation," such as those of Woolhope and the Wealden in England, to the waves and currents of the sea.
Thera, Therasia, and Aspronisi are all composed of volcanic matter, except the southern part of Thera, where Mount St. Elias rises to three times the height of the loftiest of the igneous rocks, reaching an elevation of 1887 feet above the sea.[612] This mountain is formed of granular limestone and argillaceous schist, and must have been originally a submarine eminence in the bed of the Mediterranean, before the volcanic cone, one side of the base of which now abuts against it, was formed. The inclination, strike, and fractures of the calcareous and argillaceous strata of St. Elias have no relation to the great cone, but, according to M. Bory St. Vincent, have the same direction as those of the other isles of the Grecian Archipelago, namely, from N. N. W. to S. S. E. Each of the three islands, Thera, Therasia, and Aspronisi, is capped by an enormous mass of white tufaceous conglomerate, from forty to fifty feet thick, beneath which are beds of trachytic lava and tuff, having a gentle inclination of only 3° or 4°. Each bed is usually very narrow and discontinuous, the successive layers being moulded or dove-tailed, as M. Virlet expresses it, into the inequalities of the previously existing surface, on which showers of cinders or streams of melted matter have been poured. Nothing, therefore, seems more evident than that we have in Santorin the basal remains of a great ruined cone, or flattened dome; and the absence of dikes in the cliffs surrounding the gulf would indicate that the eruptions took place originally, as they have done in the last two thousand years, not near the margin but in the centre of the space now occupied by the gulf. The central portions of the dome have since been removed by engulfment, or denudation, or by both these causes.
An important fact is adduced by M. Virlet, to show that the gentle dip of the lava-streams in the three outer islands towards all points of the compass, away from the centre of the gulf, has not been due to the upheaval of horizontal beds, as conjectured by Von Buch, who had not visited Santorin.[613] The French geologist found that the vesicles or pores of the trachytic masses were lengthened out in the several directions in which they would have flowed if they had descended from the axis of a cone once occupying the centre of the crater. For it is well known that the bubbles of confined gas in a fluid in motion assume an oval form, and the direction of their longer axis coincides always with that of the stream.
On a review, therefore, of all the facts now brought to light respecting Santorin, I attribute the moderate slope of the beds in Thera and the other external islands to their having originally descended the inclined flanks of a large volcanic cone, the principal orifice or vents of eruption having been always situated where they are now, in or near the centre of the space occupied by the gulf or crater—in other words, where the outburst of the Kaimenis has been witnessed in historical times. The single long and deep opening into the crater is a feature common to all those remnants of ancient volcanoes, the central portions of which have been removed, and is probably connected with aqueous denudation. This denuding process has been the work of ages when the sea was admitted into an original crater, and has taken place during the gradual emergence of the island from the sea, or during various oscillations in its level.
The volcanic island of St. Paul in the midst of the Indian Ocean, lat. 38° 44' S., long. 77° 37' E., surveyed by Capt. Blackwood in 1842, seems to exemplify the first stage in the formation of such an archipelago as that of Santorin. We have there a crater one mile in diameter, surrounded by steep and lofty cliffs on every side save one, where the sea enters by a single passage nearly dry at low water. In the interior of the small circular bay or crater there is a depth of 30 fathoms, or 180 feet. The surface of the island slopes away on all sides from the crest of the rocks encircling the crater.[614]
Cone and crater of Barren Island, in the Bay of Bengal. Height of the central cone (according to Capt Miller, in 1834), 500 feet.
Barren Island.—There is great analogy between the structure of Barren Island in the Bay of Bengal, lat. 12° 15', and that of Santorin last described. When seen from the ocean, this island presents, on almost all sides, a surface of bare rocks, rising, with a moderate acclivity, towards the interior; but at one point there is a cleft by which we can penetrate into the centre, and there discover that it is occupied by a great circular basin, filled by the waters of the sea, and bordered all around by steep rocks, in the midst of which rises a volcanic cone, very frequently in eruption. The summit of this cone is about 500 feet in height, corresponding to that of the circular border which incloses the basin; so that it can be seen from the sea only through the ravine. It is most probable that the exterior inclosure of Barren Island (c, d, [fig. 67]) is nothing more than the remains of a truncated cone c, a, b, d, a great portion of which has been removed by engulfment, explosion, or denudation, which may have preceded the formation of the new interior cone, f, e, g.[615]
Supposed section of Barren Island, in the Bay of Bengal.
MUD VOLCANOES.
Iceland.—Mr. R. Bunsen, in his account of the pseudo-volcanic phenomena of Iceland, describes many valleys where sulphurous and aqueous vapors burst forth with a hissing sound, from the hot soil formed of volcanic tuff. In such spots a pool of boiling water is seen, in which a bluish-black argillaceous paste rises in huge bubbles. These bubbles on bursting throw the boiling mud to a height of fifteen feet and upwards, accumulating it in ledges round the crater or basin of the spring.
Baku on the Caspian.—The formation of a new mud volcano was witnessed on the 27th of November, 1827, at Tokmali, on the peninsula of Abscheron, east of Baku. Flames blazed up to an extraordinary height for a space of three hours, and continued for twenty hours to rise about three feet above a crater, from which mud was ejected. At another point in the same district where flames issued, fragments of rock of large size were hurled up into the air, and scattered around.[616]
Mud cones and craters of Hinglaj near Beila, district of Lus, 120 miles northwest of mouth of Indus. From original drawing by Capt. Robertson. (See Map, p. 460.)
Sicily.—At a place called Macaluba, near Girgenti in Sicily, are several conical mounds from ten to thirty feet in height, with small craters at their summits, from which cold water, mixed with mud and bitumen, is cast out. Bubbles of carbonic acid and carburetted hydrogen gas are also disengaged from these springs, and at certain periods with such violence, as to throw the mud to the height of 200 feet. These "air volcanoes," as they are sometimes termed, are known to have been in the same state of activity for the last fifteen centuries; and Dr. Daubeny imagines that the gases which escape may be generated by the slow combustion of beds of sulphur, which is actually in progress in the blue clay, out of which the springs rise.[617] But as the gases are similar to those disengaged in volcanic eruptions, and as they have continued to stream out for so long a period, they may perhaps be derived from a more deep-seated source.
Beila in India.—In the district of Luss or Lus, south of Beila, about 120 miles N. W. of Cutch and the mouths of the Indus (see Map, fig. [71], p. 460), numerous mud volcanoes are scattered over an area of probably not less than 1000 square miles. Some of these have been well described by Captain Hart, and subsequently by Captain Robertson, who has paid a visit to that region, and made sketches of them, which he has kindly placed at my disposal. From one of these the annexed view has been selected. These conical hills occur to the westward of the Hara mountains and the river Hubb. (See Map, p. 460.) One of the cones is 400 feet high, composed of light-colored earth, and having at its summit a crater thirty yards in diameter. The liquid mud which fills the crater is continually disturbed by air-bubbles, and here and there is cast up in small jets.[618]
Mineral composition of volcanic products.—The mineral called felspar forms in general more than half of the mass of modern lavas. When it is in great excess, lavas are called trachytic: they consist generally of a base of compact felspar, in which crystals of glassy felspar are disseminated.[619] When augite (or pyroxene) predominates, lavas are termed basaltic. They contain about 50 per cent. of silica, or much less than the trachytes, in which there is usually about 75 per cent. of that mineral. They also contain about 11 per cent. of protoxide of iron, and as much of lime, both of which are wanting, or only in insignificant quantities in the trachytic rocks.[620] But lavas occur of an intermediate composition between the trachytic and basaltic, which from their color have been called graystones. The abundance of quartz, forming distinct crystals or concretions, characterizes the granitic and other ancient rocks, now generally considered by geologists as of igneous origin; whereas that mineral is rarely exhibited in a separate form in recent lavas, although silica enters so largely into their composition. Hornblende, so common in hypogene rocks, or those commonly called "primary," is rare in modern lava; nor does it enter largely into rocks of any age in which augite abounds. It should, however, be stated, that the experiments of Mr. Gustav Rose have made it very questionable, whether the minerals called hornblende and augite can be separated as distinct species, as their different varieties seem to pass into each other, whether we consider the characters derived from their angles of crystallization, their chemical composition, or their specific gravity. The difference in form of the two substances may be explained by the different circumstances under which they have been produced, the form of hornblende being the result of slower cooling. Crystals of augite have been met with in the scoriæ of furnaces, but never those of hornblende; and crystals of augite have been obtained by melting hornblende in a platina crucible; but hornblende itself has not been formed artificially.[621] Mica occurs plentifully in some recent trachytes, but is rarely present where augite is in excess.
Frequency of eruptions, and nature of subterranean igneous rocks.—When we speak of the igneous rocks of our own times, we mean that small portion which, in violent eruptions, is forced up by elastic fluids to the surface of the earth,—the sand, scoriæ, and lava, which cool in the open air. But we cannot obtain access to that which is congealed far beneath the surface under great pressure, equal to that of many hundred, or many thousand atmospheres.
During the last century, about fifty eruptions are recorded of the five European volcanic districts, of Vesuvius, Etna, Volcano, Santorin, and Iceland; but many beneath the sea in the Grecian archipelago and near Iceland may doubtless have passed unnoticed. If some of them produced no lava, others, on the contrary, like that of Skaptár Jokul, in 1783, poured out melted matter for five or six years consecutively; which cases, being reckoned as single eruptions, will compensate for those of inferior strength. Now, if we consider the active volcanoes of Europe to constitute about a fortieth part of those already known on the globe, and calculate that, one with another, they are about equal in activity to the burning mountains in other districts, we may then compute that there happen on the earth about 2000 eruptions in the course of a century, or about twenty every year.
However inconsiderable, therefore, may be the superficial rocks which the operations of fire produce on the surface, we must suppose the subterranean changes now constantly in progress to be on the grandest scale. The loftiest volcanic cones must be as insignificant, when contrasted to the products of fire in the nether regions, as are the deposits formed in shallow estuaries when compared to submarine formations accumulating in the abysses of the ocean. In regard to the characters of these volcanic rocks, formed in our own times in the bowels of the earth, whether in rents and caverns, or by the cooling of lakes of melted lava, we may safely infer that the rocks are heavier and less porous than ordinary lavas, and more crystalline, although composed of the same mineral ingredients. As the hardest crystals produced artificially in the laboratory require the longest time for their formation, so we must suppose that where the cooling down of melted matter takes place by insensible degrees, in the course of ages, a variety of minerals will be produced far harder than any formed by natural processes within the short period of human observation.
These subterranean volcanic rocks, moreover, cannot be stratified in the same manner as sedimentary deposits from water, although it is evident that when great masses consolidate from a state of fusion, they may separate into natural divisions; for this is seen to be the case in many lava-currents. We may also expect that the rocks in question will often be rent by earthquakes, since these are common in volcanic regions; and the fissures will be often injected with similar matter, so that dikes of crystalline rock will traverse masses of similar composition. It is also clear, that no organic remains can be included in such masses, as also that these deep-seated igneous formations considered in mass must underlie all the strata containing organic remains, because the heat proceeds from below upwards, and the intensity required to reduce the mineral ingredients to a fluid state must destroy all organic bodies in rocks included in the midst of them.
If by a continued series of elevatory movements, such masses shall hereafter be brought up to the surface, in the same manner as sedimentary marine strata have, in the course of ages, been upheaved to the summit of the loftiest mountains, it is not difficult to foresee what perplexing problems may be presented to the geologist. He may then, perhaps, study in some mountain-chain the very rocks produced at the depth of several miles beneath the Andes, Iceland, or Java, in the time of Leibnitz, and draw from them the same conclusion which that philosopher derived from certain igneous products of high antiquity; for he conceived our globe to have been, for an indefinite period, in the state of a comet, without an ocean, and uninhabitable alike by aquatic or terrestrial animals.
CHAPTER XXVII.
EARTHQUAKES AND THEIR EFFECTS.
Earthquakes and their effects—Deficiency of ancient accounts—Ordinary atmospheric phenomena—Changes produced by earthquakes in modern times considered in chronological order—Earthquake in Syria, 1837—Earthquakes in Chili in 1837 and 1835—Isle of Santa Maria raised ten feet—Chili, 1822—Extent of country elevated—Aleppo and Ionian Isles—Earthquake of Cutch in 1819—Subsidence in the Delta of the Indus—Island of Sumbawa in 1815—Earthquake of Caraccas in 1812—Shocks at New Madrid in 1811 in the valley of the Mississippi—Aleutian Islands in 1806—Reflections on the earthquakes of the nineteenth century—Earthquake in Quito, Quebec, &c.—Java, 1786—Sinking down of large tracts.
In the sketch before given of the geographical boundaries of volcanic regions, I stated, that although the points of eruption are but thinly scattered, constituting mere spots on the surface of those vast districts, yet the subterranean movements extend simultaneously over immense areas. We may now proceed to consider the changes which these movements produce on the surface, and in the internal structure of the earth's crust.
Deficiency of ancient accounts.—It is only within the last century and a half, since Hooke first promulgated, in 1688, his views respecting the connection between geological phenomena and earthquakes, that the permanent changes affected by these convulsions have excited attention. Before that time, the narrative of the historian was almost exclusively confined to the number of human beings who perished, the number of cities laid in ruins, the value of property destroyed, or certain atmospheric appearances which dazzled or terrified the observers. The creation of a new lake, the engulfing of a new city, or the raising of a new island, are sometimes, it is true, adverted to, as being too obvious, or of too much geographical or political interest to be passed over in silence. But no researches were made expressly with a view of ascertaining the amount of depression or elevation of the ground, or any particular alterations in the relative position of sea and land; and very little distinction was made between the raising of soil by volcanic ejections, and the upheaving of it by forces acting from below. The same remark applies to a very large proportion of modern accounts: and how much reason we have to regret this deficiency of information appears from this, that in every instance where a spirit of scientific inquiry has animated the eyewitnesses of these events, facts calculated to throw light on former modifications of the earth's structure are recorded.
Phenomena attending earthquakes.—As I shall confine myself almost entirely, in the following notice of earthquakes, to the changes brought about by them in the configuration of the earth's crust, I may mention, generally, some accompaniments of these terrible events which are almost uniformly commemorated in history, that it may be unnecessary to advert to them again. Irregularities in the seasons preceding or following the shocks; sudden gusts of wind, interrupted by dead calms; violent rains at unusual seasons, or in countries where such phenomena are almost unknown; a reddening of the sun's disk, and a haziness in the air, often continued for months; an evolution of electric matter, or of inflammable gas from the soil, with sulphurous and mephitic vapors; noises underground, like the running of carriages, or the discharge of artillery, or distant thunder; animals uttering cries of distress, and evincing extraordinary alarm, being more sensitive than men of the slightest movement; a sensation like sea-sickness, and a dizziness in the head, experienced by men:—these, and other phenomena, less connected with our present subject as geologists, have recurred again and again at distant ages, and in all parts of the globe.
I shall now begin the enumeration of earthquakes with the latest authentic narratives, and so carry back the survey retrospectively, that I may bring before the reader, in the first place, the minute and circumstantial details of modern times, and thus enable him, by observing the extraordinary amount of change within the last 150 years, to perceive how great must be the deficiency in the meager annals of earlier eras.
EARTHQUAKES OF THE NINETEENTH CENTURY.[622]
Syria, January, 1837.—It has been remarked that earthquakes affect elongated areas. The violent shock which devastated Syria in 1837 was felt on a line 500 miles in length by 90 in breadth:[623] more than 6000 persons perished; deep rents were caused in solid rocks, and new hot springs burst out at Tabereah.
Chili—Valdivia, 1837.—One of the latest earthquakes by which the position of solid land is known to have been permanently altered is that which occurred in Chili, on November 7th, 1837. On that day Valdivia was destroyed by an earthquake, and a whaler, commanded by Captain Coste, was violently shaken at sea, and lost her masts, in lat. 43° 38' S. in sight of the land. The captain went on the 11th of December following to a spot near the island of Lemus, one of the Chonos archipelago, where he had anchored two years before, and found that the bottom of the sea had been raised more than eight feet. Some rocks formerly covered at all times by the sea were now constantly exposed, and an enormous quantity of shells and fish in a decaying state, which had been thrown there by the waves, or suddenly laid dry during the earthquake, attested the recent date of the occurrence. The whole coast was strewed with uprooted trees.[624]
Chili—Conception, 1835.—Fortunately we have a still more detailed account of the geographical changes produced in the same country on the 20th of February, 1835. An earthquake was then felt at all places between Copiapo and Chiloe, from north to south, and from Mendoza to Juan Fernandez, from east to west. "Vessels," says Mr. Caldcleugh, "navigating the Pacific, within 100 miles of the coast, experienced the shock with considerable force."[625] Conception, Talcahuano, Chillan, and other towns were thrown down. From the account of Captain Fitz Roy, R. N., who was then employed in surveying the coast, we learn that after the shock the sea retired in the Bay of Conception, and the vessels grounded, even those which had been lying in seven fathoms water: all the shoals were visible, and soon afterwards a wave rushed in and then retreated, and was followed by two other waves. The vertical height of these waves does not appear to have been much greater than from sixteen to twenty feet, although they rose to much greater heights when they broke upon a sloping beach.
According to Mr. Caldcleugh and Mr. Darwin, the whole volcanic chain of the Chilian Andes, a range 150 miles in length, was in a state of unusual activity, both during the shocks and for some time preceding and after the convulsion, and lava was seen to flow from the crater of Osorno. (See Map, [fig. 69].) The island of Juan Fernandez, distant 365 geographical miles from Chili, was violently shaken at the same time, and devastated by a great wave. A submarine volcano broke out there near Bacalao Head, about a mile from the shore, in sixty-nine fathoms water, and illumined the whole island during the night.[626]
"At Conception," says Captain Fitz Roy, "the earth opened and closed rapidly in numerous places. The direction of the cracks was not uniform, though generally from southeast to northwest. The earth was not quiet for three days after the great shock, and more than 300 shocks were counted between the 20th February and the 4th of March. The loose earth of the valley of the Biobio was everywhere parted from the solid rocks which bound the plain, there being an opening between them from an inch to a foot in width.
"For some days after the 20th of February, the sea at Talcahuano," says Captain Fitz Roy, "did not rise to the usual marks by four or five feet vertically. When walking on the shore, even at high water, beds of dead mussels, numerous chitons, and limpets, and withered seaweed, still adhering, though lifeless, to the rocks on which they had lived, everywhere met the eye." But this difference in the relative level of the land and sea gradually diminished, till in the middle of April the water rose again to within two feet of the former high-water mark. It might be supposed that these changes of level merely indicated a temporary disturbance in the set of the currents or in the height of the tides at Talcahuano; but, on considering what occurred in the neighboring island of Santa Maria, Captain Fitz Roy concluded that the land had been raised four or five feet in February, and that it had returned in April to within two or three feet of its former level.
Santa Maria, the island just alluded to, is about seven miles long and two broad, and about twenty-five miles southwest of Conception. (See Map, [fig. 70].) The phenomena observed there are most important. "It appeared," says Captain Fitz Roy, who visited Santa Maria twice, the first time at the end of March, and afterwards in the beginning of April, "that the southern extremity of the island had been raised eight feet, the middle nine, and the northern end upwards of ten feet. On steep rocks, where vertical measures could be correctly taken, beds of dead mussels were found ten feet above high-water mark. One foot lower than the highest bed of mussels, a few limpets and chitons were seen adhering to the rock where they had grown. Two feet lower than the same, dead mussels, chitons, and limpets were abundant.
"An extensive rocky flat lies around the northern parts of Santa Maria. Before the earthquake this flat was covered by the sea, some projecting rocks only showing themselves. Now, the whole flat is exposed, and square acres of it are covered with dead shell-fish, the stench arising from which is abominable. By this elevation of the land the southern port of Santa Maria has been almost destroyed; little shelter remaining there, and very bad landing." The surrounding sea is also stated to have become shallower in exactly the same proportion as the land had risen; the soundings having diminished a fathom and a half everywhere around the island.
At Tubal, also, to the southeast of Santa Maria, the land was raised six feet, at Mocha two feet, but no elevation could be ascertained at Valdivia.
Among other effects of the catastrophe, it is stated that cattle standing on a steep slope, near the shore, were rolled down into the sea, and many others were washed off by the great wave from low land and drowned.[627]
In November of the same year (1835), Conception was shaken by a severe earthquake, and on the same day Osorno, at the distance of 400 miles, renewed its activity. These facts prove not only the connection of earthquakes with volcanic eruptions in this region, but also the vast extent of the subterranean areas over which the disturbing cause acts simultaneously.
Ischia, 1828.—On the 2d of February the whole island of Ischia was shaken by an earthquake, and in the October following I found all the houses in Casamicciol still without their roofs. On the sides of a ravine between that town and Forio, I saw masses of greenish tuff which had been thrown down. The hot-spring of Rita, which was nearest the centre of the movement, was ascertained by M. Covelli to have increased in temperature, showing, as he observes, that the explosion took place below the reservoirs which heat the thermal waters.[628]
Bogota, 1827.—On the 16th of November, 1827, the plain of Bogota, in New Granada, or Colombia, was convulsed by an earthquake, and a great number of towns were thrown down. Torrents of rain swelled the Magdalena, sweeping along vast quantities of mud and other substances, which emitted a sulphurous vapor and destroyed the fish. Popayan, which is distant 200 geographical miles S. S. W. of Bogota, suffered greatly. Wide crevices appeared in the road of Guanacas, leaving no doubt that the whole of the Cordilleras sustained a powerful shock. Other fissures opened near Costa, in the plains of Bogota, into which the river Tunza immediately began to flow.[629] It is worthy of remark, that in all such cases the ancient gravel bed of a river is deserted and a new one formed at a lower level; so that a want of relation in the position of alluvial beds of the existing water-courses may be no test of the high antiquity of such deposits, at least in countries habitually convulsed by earthquakes. Extraordinary rains accompanied the shocks before mentioned; and two volcanoes are said to have been in eruption in the mountain-chain nearest to Bogota.
Chili, 1822.—On the 19th of November, 1822, the coast of Chili was visited by a most destructive earthquake. The shock was felt simultaneously throughout a space of 1200 miles from north to south. St. Jago, Valparaiso, and some other places, were greatly injured. When the district round Valparaiso was examined on the morning after the shock, it was found that the coast for a considerable distance was raised above its former level.[630] At Valparaiso the elevation was three feet, and at Quintero about four feet. Part of the bed of the sea, says Mrs. Graham, remained bare and dry at high water, "with beds of oysters, mussels, and other shells adhering to the rocks on which they grew, the fish being all dead, and exhaling most offensive effluvia.[631]
An old wreck of a ship, which before could not be approached, became accessible from the land, although its distance from the original sea-shore had not altered. It was observed that the water-course of a mill, at the distance of about a mile from the sea, gained a fall of fourteen inches, in little more than one hundred yards; and from this fact it is inferred that the rise in some parts of the inland country was far more considerable than on the borders of the ocean.[632] Part of the coast thus elevated consisted of granite, in which parallel fissures were caused, some of which were traced for a mile and a half inland. Cones of earth about four feet high were thrown up in several districts, by the forcing up of water mixed with sand through funnel-shaped hollows,—a phenomenon very common in Calabria, and the explanation of which will hereafter be considered. Those houses in Chili of which the foundations were on rock were less damaged than such as were built on alluvial soil.
Mr. Cruickshanks, an English botanist, who resided in the country during the earthquake, has informed me that some rocks of greenstone at Quintero, a few hundred yards from the beach, which had always been under water till the shock of 1822, have since been uncovered when the tide is at half-ebb: and he states that, after the earthquake, it was the general belief of the fishermen and inhabitants of the Chilian coast, not that the land had risen, but that the ocean had permanently retreated.
Dr. Meyen, a Prussian traveller, who visited Valparaiso in 1831, says that on examining the rocks both north and south of the town, nine years after the event, he found, in corroboration of Mrs. Graham's account, that remains of animals and sea-weed, the Lessonia of Bory de St. Vincent, which has a firm ligneous stem, still adhered to those rocks which in 1822 had been elevated above high-water mark.[633] According to the same author, the whole coast of Central Chili was raised about four feet, and banks of marine shells were laid dry on many parts of the coast. He observed similar banks, elevated at unknown periods, in several places, especially at Copiapo, where the species all agree with those now living in the ocean. Mr. Freyer also, who resided some years in South America, has confirmed these statements;[634] and Mr. Darwin obtained evidence that the remains of an ancient wall, formerly washed by the sea, and now 11½ feet above high-water mark, acquired several feet of this additional elevation during the earthquake of 1822.[635]
The shocks continued up to the end of September, 1823; even then, forty-eight hours seldom passed without one, and sometimes two or three were felt during twenty-four hours. Mrs. Graham observed, after the earthquake of 1822, that besides a beach newly raised above highwater mark, there were several older elevated lines of beach, one above the other, consisting of shingle mixed with shells extending in a parallel direction to the shore, to the height of fifty feet above the sea.[636]
Extent of country elevated.—By some observers it has been supposed that the whole country from the foot of the Andes to a great distance under the sea was upraised in 1822, the greatest rise being at the distance of about two miles from the shore. "The rise upon the coast was from two to four feet:—at the distance of a mile inland it must have been from five to six or seven feet."[637] It has also been conjectured by the same eye-witnesses to the convulsion, that the area over which this permanent alteration of level extended may have been equal to 100,000 square miles. Although the increased fall of certain water-courses may have afforded some ground for this conjecture, it must be considered as very hypothetical, and the estimate may have exceeded or greatly fallen short of the truth. It may nevertheless be useful to reflect on the enormous amount of change which this single convulsion occasioned, if the extent of country moved upward really amounted to 100,000 square miles,—an extent just equal to half the area of France, or about five-sixths of the area of Great Britain and Ireland. If we suppose the elevation to have been only three feet on an average, it will be seen that the mass of rock added to the continent of America by the movement, or, in other words, the mass previously below the level of the sea, and after the shocks permanently above it, must have contained fifty-seven cubic miles in bulk; which would be sufficient to form a conical mountain two miles high (or about as high as Etna), with a circumference at the base of nearly thirty-three miles. We may take the mean specific gravity of the rock at 2·655,—a fair average, and a convenient one in such computations, because at such a rate a cubic yard weighs two tons. Then, assuming the great pyramid of Egypt, if solid, to weigh, in accordance with an estimate before given, six million tons, we may state the rock added to the continent by the Chilian earthquake to have more than equalled 100,000 pyramids.
But it must always be borne in mind that the weight of rock here alluded to constituted but an insignificant part of the whole amount which the volcanic forces had to overcome. The whole thickness of rock between the surface of Chili and the subterranean foci of volcanic action may be many miles or leagues deep. Say that the thickness was only two miles, even then the mass which changed place and rose three feet being 200,000 cubic miles in volume, must have exceeded in weight 363 million pyramids.
It may be instructing to consider these results in connection with others already obtained from a different source, and to compare the working of two antagonistic forces—the levelling power of running water, and the expansive energy of subterranean heat. How long, it may be asked, would the Ganges require, according to data before explained (p. 283), to transport to the sea a quantity of solid matter equal to that which may have been added to the land by the Chilian earthquake? The discharge of mud in one year by the Ganges was estimated at 20,000 million cubic feet. According to that estimate it would require about four centuries (or 418 years) before the river could bear down from the continent into the sea a mass equal to that gained by the Chilian earthquake. In about half that time, perhaps, the united waters of the Ganges and Burrampooter might accomplish the operation.
Cutch, 1819.—A violent earthquake occurred at Cutch, in the delta of the Indus, on the 16th of June, 1819. (See Map, [fig. 71].) The principal town, Bhooj, was converted into a heap of ruins, and its stone buildings were thrown down. The movement was felt over an area having a radius of 1000 miles from Bhooj, and extending to Kbatmandoo, Calcutta, and Pondicherry.[638] The vibrations were felt in Northwest India, at a distance of 800 miles, after an interval of about fifteen minutes after the earthquake at Bhooj. At Ahmedabad the great mosque, erected by Sultan Ahmed nearly 450 years before, fell to the ground, attesting how long a period had elapsed since a shock of similar violence had visited that point. At Anjar, the fort, with its tower and guns, was hurled to the ground in one common mass of ruin. The shocks continued until the 20th; when, thirty miles northwest from Bhooj, the volcano called Denodur is said by some to have sent forth flames, but Capt. Grant was unable to authenticate this statement.
Subsidence in the delta of the Indus.—Although the ruin of towns was great, the face of nature in the inland country, says Captain Macmurdo, was not visibly altered. In the hills some large masses only of rock and soil were detached from the precipices; but the eastern and almost deserted channel of the Indus, which bounds the province of Cutch, was greatly changed. This estuary, or inlet of the sea, was, before the earthquake, fordable at Luckput, being only about a foot deep when the tide was at ebb, and at flood-tide never more than six feet; but it was deepened at the fort of Luckput, after the shock, to more than eighteen feet at low water.[639] On sounding other parts of the channel, it was found, that where previously the depth of the water at flood never exceeded one or two feet, it had become from four to ten feet deep. By these and other remarkable changes of level, a part of the inland navigation of that country, which had been closed for centuries, became again practicable.
Fort of Sindree, on the eastern branch of the Indus, before it was submerged by the earthquake of 1819, from a sketch of Capt. Grindlay, made in 1808.
Fort and village submerged.[640]—The fort and village of Sindree, on the eastern arm of the Indus, above Luckput, are stated by the same writer to have been overflowed; and, after the shock, the tops of the houses and wall were alone to be seen above the water, for the houses, although submerged, were not cast down. Had they been situated, therefore, in the interior, where so many forts were levelled to the ground, their site would, perhaps, have been regarded as having remained comparatively unmoved. Hence we may suspect that great permanent upheavings and depressions of soil may be the result of earthquakes, without the inhabitants being in the least degree conscious of any change of level.
A more recent survey of Cutch, by Sir A. Burnes, who was not in communication with Capt. Macmurdo, confirms the facts above enumerated, and adds many important details.[641] That officer examined the delta of the Indus in 1826 and 1828, and from his account it appears that, when Sindree subsided in June, 1819, the sea flowed in by the eastern mouth of the Indus, and in a few hours converted a tract of land, 2000 square miles in area, into an inland sea, or lagoon. Neither the rush of the sea into this new depression, nor the movement of the earthquake, threw down entirely the small fort of Sindree, one of the four towers, the northwestern, still continuing to stand; and, the day after the earthquake, the inhabitants who had ascended to the top of this tower, saved themselves in boats.[642]
Elevation of the Ullah Bund.—Immediately after the shock, the inhabitants of Sindree saw, at the distance of five miles and a half from their village, a long elevated mound, where previously there had been a low and perfectly level plain. (See Map, [fig. 71].) To this uplifted tract they gave the name of "Ullah Bund," or the "Mound of God," to distinguish it from several artificial dams previously thrown across the eastern arm of the Indus.
Extent of country raised.—It has been ascertained that this new-raised country is upwards of fifty miles in length from east to west, running parallel to that line of subsidence before mentioned, which caused the grounds around Sindree to be flooded. The range of this elevation extends from Puchum Island towards Gharee; its breadth from north to south is conjectured to be in some parts sixteen miles, and its greatest ascertained height above the original level of the delta is ten feet,—an elevation which appears to the eye to be very uniform throughout.
For several years after the convulsion of 1819, the course of the Indus was very unsettled, and at length, in 1826, the river threw a vast body of water into its eastern arm, that called the Phurraun, above Sindree; and forcing its way in a more direct course to the sea, burst through all the artificial dams which had been thrown across its channel, and at length cut right through the "Ullah Bund," whereby a natural section was obtained. In the perpendicular cliffs thus laid open Sir A. Burnes found that the upraised lands consisted of clay filled with shells. The new channel of the river where it intersected the "bund" was eighteen feet deep, and forty yards in width; but in 1828 the channel was still farther enlarged. The Indus, when it first opened this new passage, threw such a body of water into the new mere, or salt lagoon, of Sindree, that it became fresh for many months; but it had recovered its saltness in 1828, when the supply of river-water was less copious, and finally it became more salt than the sea, in consequence, as the natives suggested to Sir A. Burnes, of the saline particles with which the "Runn of Cutch" is impregnated.
In 1828 Sir A. Burnes went in a boat to the ruins of Sindree, where a single remaining tower was seen in the midst of a wide expanse of sea. The tops of the ruined walls still rose two or three feet above the level of the water; and standing on one of these, he could behold nothing in the horizon but water, except in one direction, where a blue streak of land to the north indicated the Ullah Bund. This scene presents to the imagination a lively picture of the revolutions now in progress on the earth—a waste of waters where a few years before all was land, and the only land visible consisting of ground uplifted by a recent earthquake.
Ten years after the visit of Sir A. Burnes above alluded to, my friend, Captain Grant, F. G. S., of the Bombay Engineers, had the kindness to send at my request a native surveyor to make a plan of Sindree and Ullah Bund, in March, 1838. From his description it appears that, at that season, the driest of the whole year, he found the channel traversing the Bund to be 100 yards wide, without water, and incrusted with salt. He was told that it has now only four or five feet of water in it after rains. The sides or banks were nearly perpendicular, and nine feet in height. The lagoon has diminished both in area and depth, and part near the fort was dry land. The annexed drawing, made by Captain Grant from the surveyor's plan, shows the appearance of the fort in the midst of the lake, as seen in 1838 from the west, or from the same point as that from which Captain Grindlay's sketch (see [fig. 72]) was taken in 1808, before the earthquake.
View of the Fort of Sindree, from the west, in March, 1838.
The Runn of Cutch is a flat region of a very peculiar character, and no less than 7000 square miles in area: a greater superficial extent than Yorkshire, or about one-fourth the area of Ireland. It is not a desert of moving sand, nor a marsh, but evidently the dried-up bed of an inland sea, which for a great part of every year has a hard and dry bottom uncovered by weeds or grass, and only supporting here and there a few tamarisks. But during the monsoons, when the sea runs high, the salt-water driven up from the Gulf of Cutch and the creeks at Luckput overflows a large part of the Runn, especially after rains, when the soaked ground permits the sea-water to spread rapidly. The Runn is also liable to be overflowed occasionally in some parts by river-water: and it is remarkable that the only portion which was ever highly cultivated (that anciently called Sayra) is now permanently submerged. The surface of the Runn is sometimes incrusted with salt about an inch in depth, in consequence of the evaporation of the sea-water. Islands rise up in some parts of the waste, and the boundary lands form bays and promontories. The natives have various traditions respecting the former separation of Cutch and Sinde by a bay of the sea, and the drying up of the district called the Runn. But these tales, besides the usual uncertainty of oral tradition, are farther obscured by mythological fictions. The conversion of the Runn into land is chiefly ascribed to the miraculous powers of a Hindoo saint, by name Damorath (or Dhoorunnath), who had previously done penance for twelve years on the summit of Denodur hill. Captain Grant infers, on various grounds, that this saint flourished about the eleventh or twelfth century of our era. In proof of the drying up of the Runn, some towns far inland are still pointed out as having once been ancient ports. It has, moreover, been always said that ships were wrecked and engulphed by the great catastrophe; and in the jets of black muddy water thrown out of fissures in that region, in 1819, there were cast up numerous pieces of wrought-iron and ship nails.[643] Cones of sand six or eight feet in height were at the same time thrown up on these lands.[644]
We must not conclude without alluding to a moral phenomenon connected with this tremendous catastrophe, which we regard as highly deserving the attention of geologists. It is stated by Sir A. Burnes, that "these wonderful events passed unheeded by the inhabitants of Cutch;" for the region convulsed, though once fertile, had for a long period been reduced to sterility by want of irrigation, so that the natives were indifferent as to its fate. Now it is to this profound apathy which all but highly civilized nations feel, in regard to physical events not having an immediate influence on their worldly fortunes, that we must ascribe the extraordinary dearth of historical information concerning changes of the earth's surface, which modern observations show to be by no means of rare occurrence in the ordinary course of nature.
Since the above account was written, a description has been published of more recent geographical changes in the district of Cutch, near the mouth of the Koree, or eastern branch of the Indus, which happened in June, 1845. A large area seems to have subsided, and the Sindree lake had become a salt marsh.[645]
Island of Sumbawa, 1815.—In April, 1815, one of the most frightful eruptions recorded in history occurred in the province of Tomboro, in the island of Sumbawa (see Map, [fig. 39], p. 351), about 200 miles from the eastern extremity of Java. In April of the year preceding the volcano had been observed in a state of considerable activity, ashes having fallen upon the decks of vessels which sailed past the coast.[646] The eruption of 1815 began on the 5th of April, but was most violent on the 11th and 12th, and did not entirely cease till July. The sound of the explosions was heard in Sumatra, at the distance of 970 geographical miles in a direct line; and at Ternate, in an opposite direction, at the distance of 720 miles. Out of a population of 12,000, in the province of Tomboro, only twenty-six individuals survived. Violent whirlwinds carried up men, horses, cattle, and whatever else came within their influence into the air; tore up the largest trees by the roots, and covered the whole sea with floating timber.[647] Great tracts of land were covered by lava, several streams of which, issuing from the crater of the Tomboro mountain, reached the sea: So heavy was the fall of ashes, that they broke into the Resident's house at Bima, forty miles east of the volcano, and rendered it as well as many other dwellings in the town uninhabitable. On the side of Java the ashes were carried to the distance of 300 miles, and 217 towards Celebes, in sufficient quantity to darken the air. The floating cinders to the westward of Sumatra formed, on the 12th of April, a mass two feet thick, and several miles in extent, through which ships with difficulty forced their way.
The darkness occasioned in the daytime by the ashes in Java was so profound, that nothing equal to it was ever witnessed in the darkest night. Although this volcanic dust when it fell was an impalpable powder, it was of considerable weight when compressed, a pint of it weighing twelve ounces and three quarters. "Some of the finest particles," says Mr. Crawfurd, "were transported to the islands of Amboyna and Banda, which last is about 800 miles east from the site of the volcano, although the southeast monsoon was then at its height." They must have been projected, therefore, into the upper regions of the atmosphere, where a counter-current prevailed.
Along the sea-coast of Sumbawa and the adjacent isles, the sea rose suddenly to the height of from two to twelve feet, a great wave rushing up the estuaries, and then suddenly subsiding. Although the wind at Bima was still during the whole time, the sea rolled in upon the shore, and filled the lower parts of the houses with water a foot deep. Every prow and boat was forced from the anchorage, and driven on shore.
The town called Tomboro, on the west side of Sumbawa, was overflowed by the sea, which encroached upon the shore so that the water remained permanently eighteen feet deep in places where there was land before. Here we may observe, that the amount of subsidence of land was apparent, in spite of the ashes, which would naturally have caused the limits of the coast to be extended.
The area over which tremulous noises and other volcanic effects extended, was 1000 English miles in circumference, including the whole of the Molucca Islands, Java, a considerable portion of Celebes, Sumatra, and Borneo. In the island of Amboyna, in the same month and year, the ground opened, threw out water, and then closed again.[648]
In conclusion, I may remind the reader, that but for the accidental presence of Sir Stamford Raffles, then Governor of Java, we should scarcely have heard in Europe of this tremendous catastrophe. He required all the residents in the various districts under his authority to send in a statement of the circumstances which occurred within their own knowledge; but, valuable as were their communications, they are often calculated to excite rather than to satisfy the curiosity of the geologist. They mention that similar effects, though in a less degree, had, about seven years before, accompanied an eruption of Carang Assam, a volcano in the island of Bali, west of Sumatra; but no particulars of that great catastrophe are recorded.[649]
Caraccas, 1812.—On the 26th of March, 1812, several violent shocks of an earthquake were felt in Caraccas. The surface undulated like a boiling liquid, and terrific sounds were heard underground. The whole city with its splendid churches was in an instant a heap of ruins, under which 10,000 of the inhabitants were buried. On the 5th of April, enormous rocks were detached from the mountains. It was believed that the mountain Silla lost from 300 to 360 feet of its height by subsidence; but this was an opinion not founded on any measurement. On the 27th of April, a volcano in St. Vincent's threw out ashes; and, on the 30th, lava flowed from its crater into the sea, while its explosions were heard at a distance equal to that between Vesuvius and Switzerland, the sound being transmitted, as Humboldt supposes, through the ground. During the earthquake which destroyed Caraccas, an immense quantity of water was thrown out at Valecillo, near Valencia, as also at Porto Cabello, through openings in the earth; and in the Lake Maracaybo the water sank. Humboldt observed that the Cordilleras, composed of gneiss and mica slate, and the country immediately at their feet, were more violently shaken than the plains.[650]
South Carolina and New Madrid, Missouri, 1811-12.—Previous to the destruction of La Guayra and Caraccas, in 1812, earthquakes were felt in South Carolina; and the shocks continued till those cities were destroyed. The valley also of the Mississippi, from the village of New Madrid to the mouth of the Ohio in one direction, and to the St. Francis in another, was convulsed in such a degree as to create new lakes and islands. It has been remarked by Humboldt in his Cosmos, that the earthquake of New Madrid presents one of the few examples on record of the incessant quaking of the ground for several successive months far from any volcano. Flint, the geographer, who visited the country seven years after the event, informs us, that a tract of many miles in extent, near the Little Prairie, became covered with water three or four feet deep; and when the water disappeared a stratum of sand was left in its place. Large lakes of twenty miles in extent were formed in the course of an hour, and others were drained. The grave-yard at New Madrid was precipitated into the bed of the Mississippi; and it is stated that the ground whereon the town is built, and the river-bank for fifteen miles above, sank eight feet below their former level.[651] The neighboring forest presented for some years afterwards "a singular scene of confusion; the trees standing inclined in every direction, and many having their trunks and branches broken."[652]
The inhabitants relate that the earth rose in great undulations; and when these reached a certain fearful height, the soil burst, and vast volumes of water, sand, and pit-coal were discharged as high as the tops of the trees. Flint saw hundreds of these deep chasms remaining in an alluvial soil, seven years after. The people in the country, although inexperienced in such convulsions, had remarked that the chasms in the earth were in a direction from S. W. to N. E.; and they accordingly felled the tallest trees, and laying them at right angles to the chasms, stationed themselves upon them. By this invention, when chasms opened more than once under these trees, several persons were prevented from being swallowed up.[653] At one period during this earthquake, the ground not far below New Madrid swelled up so as to arrest the Mississippi in its course, and to cause a temporary reflux of its waves. The motion of some of the shocks is described as having been horizontal, and of others perpendicular; and the vertical movement is said to have been much less desolating than the horizontal.
The above account has been reprinted exactly as it appeared in former editions of this work, compiled from the authorities which I have cited; but having more recently (March, 1846) had an opportunity myself of visiting the disturbed region of the Mississippi, and conversing with many eye-witnesses of the catastrophe, I am able to confirm the truth of those statements, and to add some remarks on the present face and features of the country. I skirted, as was before related (p. 270), part of the territory immediately west of New Madrid, called "the sunk country," which was for the first time permanently submerged during the earthquake of 1811-12. It is said to extend along the course of the White Water and its tributaries for a distance of between 70 and 80 miles north and south, and 30 miles east and west. I saw on its borders many full-grown trees still standing leafless, the bottoms of their trunks several feet under water, and a still greater number lying prostrate. An active vegetation of aquatic plants is already beginning to fill up some of the shallows, and the sediment washed in by occasional floods when the Mississippi rises to an extraordinary height contributes to convert the sunk region into marsh and forest land. Even on the dry ground along the confines of the submerged area, I observed in some places that all the trees of prior date to 1811 were dead and leafless, though standing erect and entire. They are supposed to have been killed by the loosening of their roots during the repeated undulations which passed through the ground for three months in succession.
Mr. Bringier, an experienced engineer of New Orleans, who was on horseback near New Madrid when some of the severest shocks were experienced, related to me (in 1846), that "as the waves advanced the trees bent down, and the instant afterwards, while recovering their position, they often met those of other trees similarly inclined, so that their branches becoming interlocked, they were prevented from righting themselves again. The transit of the wave through the woods was marked by the crashing noise of countless boughs, first heard on one side and then on the other. At the same time powerful jets of water, mixed with sand, mud, and fragments of coaly matter, were cast up, endangering the lives of both horse and rider."
I was curious, to ascertain whether any vestiges still remained of these fountains of mud and water, and carefully examined between New Madrid and the Little Prairie several "sink holes," as they are termed. They consist of cavities from 10 to 30 yards in width, and 20 feet or more in depth, and are very conspicuous, interrupting the level surface of a flat alluvial plain. I saw abundance of sand, which some of the present inhabitants saw spouting from these deep holes, also fragments of decayed wood and black bituminous shale, probably drifted down at some former period in the main channel of the Mississippi, from the coal-fields farther north. I also found numerous rents in the soil left by the earthquake, some of them still several feet wide, and a yard or two in depth, although the action of rains, frost, and occasional inundations, and especially the leaves of trees blown into them in countless numbers every autumn, have done much to fill them up. I measured the direction of some of the fissures, which usually varied from 10 to 45 degrees W. of north, and were often parallel to each other; I found, however, a considerable diversity in their direction. Many of them are traceable for half a mile and upwards, but they might easily be mistaken for artificial trenches if resident settlers were not there to assure us that within their recollection they were "as deep as wells." Fragments of coaly shale were strewed along the edges of some of these open fissures, together with white sand, in the same manner as round the "sink holes."[654]
Among other monuments of the changes wrought in 1811-12, I explored the bed of the lake called Eulalie, near New Madrid, 300 yards long by 100 yards in width, which was suddenly drained during the earthquake. The parallel fissures by which the waters escaped are not yet entirely closed, and all the trees growing on its bottom were at the time of my visit less than 34 years old. They consisted of cotton-wood, willows, and honey-locust, and other species, differing from those clothing the surrounding higher grounds, which are more elevated by 12 or 15 feet. On them the hickory, the black and white oak, the gum and other trees, many of them of ancient date, were flourishing.
Aleutian Islands, 1806.—In the year 1806, a new island, in the form of a peak, with some low conical hills upon it, is said to have risen from the sea among the Aleutian Islands, east of Kamtschatka. According to Langsdorf,[655] it was four geographical miles in circumference; and Von Buch infers from its magnitude, and from its not having again subsided below the level of the sea, that it did not consist merely of ejected matter, but of a solid rock of trachyte upheaved.[656] Another extraordinary eruption happened in the spring of the year 1814, in the sea near Unalaschka, in the same archipelago. A new isle was then produced of considerable size, and with a peak three thousand feet high, which remained standing for a year afterwards, though with somewhat diminished height.
Although it is not improbable that earthquakes accompanying these tremendous eruptions may have heaved up part of the bed of the sea, yet the circumstance of the islands not having disappeared like Sabrina (see p. [416]), may have arisen from the emission of lava. If Jorullo, for example, in 1759, had risen from a shallow sea to the height of 1600 feet, instead of attaining that elevation above the Mexican plateau, the massive current of basaltic lava which poured out from its crater would have enabled it to withstand, for a long period, the action of a turbulent sea.
Reflections on the earthquakes of the nineteenth century.—We are now about to pass on to the events of the eighteenth century; but before we leave the consideration of those already enumerated, let us pause for a moment, and reflect how many remarkable facts of geological interest are afforded by the earthquakes above described, though they constitute but a small part of the convulsions even of the last forty years. New rocks have risen from the waters; new hot springs have burst out, and the temperature of others has been raised; the coast of Chili has been thrice permanently elevated; a considerable tract in the delta of the Indus has sunk down, and some of its shallow channels have become navigable; an adjoining part of the same district, upwards of fifty miles in length and sixteen in breadth, has been raised about ten feet above its former level; part of the great plain of the Mississippi, for a distance of eighty miles in length by thirty in breadth, has sunk down several feet; the town of Tomboro has been submerged, and twelve thousand of the inhabitants of Sumbawa have been destroyed. Yet, with a knowledge of these terrific catastrophes, witnessed during so brief a period by the present generation, will the geologist declare with perfect composure that the earth has at length settled into a state of repose? Will he continue to assert that the changes of relative level of land and sea, so common in former ages of the world, have now ceased? If, in the face of so many striking facts, he persists in maintaining this favorite dogma, it is in vain to hope that, by accumulating the proofs of similar convulsions during a series of antecedent ages, we shall shake his tenacity of purpose:—
Si fractus illabatur orbis Impavidum ferient ruinæ.
EARTHQUAKES OF THE EIGHTEENTH CENTURY.
Quito, 1797.—On the morning of February 4th, 1797, the volcano of Tunguragua in Quito, and the surrounding district, for forty leagues from south to north, and twenty leagues from west to east, experienced an undulating movement, which lasted four minutes. The same shock was felt over a tract of 170 leagues from south to north, from Piura to Popayan; and 140 from west to east, from the sea to the river Napo. In the smaller district first mentioned, where the movement was more intense, every town was levelled to the ground; and Riobamba, Quero, and other places, were buried under masses detached from the mountains. At the foot of Tunguragua the earth was rent open in several places; and streams of water and fetid mud, called "moya," poured out, overflowing and wasting every thing. In valleys 1000 feet broad, the water of these floods reached to the height of 600 feet; and the mud deposit barred up the course of the river, so as to form lakes, which in some places continued for more than eighty days. Flames and suffocating vapors escaped from the lake Quilotoa, and killed all the cattle on its shores. The shocks continued all February and March; and on the 5th of April they recurred with almost as much violence as at first. We are told that the form of the surface in the district most shaken was entirely altered, but no exact measurements are given whereby we may estimate the degree of elevation or subsidence.[657] Indeed it would be difficult, except in the immediate neighborhood of the sea, to obtain any certain standard of comparison if the levels were really as much altered as the narrations imply.
Cumana, 1797.—In the same year, on the 14th of December, the small Antilles experienced subterranean movements, and four-fifths of the town of Cumana was shaken down by a vertical shock. The form of the shoal of Mornerouge, at the mouth of the river Bourdones, was changed by an upheaving of the ground.[658]
Canada—Quebec, 1791.—We learn from Captain Bayfield's memoirs, that earthquakes are very frequent on the shore of the estuary of the St. Lawrence, of force sufficient at times to split walls and throw down chimneys. Such were the effects experienced in December, 1721, in St. Paul's Bay, about fifty miles N. E. from Quebec; and the inhabitants say, that about every twenty-five years a violent earthquake returns, which lasts forty days. In the History of Canada, it is stated that, in 1663, a tremendous convulsion lasted six months, extending from Quebec to Tadeausac,—a distance of about 130 miles. The ice on the river was broken up, and many landslips caused.[659]
Caraccas, 1790.—In the Caraccas, near where the Caura joins the Orinoco, between the towns San Pedro de Alcantara and San Francisco de Aripao, an earthquake, on St. Matthew's day 1790, caused a sinking in of the granitic soil, and left a lake 800 yards in diameter, and from eighty to one hundred in depth. It was a portion of the forest of Aripao which subsided, and the trees remained green for several months under water.[660]
Sicily, 1790.—On the 18th of March in the same year, at S. Maria di Niscemi, some miles from Terranuova, near the south coast of Sicily, the ground gradually sunk down for a circumference of three Italian miles, during seven shocks; and, in one place, to the depth of thirty feet. It continued to subside to the end of the month. Several fissures sent forth sulphur, petroleum, steam, and hot water, and a stream of mud, which flowed for two hours, and covered a space sixty feet long and thirty broad. This happened far from both the ancient and modern volcanic district, in a group of strata consisting chiefly of blue clay.[661]
Java, 1786.—About the year 1786, an earthquake was felt at intervals, for the period of four months, in the neighborhood of Batur, in Java, and an eruption followed. Various rents were formed, which emitted a sulphurous vapor; separate tracts sunk away, and were swallowed by the earth. Into one of these the rivulet Dotog entered, and afterwards continued to follow a subterraneous course. The village of Jampang was buried in the ground, with thirty-eight of its inhabitants, who had not time to escape. We are indebted to Dr. Horsfield for having verified the above-mentioned facts.[662]
CHAPTER XXVIII.
EARTHQUAKE IN CALABRIA, 1783.
Earthquake in Calabria, February 5, 1783—Shocks continued to the end of the year 1786—Authorities—Area convulsed—Geological structure of the district—Difficulty of ascertaining changes of level—Subsidence of the quay at Messina—Movement in the stones of two obelisks—Shift or fault in the Round Tower of Terranuova—Opening and closing of fissures—Large edifices engulfed—Dimensions of new caverns and fissures—Gradual closing in of rents—Bounding of detached masses into the air—Landslips—Buildings transported entire to great distances—New lakes—Funnel-shaped hollows in alluvial plains—Currents of mud—Fall of cliffs, and shore near Scilla inundated—State of Stromboli and Etna during the shocks—How earthquakes contribute to the formation of valleys—Concluding remarks.
Calabria, 1783.—Of the numerous earthquakes which have occurred in different parts of the globe, during the last 100 years, that of Calabria, in 1783, is almost the only one of which the geologist can be said to have such a circumstantial account as to enable him fully to appreciate the changes which this cause is capable of producing in the lapse of ages. The shocks began in February, 1783, and lasted for nearly four years, to the end of 1786. Neither in duration, nor in violence, nor in the extent of territory moved, was this convulsion remarkable, when contrasted with many experienced in other countries, both during the last and present century; nor were the alterations which it occasioned in the relative level of hill and valley, land and sea, so great as those effected by some subterranean movements in South America, in later times. The importance of the earthquake in question arises from the circumstance, that Calabria is the only spot hitherto visited, both during and after the convulsions, by men possessing sufficient leisure, zeal, and scientific information, to enable them to collect and describe with accuracy the physical facts which throw light on geological questions.
Authorities.—Among the numerous authorities, Vivenzio, physician to the king of Naples, transmitted to the court a regular statement of his observations during the continuance of the shocks; and his narrative is drawn up with care and clearness.[663] Francesco Antonio Grimaldi, then secretary of war, visited the different provinces at the king's command, and published a most detailed description of the permanent changes in the surface.[664] He measured the length, breadth, and depth of the different fissures and gulfs which opened, and ascertained their number in many provinces. His comments, moreover, on the reports of the inhabitants, and his explanations of their relations, are judicious and instructive. Pignataro, a physician residing at Monteleone, a town placed in the very centre of the convulsions, kept a register of the shocks, distinguishing them into four classes, according to their degree of violence. From his work, it appears that, in the year 1783, the number was 949, of which 501 were shocks of the first degree of force; and in the following year there were 151, of which 98 were of the first magnitude.
Count Ippolito, also, and many others, wrote descriptions of the earthquake; and the Royal Academy of Naples, not satisfied with these and other observations, sent a deputation from their own body into Calabria, before the shocks had ceased, who were accompanied by artists instructed to illustrate by drawings the physical changes of the district, and the state of ruined towns and edifices. Unfortunately these artists were not very successful in their representations of the condition of the country, particularly when they attempted to express, on a large scale, the extraordinary revolutions which many of the great and minor river-courses underwent. But many of the plates published by the Academy are valuable; and as they are little known, I shall frequently avail myself of them to illustrate the facts about to be described.[665]
In addition to these Neapolitan sources of information, our countryman, Sir William Hamilton, surveyed the district, not without some personal risk, before the shocks had ceased; and his sketch, published in the Philosophical Transactions, supplies many facts that would otherwise have been lost. He has explained, in a rational manner, many events which, as related in the language of some eye-witnesses, appeared marvellous and incredible. Dolomieu also examined Calabria during the catastrophe, and wrote an account of the earthquake, correcting a mistake into which Hamilton had fallen, who supposed that a part of the tract shaken had consisted of volcanic tuff. It is, indeed, a circumstance which enhances the geological interest of the commotions which so often modify the surface of Calabria, that they are confined to a country where there are neither ancient nor modern rocks of volcanic or trappean origin; so that at some future time, when the era of disturbance shall have passed by, the cause of former revolutions will be as latent as in parts of Great Britain now occupied exclusively by ancient marine formations.
Extent of the area convulsed.—The convulsion of the earth, sea, and air extended over the whole of Calabria Ultra, the southeast part of Calabria Citra, and across the sea to Messina and its environs; a district lying between the 38th and 39th degrees of latitude. The concussion was perceptible over a great part of Sicily, and as far north as Naples; but the surface over which the shocks acted so forcibly as to excite intense alarm did not generally exceed 500 square miles in area. The soil of that part of Calabria is composed chiefly, like the southern part of Sicily, of calcareo-argillaceous strata of great thickness, containing marine shells. This clay is sometimes associated with beds of sand and limestone. For the most part these formations resemble in appearance and consistency the Subapennine marls, with their accompanying sands and sandstones; and the whole group bears considerable resemblance, in the yielding nature of its materials, to most of our tertiary deposits in France and England. Chronologically considered, however, the Calabrian formations are comparatively of modern date, often abounding in fossil shells referable to species now living in the Mediterranean.
We learn from Vivencio, that on the 20th and 26th of March, 1783, earthquakes occurred in the islands of Zante, Cephalonia, and St. Maura; and in the last-mentioned island several public edifices and private houses were overthrown, and many people destroyed.
If the city of Oppido, in Calabria Ultra, be taken as a centre, and round that centre a circle be described, with a radius of twenty-two miles, this space will comprehend the surface of the country which suffered the greatest alteration, and where all the towns and villages were destroyed. The first shock, of February 5th, 1783, threw down, in two minutes, the greater part of the houses in all the cities, towns, and villages, from the western flanks of the Apennines in Calabria Ultra to Messina in Sicily, and convulsed the whole surface of the country. Another occurred on the 28th of March, with almost equal violence. The granitic chain which passes through Calabria from north to south, and attains the height of many thousand feet, was shaken but slightly by the first shock, but more rudely by some which followed.
Some writers have asserted that the wave-like movements which were propagated through the recent strata, from west to east, became very violent when they reached the point of junction with the granite, as if a reaction was produced where the undulatory movement of the soft strata was suddenly arrested by the more solid rocks. But the statement of Dolomieu on this subject is most interesting, and perhaps, in a geological point of view, the most important of all the observations which are recorded.[666] The Apennines, he says, which consist in great part of hard and solid granite, with some micaceous and argillaceous schists, form bare mountains with steep sides, and exhibit marks of great degradation. At their base newer strata are seen of sand and clay, mingled with shells; a marine deposit containing such ingredients as would result from the decomposition of granite. The surface of this newer (tertiary) formation constitutes what is called the plain of Calabria—a platform which is flat and level, except where intersected by narrow valleys or ravines, which rivers and torrents have excavated sometimes to the depth of six hundred feet. The sides of these ravines are almost perpendicular; for the superior stratum, being bound together by the roots of trees, prevents the formation of a sloping bank. The usual effect of the earthquake, he continues, was to disconnect all those masses which either had not sufficient bases for their bulk, or which was supported only by lateral adherence. Hence it follows that throughout almost the whole length of the chain, the soil which adhered to the granite at the base of the mountains Caulone, Esope, Sagra, and Aspramonte, slid over the solid and steeply inclined nucleus, and descended somewhat lower, leaving almost uninterruptedly from St. George to beyond St. Christina, a distance of from nine to ten miles, a chasm between the solid granitic nucleus and the sandy soil. Many lands slipping thus were carried to a considerable distance from their former position, so as entirely to cover others; and disputes arose as to whom the property which had thus shifted its place should belong.
From this account of Dolomieu we might anticipate, as the result of a continuance of such earthquakes, first, a longitudinal valley following the line of junction of the older and newer rocks; secondly, greater disturbance in the newer strata near the point of contact than at a greater distance from the mountains; phenomena very common in other parts of Italy at the junction of the Apennine and Subapennine formations.
Mr. Mallet, in his valuable essay on the Dynamics of Earthquakes,[667] offers the following explanation of the fact to which Dolomieu has called attention. When a wave of elastic compression, of which he considers the earth-wave to consist, passes abruptly from a body having an extremely low elasticity, such as clay and gravel, into another like granite, whose elasticity is remarkably high, it changes not only its velocity but in part also its course, a portion being reflected and a portion refracted. The wave being thus sent back again produces a shock in the opposite direction, doing great damage to buildings on the surface by thus returning upon itself. At the same time, the shocks are at once eased when they get into the more elastic materials of the granitic mountains.
The surface of the country during the Calabrian earthquakes often heaved like the billows of a swelling sea, which produced a swimming in the head, like sea-sickness. It is particularly stated, in almost all the accounts, that just before each shock the clouds appeared motionless; and, although no explanation is offered of this phenomenon, it is obviously the same as that observed in a ship at sea when it pitches violently. The clouds seem arrested in their career as often as the vessel rises in a direction contrary to their course; so that the Calabrians must have experienced precisely the same motion on the land.
Trees, supported by their trunks, sometimes bent during the shocks to the earth, and touched it with their tops. This is mentioned as a well-known fact by Dolomieu; and he assures us that he was always on his guard against the spirit of exaggeration in which the vulgar are ever ready to indulge when relating these wonderful occurrences.
It is impossible to suppose that these waves, which are described in Italy and other regions of earthquakes as passing along the solid surface of the earth in a given direction like a billow on the sea, have any strict analogy with the undulations of a fluid. They are doubtless the effects of vibrations, radiating from some deep-seated point, each of which on reaching the surface lifts up the ground, and then allows it again to subside. As the distance between the source of the subterranean movement and the surface must vary according to the outline of the country, so the vibratory jar will reach different points in succession.
Shifts in the stones of two obelisks in the Convent of St Bruno.
The Academicians relate that in some of the cities of Calabria effects were produced seeming to indicate a whirling or vorticose movement. Thus, for example, two obelisks ([fig. 75]) placed at the extremities of a magnificent façade in the convent of S. Bruno, in a small town called Stefano del Bosco, were observed to have undergone a movement of a singular kind. The shock which agitated the building is described as having been horizontal and vorticose. The pedestal of each obelisk remained in its original place; but the separate stones above were turned partially round, and removed sometimes nine inches from their position without falling.
It has been suggested by Mr. Darwin that this kind of displacement may be due to a vibratory rather than a whirling motion;[668] and more lately Mr. Mallet, in the paper already cited, has offered a very ingenious solution of the problem. He refers the twisting simply to an elastic wave, which has moved the pedestal forwards and back again, by an alternate horizontal motion within narrow limits, and he has succeeded in showing that a rectilinear movement in the ground may have sufficed to cause an incumbent body to turn partially round upon its bed, provided a certain relation exist between the position of the centre of gravity of the body and its centre of adherence.[669]
I shall now consider, in the first place, that class of physical changes produced by the earthquake which are connected with alterations in the relative level of the different parts of the land; and afterwards describe those which are more immediately connected with the derangement of the regular drainage of the country, and where the force of running water co-operated with that of the earthquake.
Difficulty of ascertaining changes of level.—In regard to alterations of relative level, none of the accounts establish that they were on a considerable scale; but it must always be remembered that, in proportion to the area moved is the difficulty of proving that the general level has undergone any change, unless the sea-coast happens to have participated in the principal movement. Even then it is often impossible to determine whether an elevation or depression even of several feet has occurred, because there is nothing to attract notice in a band of shingle and sand of unequal breadth above the level of the sea running parallel to a coast; such bands generally marking the point reached by the waves during spring tides, or the most violent tempests. The scientific investigator has not sufficient topographical knowledge to discover whether the extent of beach has diminished or increased; and he who has the necessary local information, scarcely ever feels any interest in ascertaining the amount of the rise or fall of the ground. Add to this the great difficulty of making correct observations, in consequence of the enormous waves which roll in upon a coast during an earthquake, and efface every landmark near the shore.
Subsidence of the quay at Messina.—It is evidently in seaports alone that we can look for very accurate indications of slight changes of level; and when we find them, we may presume that they would not be rare at other points, if equal facilities of comparing relative altitudes were afforded. Grimaldi states (and his account is confirmed by Hamilton and others), that at Messina, in Sicily, the shore was rent; and the soil along the port, which before the shock was perfectly level, was found afterwards to be inclined towards the sea,—the sea itself near the "Banchina" becoming deeper, and its bottom in several places disordered. The quay also sunk down about fourteen inches below the level of the sea, and the houses in its vicinity were much fissured. (Phil. Trans. 1783.)
Among various proofs of partial elevation and depression in the interior, the Academicians mention, in their Survey, that the ground was sometimes on the same level on both sides of new ravines and fissures, but sometimes there had been a considerable shifting, either by the upheaving of one side, or the subsidence of the other. Thus, on the sides of long rents in the territory of Soriano, the stratified masses had altered their relative position to the extent of from eight to fourteen palms (six to ten and a half feet).
Polistena.—Similar shifts in the strata are alluded to in the territory of Polistena, where there appeared innumerable fissures in the earth. One of these was of great length and depth; and in parts the level of the corresponding sides was greatly changed. (See [fig. 76].)
Terranuova.—In the town of Terranuova some houses were seen uplifted above the common level, and others adjoining sunk down into the earth. In several streets the soil appeared thrust up, and abutted against the walls of houses: a large circular tower of solid masonry, part of which had withstood the general destruction, was divided by a vertical rent, and one side was upraised, and the foundations heaved out of the ground. It was compared by the Academicians to a great tooth half extracted from the alveolus, with the upper part of the fangs exposed. (See [fig. 77].)
Deep fissure, near Polistena, caused by the earthquake of 1783.
Along the line of this shift, or "fault," as it would be termed technically by miners, the walls were found to adhere firmly to each other, and to fit so well, that the only signs of their having been disunited was the want of correspondence in the courses of stone on either side of the rent.
Shift or "fault" in the Round Tower of Terranuova in Calabria, occasioned by the earthquake of 1783.
Dolomieu saw a stone well in the convent of the Augustins at Terranuova, which had the appearance of having been driven out of the earth. It resembled a small tower eight or nine feet in height, and a little inclined. This effect, he says, was produced by the consolidation and consequent sinking of the sandy soil in which the well was dug.
In some walls which had been thrown down, or violently shaken, in Monteleone, the separate stones were parted from the mortar, so as to leave an exact mould where they had rested; whereas in other cases the mortar was ground to dust between the stones.
It appears that the wave-like motions often produced effects of the most capricious kind. Thus, in some streets of Monteleone, every house was thrown down but one; in others, all but two; and the buildings which were spared were often scarcely in the least degree injured. In many cities of Calabria, all the most solid buildings were thrown down, while those which were slightly built escaped; but at Rosarno, as also at Messina in Sicily, it was precisely the reverse, the massive edifices being the only ones that stood.
Fissures.—It appears evident that a great part of the rending and fissuring of the ground was the effect of a violent motion from below upwards; and in a multitude of cases where the rents and chasms opened and closed alternately, we must suppose that the earth was by turns heaved up, and then let fall again.[670] We may conceive the same effect to be produced on a small scale, if, by some mechanical force, a pavement composed of large flags of stone should be raised up, and then allowed to fall suddenly, so as to resume its original position. If any small pebbles happened to be lying on the line of contact of two flags, they would fall into the opening when the pavement rose, and be swallowed up, so that no trace of them would appear after the subsidence of the stones. In the same manner, when the earth was upheaved, large houses, trees, cattle, and men were engulfed in an instant in chasms and fissures; and when the ground sank down again, the earth closed upon them, so that no vestige of them was discoverable on the surface. In many instances, individuals were swallowed up by one shock, and then thrown out again alive, together with large jets of water, by the shock which immediately succeeded.
Fissures near Jerocarne, in Calabria, caused by the earthquake of 1783.
At Jerocarne, a country which, according to the Academicians, was lacerated in a most extraordinary manner, the fissures ran in every direction, "like cracks on a broken pane of glass" (see [fig. 78]); and as a great portion of them remained open after the shocks, it is very possible that this country was permanently upraised. It was usual, as we learn from Dolomieu, for the chasms and fissures throughout Calabria, to ran parallel to the course of some pre-existing gorges in their neighborhood.
Houses engulfed.—In the vicinity of Oppido, the central point from which the earthquake diffused its violent movements, many houses were swallowed up by the yawning earth, which closed immediately over them. In the adjacent district, also, of Cannamaria four farm-houses, several oil-stores, and some spacious dwelling-houses were so completely engulfed in one chasm, that not a vestige of them was afterwards discernible. The same phenomena occurred at Terranuova, S. Christina, and Sinopoli. The Academicians state particularly, that when deep abysses had opened in the argillaceous strata of Terranuova, and houses had sunk into them, the sides of the chasms closed with such violence, that, on excavating afterwards to recover articles of value, the workmen found the contents and detached parts of the buildings jammed together so as to become one compact mass. It is unnecessary to accumulate examples of similar occurrences; but so many are well authenticated during this earthquake in Calabria, that we may, without hesitation, yield assent to the accounts of catastrophes of the same kind repeated again and again in history, where whole towns are declared to have been engulfed, and nothing but a pool of water or tract of sand left in their place.
Chasm formed near Oppido.—On the sloping side of a hill near Oppido a great chasm opened; and, although a large quantity of soil was precipitated into the abyss, together with a considerable number of olive-trees and part of a vineyard, a great gulf remained after the shock, in the form of an amphitheatre, 500 feet long and 200 feet deep. (See [fig. 79].)
Chasm formed by the earthquake of 1783, near Oppido in Calabria.
Dimensions of new fissures and chasms.—According to Grimaldi, many fissures and chasms, formed by the first shock of February 5th, were greatly widened, lengthened, and deepened by the violent convulsions of March 28th. In the territory of San Fili this observer found a new ravine, half a mile in length, two feet and a half broad, and twenty-five feet deep; and another of similar dimensions in the territory of Rosarno. A ravine nearly a mile long, 105 feet broad and thirty feet deep, opened in the district of Plaisano, where, also, two gulfs were caused—one in a place called Cerzulle, three-quarters of a mile long, 150 feet broad, and above one hundred feet deep; and another at La Fortuna, nearly a quarter of a mile long, above thirty feet in breadth, and no less than 225 feet deep.
Chasm in the hill of St. Angelo, near Soriano, in Calabria, caused by the earthquake of 1783.
In the district of Fosolano three gulfs opened: one of these measured 300 feet square, and above thirty feet deep; another was nearly half a mile long, fifteen feet broad, and above thirty-feet deep; the third was 750 feet square. Lastly, a calcareous mountain, called Zefirio, at the southern extremity of the Italian peninsula, was cleft in two for the length of nearly half a mile, and an irregular breadth of many feet. Some of these chasms were in the form of a crescent. The annexed cut ([fig. 80]) represents one by no means remarkable for its dimensions, which remained open by the side of a small pass over the hill of St. Angelo, near Soriano. The small river Mesima is seen in the foreground.
Formation of circular hollows and new lakes.—In the report of the Academy, we find that some plains were covered with circular hollows, for the most part about the size of carriage-wheels, but often somewhat larger or smaller. When filled with water to within a foot or two of the surface, they appeared like wells; but, in general, they were filled with dry sand, sometimes with a concave surface, and at other times convex. (See [fig. 81].) On digging down, they found them to be funnel shaped, and the moist loose sand in the centre marked the tube up which the water spouted. The annexed cut ([fig. 82]) represents a section of one of these inverted cones when the water had disappeared, and nothing but dry micaceous sand remained.
Circular hollows in the plain of Rosarno, formed by the earthquake of 1783.
Section of one of the circular hollows formed in the plain of Rosarno.
A small circular pond of similar character was formed not far from Polistena (see [fig. 83]); and in the vicinity of Seminara, a lake was suddenly caused by the opening of a great chasm, from the bottom of which water issued. This lake was called Lago del Tolfilo. It extended 1785 feet in length, by 937 in breadth, and 52 in depth. The inhabitants, dreading the miasma of this stagnant pool, endeavored, at great cost, to drain it by canals, but without success, as it was fed by springs issuing from the bottom of the deep chasm.
Vivenzio states, that near Sitizzano a valley was nearly filled up to a level with the high grounds on each side, by the enormous masses detached from the boundary hills, and cast down into the course of two streams. By this barrier a lake was formed of great depth, about two miles long and a mile broad. The same author mentions that, upon the whole, there were fifty lakes occasioned during the convulsions: and he assigns localities to all of these. The government surveyors enumerated 215 lakes; but they included in this number many small ponds.
Circular pond near Polistena, in Calabria, caused by the earthquake in 1783.
Cones of sand thrown up.—Many of the appearances exhibited in the alluvial plains, such as springs spouting up their water like fountains at the moment of the shock, have been supposed to indicate the alternate rising and sinking of the ground. The first effect of the more violent shocks was usually to dry up the rivers, but they immediately afterwards overflowed their banks. In marshy places, an immense number of cones of sand were thrown up. These appearances Hamilton explains, by supposing that the first movement raised the fissured plain from below upwards, so that the rivers and stagnant waters in bogs sank down, or at least were not upraised with the soil. But when the ground returned with violence to its former position, the water was thrown up in jets through fissures.[671]
The phenomenon, according to Mr. Mallet, may be simply an accident contingent on the principal cause of disturbance, the rapid transit of the earth-wave. "The sources," he says, "of copious springs usually lie in flat plates or fissures filled with water, whether issuing from solid rock, or from loose materials; now, if a vein, or thin flat cavity filled with water, be in such a position that the plane of the plate of water or fissure be transverse to the line of transit of the earth-wave, the effect of the arrival of the earth-wave at the watery fissure will be, at the instant, to compress its walls more or less together, and so squeeze out the water, which will, for a moment, gush up at the spring-head like a fountain, and again remain in repose after the transit of the wave."
Gradual closing in of fissures.—Sir W. Hamilton was shown several deep fissures in the vicinity of Mileto, which, although not one of them was above a foot in breadth, had opened so wide during the earthquake as to swallow an ox and nearly one hundred goats. The Academicians also found, on their return through districts which they had passed at the commencement of their tour, that many rents had, in that short interval, gradually closed in, so that their width had diminished several feet, and the opposite walls had sometimes nearly met. It is natural that this should happen in argillaceous strata, while, in more solid rocks, we may expect that fissures will remain open for ages. Should this be ascertained to be a general fact in countries convulsed by earthquakes, it may afford a satisfactory explanation of a common phenomenon in mineral veins. Such veins often retain their full size so long as the rocks consist of limestone, granite, or other indurated materials; but they contract their dimensions, become mere threads, or are even entirely cut off, where masses of an argillaceous nature are interposed. If we suppose the filling up of fissures with metallic and other ingredients to be a process requiring ages for its completion, it is obvious that the opposite walls of rents, where strata consist of yielding materials, must collapse or approach very near to each other before sufficient time is allowed for the accretion of a large quantity of veinstone.
Thermal waters augmented.—It is stated by Grimaldi, that the thermal waters of St. Eufemia, in Terra di Amato, which first burst out during the earthquake of 1638, acquired, in February, 1783, an augmentation both in quantity and degree of heat. This fact appears to indicate a connection between the heat of the interior and the fissures caused by the Calabrian earthquakes, notwithstanding the absence of volcanic rocks, either ancient or modern, in that district.
Bounding of detached masses into the air.—The violence of the movement of the ground upwards was singularly illustrated by what the Academicians call the "sbalzo," or bounding into the air, to the height of several yards, of masses slightly adhering to the surface. In some towns a great part of the pavement stones were thrown up, and found lying with their lower sides uppermost. In these cases, we must suppose that they were propelled upwards by the momentum which they had acquired; and that the adhesion of one end of the mass being greater than that of the other, a rotatory motion had been communicated to them. When the stone was projected to a sufficient height to perform somewhat more than a quarter of a revolution in the air, it pitched down on its edge, and fell with its lower side uppermost.
Effects of earthquakes on the excavations of valleys.—The next class of effects to be considered, are those more immediately connected with the formation of valleys, in which the action of water was often combined with that of the earthquake. The country agitated was composed, as before stated, chiefly of argillaceous strata, intersected by deep narrow valleys, sometimes from 500 to 600 feet deep. As the boundary cliffs were in great part vertical, it will readily be conceived that, amidst the various movements of the earth, the precipices overhanging rivers, being without support on one side, were often thrown down. We find, indeed, that inundations produced by obstructions in river-courses are among the most disastrous consequences of great earthquakes in all parts of the world, for the alluvial plains in the bottoms of valleys are usually the most fertile and well-peopled parts of the whole country; and whether the site of a town is above or below a temporary barrier in the channel of a river, it is exposed to injury by the waters either of a lake or flood.
Landslips.—From each side of the deep valley or ravine of Terranuova enormous masses of the adjoining flat country were detached, and cast down into the course of the river, so as to give rise to great lakes. Oaks, olive-trees, vineyards, and corn, were often seen growing at the bottom of the ravine, as little injured as their former companions, which still continued to flourish in the plain above, at least 500 feet higher, and at the distance of about three-quarters of a mile. In one part of this ravine was an enormous mass, 200 feet high and about 400 feet at its base, which had been detached by some former earthquake. It is well attested, that this mass travelled down the ravine nearly four miles, having been put in motion by the earthquake of the 5th of February. Hamilton, after examining the spot, declared that this phenomenon might be accounted for by the declivity of the valley, the great abundance of rain which fell, and the great weight of the alluvial matter which pressed behind it. Dolomieu also alludes to the fresh impulse derived from other masses falling, and pressing upon the rear of those first set in motion.
The first account sent to Naples of the two great slides or landslips above alluded to, which caused a great lake near Terranuova, was couched in these words:—"Two mountains on the opposite sides of a valley walked from their original position until they met in the middle of the plain, and there joining together, they intercepted the course of a river," &c. The expressions here used resemble singularly those applied to phenomena, probably very analogous, which are said to have occurred at Fez, during the great Lisbon earthquake, as also in Jamaica and Java at other periods.
Not far from Soriano, which was levelled to the ground by the great shock of February, a small valley, containing a beautiful olive-grove, called Fra Ramondo, underwent a most extraordinary revolution. Innumerable fissures first traversed the river-plain in all directions, and absorbed the water until the argillaceous substratum became soaked, so that a great part of it was reduced to a state of fluid paste. Strange alterations in the outline of the ground were the consequence, as the soil to a great depth was easily moulded into any form. In addition to this change, the ruins of the neighboring hills were precipitated into the hollow; and while many olives were uprooted, others remained growing on the fallen masses, and inclined at various angles (see [fig. 84]). The small river Caridi was entirely concealed for many days; and when at length it reappeared, it had shaped for itself an entirely new channel.
Buildings transported entire to great distances.—Near Seminara an extensive olive-ground and orchard were hurled to a distance of two hundred feet, into a valley sixty feet in depth. At the same time a deep chasm was riven in another part of the high platform from which the orchard had been detached, and the river immediately entered the fissure, leaving its former bed completely dry. A small inhabited house, standing on the mass of earth carried down into the valley, went along with it entire, and without injury to the inhabitants. The olive-trees, also, continued to grow on the land which had slid into the valley, and bore the same year an abundant crop of fruit.
Changes of the surface at Fra Ramondo, near Soriano, in Calabria.
1, Portion of a hill covered with olives thrown down.
2, New bed of the river Caridi.
3, Town of Soriano.
Two tracts of land on which a great part of the town of Polistena stood, consisting of some hundreds of houses, were detached into a contiguous ravine, and nearly across it, about half a mile from their original site; and what is most extraordinary, several of the inhabitants were dug out from the ruins alive and unhurt.
Two tenements, near Mileto, called the Macini and Vaticano, occupying an extent of ground about a mile long and half a mile broad, were carried for a mile down a valley. A thatched cottage, together with large olive and mulberry trees, most of which remained erect, were carried uninjured to this extraordinary distance. According to Hamilton, the surface removed had been long undermined by rivulets, which were afterwards in full view on the bare spot deserted by the tenements. The earthquake seems to have opened a passage in the adjoining argillaceous hills, which admitted water charged with loose soil into the subterranean channels of the rivulets immediately under the tenements, so that the foundations of the ground set in motion by the earthquake were loosened. Another example of subsidence, where the edifices were not destroyed, is mentioned by Grimaldi, as having taken place in the city of Catanzaro, the capital of the province of that name. The houses in the quarter called San Giuseppe subsided with the ground to various depths from two to four feet, but the buildings remained uninjured.
Landslips near Cinquefrondi, caused by the earthquake of 1783.
It would be tedious, and our space would not permit us, to follow the different authors through their local details of landslips produced in minor valleys; but they are highly interesting, as showing to how great an extent the power of rivers to widen valleys, and to carry away large portions of soil towards the sea, is increased where earthquakes are of periodical occurrence. Among other territories, that of Cinquefrondi, was greatly convulsed, various portions of soil being raised or sunk, and innumerable fissures traversing the country in all directions (see [fig. 85]). Along the flanks of a small valley in this district there appears to have been an almost uninterrupted line of landslips.
Currents of mud.—Near S. Lucido, among other places, the soil is described as having been "dissolved," so that large torrents of mud inundated all the low grounds, like lava. Just emerging from this mud, the tops only of trees and of the ruins of farm-houses were seen. Two miles from Laureana, the swampy soil in two ravines became filled with calcareous matter, which oozed out from the ground immediately before the first great shock. This mud, rapidly accumulating, began, ere long, to roll onward, like a flood of lava, into the valley, where the two streams uniting, moved forward with increased impetus from east to west. It now presented a breadth of 225 feet by 15 in depth, and, before it ceased to move, covered a surface equal in length to an Italian mile. In its progress it overwhelmed a flock of thirty goats, and tore up by the roots many olive and mulberry trees, which floated like ships upon its surface. When this calcareous lava had ceased to move, it gradually became dry and hard, during which process the mass was lowered seven feet and a half. It contained fragments of earth of a ferruginous color, and emitting a sulphureous smell.
Fall of the sea-cliffs.—Along the sea-coast of the Straits of Messina, near the celebrated rock of Scilla, the fall of huge masses detached from the bold and lofty cliffs overwhelmed many villas and gardens. At Gian Greco, a continuous line of cliff, for a mile in length, was thrown down. Great agitation was frequently observed in the bed of the sea during the shocks, and, on those parts of the coast where the movement was most violent, all kinds of fish were taken in abundance, and with unusual facility. Some rare species, as that called Cicirelli, which usually lie buried in the sand, were taken on the surface of the waters in great quantity. The sea is said to have boiled up near Messina, and to have been agitated as if by a copious discharge of vapors from its bottom.
Shore near Scilla inundated.—The prince of Scilla had persuaded a great part of his vassals to betake themselves to their fishing-boats for safety, and he himself had gone on board. On the night of the 5th of February, when some of the people were sleeping in the boats, and others on a level plain slightly elevated above the sea, the earth rocked, and suddenly a great mass was torn from the contiguous Mount Jaci, and thrown down with a dreadful crash upon the plain. Immediately afterwards, the sea, rising more than twenty feet above the level of this low tract, rolled foaming over it, and swept away the multitude. It then retreated, but soon rushed back again with greater violence, bringing with it some of the people and animals it had carried away. At the same time every boat was sunk or dashed against the beach, and some of them were swept far inland. The aged prince, with 1430 of his people, was destroyed.
State of Stromboli and Etna during the shocks.—The inhabitants of Pizzo remarked that on the 5th of February, 1783, when the first great shock afflicted Calabria, the volcano of Stromboli, which is in full view of that town, and at the distance of about fifty miles, smoked less, and threw up a less quantity of inflamed matter than it had done for some years previously. On the other hand, the great crater of Etna is said to have given out a considerable quantity of vapor towards the beginning, and Stromboli towards the close, of the commotions. But as no eruption happened from either of these great vents during the whole earthquake, the sources of the Calabrian convulsions, and of the volcanic fires of Etna and Stromboli, appear to be very independent of each other; unless, indeed, they have the same mutual relation as Vesuvius and the volcanoes of the Phlegræan Fields and Ischia, a violent disturbance in one district serving as a safety-valve to the other, and both never being in full activity at once.
Excavation of valleys.—It is impossible for the geologist to consider attentively the effect of this single earthquake of 1783, and to look forward to the alterations in the physical condition of the country to which a continued series of such movements will hereafter give rise, without perceiving that the formation of valleys by running water can never be understood, if we consider the question independently of the agency of earthquakes. It must not be imagined that rivers only begin to act when a country is already elevated far above the level of the sea, for their action must of necessity be most powerful while land is rising and sinking by successive movements. Whether Calabria is now undergoing any considerable change of relative level, in regard to the sea, or is, upon the whole, nearly stationary, is a question which our observations, confined almost entirely to the last half century, cannot possibly enable us to determine. But we know that strata, containing species of shells identical with those now living in the contiguous parts of the Mediterranean, have been raised in that country, as they have in Sicily, to the height of several thousand feet.
Now, those geologists who grant that the present course of Nature in the inanimate world has continued the same since the existing species of animals were in being, will not feel surprised that the Calabrian streams and rivers have cut out of such comparatively modern strata a great system of valleys, varying in depth from fifty to six hundred feet, and often several miles wide, if they consider how numerous may have been the shocks which accompanied the uplifting of those recent marine strata to so prodigious a height. Some speculators, indeed, who disregard the analogy of existing nature, and who are always ready to assume that her forces were more energetic in by-gone ages, may dispense with a long series of movements, and suppose that Calabria "rose like an exhalation" from the deep, after the manner of Milton's Pandemonium. But such an hypothesis would deprive them of that peculiar removing force required to form a regular system of deep and wide valleys; for time, which they are so unwilling to assume, is essential to the operation. Time must be allowed in the intervals between distinct convulsions, for running water to clear away the ruins caused by landslips, otherwise the fallen masses will serve as buttresses, and prevent the succeeding earthquake from exerting its full power. The sides of the valley must be again cut away by the stream, and made to form precipices and overhanging cliffs, before the next shock can take effect in the same manner.
Possibly the direction of the succeeding shock may not coincide with that of the valley, a great extent of adjacent country being equally shaken. Still it will usually happen that no permanent geographical change will be produced except in valleys. In them alone will occur landslips from the boundary cliffs, and these will frequently divert the stream from its accustomed course, causing the original ravine to become both wider and more tortuous in its direction.
If a single convulsion of extreme violence should agitate at once an entire hydrographical basin, or if the shocks should follow each other too rapidly, the previously existing valleys would be annihilated, instead of being modified and enlarged. Every stream might in that case be compelled to begin its operations anew, and to shape out new channels, instead of continuing to deepen and widen those already excavated. But if the subterranean movements have been intermittent, and if sufficient periods have always intervened between the severer shocks to allow the drainage of the country to be nearly restored to its original state, then are both the kind and degree of force supplied by which running water may hollow out valleys of any depth or size consistent with the elevation above the sea which the districts drained by them may have attained.
When we read of the drying up and desertion of the channels of rivers, the accounts most frequently refer to their deflection into some other part of the same alluvial plain, perhaps several miles distant. Under certain circumstances a change of level may undoubtedly force the water to flow over into some distinct hydrographical basin; but even then it will fall immediately into some other system of valleys already formed.
We learn from history that, ever since the first Greek colonists settled in Calabria, that region has been subject to devastation by earthquakes; and, for the last century and a half, ten years have seldom elapsed without a shock; but the severer convulsions have not only been separated by intervals of twenty, fifty, or one hundred years, but have not affected precisely the same points when they recurred. Thus the earthquake of 1783, although confined within the same geographical limits as that of 1638, and not very inferior in violence, visited, according to Grimaldi, very different districts. The points where the local intensity of the force is developed being thus perpetually varied, more time is allowed for the removal of separate mountain masses thrown into river-channels by each shock.
Number of persons who perished during the earthquake.—The number of persons who perished during the earthquake in the two Calabrias and Sicily, is estimated by Hamilton at about forty thousand; and about twenty thousand more died by epidemics, which were caused by insufficient nourishment, exposure to the atmosphere, and malaria, arising from the new stagnant lakes and pools.
By far the greater number were buried under the ruins of their houses; but many were burnt to death in the conflagrations which almost invariably followed the shocks. These fires raged the more violently in some cities, such as Oppido, from the immense magazines of oil which were consumed.
Many persons were engulfed in deep fissures, especially the peasants when flying across the open country, and their skeletons may perhaps be buried in the earth to this day, at the depth of several hundred feet.
When Dolomieu visited Messina after the shock of Feb. 5th, he describes the city as still presenting, at least at a distance, an imperfect image of its ancient splendor. Every house was injured, but the walls were standing; the whole population had taken refuge in wooden huts in the neighborhood, and all was solitude and silence in the streets: it seemed as if the city had been desolated by the plague, and the impression made upon his feelings was that of melancholy and sadness. "But when I passed over to Calabria, and first beheld Polistena, the scene of horror almost deprived me of my faculties; my mind was filled with mingled compassion and terror; nothing had escaped; all was levelled with the dust; not a single house or piece of wall remained; on all sides were heaps of stone so destitute of form, that they gave no conception of there ever having been a town on the spot. The stench of the dead bodies still rose from the ruins. I conversed with many persons who had been buried for three, four, and even for five days; I questioned them respecting their sensations in so dreadful a situation, and they agreed that of all the physical evils they endured, thirst was the most intolerable; and that their mental agony was increased by the idea that they were abandoned by their friends, who might have rendered them assistance."[672]
It is supposed that about a fourth part of the inhabitants of Polistena, and of some other towns, were buried alive, and might have been saved had there been no want of hands; but in so general a calamity, where each was occupied with his own misfortunes or those of his family, aid could rarely be obtained. Neither tears, nor supplications, nor promises of high rewards were listened to. Many acts of self-devotion, prompted by parental and conjugal tenderness, or by friendship, or the gratitude of faithful servants, are recorded; but individual exertions were, for the most part, ineffectual. It frequently happened, that persons in search of those most dear to them could hear their moans,—could recognize their voices—were certain of the exact spot where they lay buried beneath their feet, yet could afford them no succor. The piled mass resisted all their strength, and rendered their efforts of no avail.
At Terranuova, four Augustin monks, who had taken refuge in a vaulted sacristy, the arch of which continued to support an immense pile of ruins, made their cries heard for the space of four days. One only of the brethren of the whole convent was saved, and "of what avail was his strength to remove the enormous weight of rubbish which had overwhelmed his companions?" He heard their voices die away gradually; and when afterwards their four corpses were disinterred, they were found clasped in each other's arms. Affecting narratives are preserved of mothers saved after the fifth, sixth, and even seventh day of their interment, when their infants or children had perished with hunger.
It might have been imagined that the sight of sufferings such as these would have been sufficient to awaken sentiments of humanity and pity in the most savage breasts; but while some acts of heroism are related, nothing could exceed the general atrocity of conduct displayed by the Calabrian peasants: they abandoned the farms, and flocked in great numbers into the towns—not to rescue their countrymen from a lingering death, but to plunder. They dashed through the streets, fearless of danger, amid tottering walls and clouds of dust, trampling beneath their feet the bodies of the wounded and half-buried, and often stripping them, while yet living, of their clothes.[673]
Concluding remarks.—But to enter more fully into these details would be foreign to the purpose of the present work, and several volumes would be required to give the reader a just idea of the sufferings which the inhabitants of many populous districts have undergone during the earthquakes of the last 150 years. A bare mention of the loss of life—as that fifty or a hundred thousand souls perished in one catastrophe—conveys to the reader no idea of the extent of misery inflicted: we must learn, from the narratives of eye-witnesses, the various forms in which death was encountered, the numbers who escaped with loss of limbs or serious bodily injuries, and the multitude who were suddenly reduced to penury and want. It has been often remarked, that the dread of earthquakes is strongest in the minds of those who have experienced them most frequently; whereas, in the case of almost every other danger, familiarity with peril renders men intrepid. The reason is obvious—scarcely any part of the mischief apprehended in this instance is imaginary; the first shock is often the most destructive; and, as it may occur in the dead of the night, or if by day, without giving the least warning of its approach, no forethought can guard against it; and when the convulsion has begun, no skill, or courage, or presence of mind, can point out the path of safety. During the intervals, of uncertain duration, between the more fatal shocks, slight tremors of the soil are not unfrequent; and as these sometimes precede more violent convulsions, they become a source of anxiety and alarm. The terror arising from this cause alone is of itself no inconsiderable evil.
Although sentiments of pure religion are frequently awakened by these awful visitations, yet we more commonly find that an habitual state of fear, a sense of helplessness, and a belief in the futility of all human exertions, prepare the minds of the vulgar for the influence of a demoralizing superstition.
Where earthquakes are frequent, there can never be perfect security of property under the best government; industry cannot be assured of reaping the fruits of its labor; and the most daring acts of outrage may occasionally be perpetrated with impunity, when the arm of the law is paralyzed by the general consternation. It is hardly necessary to add, that the progress of civilization and national wealth must be retarded by convulsions which level cities to the ground, destroy harbors, render roads impassable, and cause the most cultivated valley-plains to be covered with lakes, or the ruins of adjoining hills.
Those geologists who imagine that, at remote periods ere man became a sojourner on earth, the volcanic agency was more energetic than now, should be careful to found their opinion on strict geological evidence, and not permit themselves to be biased, as they have often been, by a notion, that the disturbing force would probably be mitigated for the sake of man.
I shall endeavor to point out in the sequel, that the general tendency of subterranean movements, when their effects are considered for a sufficient lapse of ages, is eminently beneficial, and that they constitute an essential part of that mechanism by which the integrity of the habitable surface is preserved, and the very existence and perpetuation of dry land secured. Why the working of this same machinery should be attended with so much evil, is a mystery far beyond the reach of our philosophy, and must probably remain so until we are permitted to investigate, not our planet alone and its inhabitants, but other parts of the moral and material universe with which they may be connected. Could our survey embrace other worlds, and the events, not of a few centuries only, but of periods as indefinite as those with which geology renders us familiar, some apparent contradictions might be reconciled, and some difficulties would doubtless be cleared up. But even then, as our capacities are finite, while the scheme of the universe may be infinite, both in time and space, it is presumptuous to suppose that all sources of doubt and perplexity would ever be removed. On the contrary, they might, perhaps, go on augmenting in number, although our confidence in the wisdom of the plan of Nature should increase at the same time; for it has been justly said, that the greater the circle of light, the greater the boundary of darkness by which it is surrounded.[674]
CHAPTER XXIX.
EARTHQUAKES—continued.
Earthquake of Java, 1772—Truncation of a lofty cone—St. Domingo, 1770—Lisbon, 1755—Great area over which the shocks extended—Retreat of the sea—Proposed explanations—Conception Bay, 1750—Permanent elevation—Peru, 1746—Java, 1699—Rivers obstructed by landslips—Subsidence in Sicily, 1693—Moluccas, 1693—Jamaica, 1692—Large tracts engulfed—Portion of Port Royal sunk—Amount of change in the last 150 years—Elevation and subsidence of land in Bay of Baiæ—Evidence of the same afforded by the Temple of Serapis.
In the preceding chapters we have considered a small part only of those earthquakes which have occurred during the last seventy years, of which accurate and authentic descriptions happen to have been recorded. In examining those of earlier date, we find their number so great that allusion can be made to a few only respecting which information of peculiar geological interest has been obtained.
Java, 1772.—Truncation of a lofty cone.—In the year 1772, Papandayang, formerly one of the loftiest volcanoes in the island of Java, was in eruption. Before all the inhabitants on the declivities of the mountain could save themselves by flight, the ground began to give way, and a great part of the volcano fell in and disappeared. It is estimated that an extent of ground of the mountain itself and its immediate environs, fifteen miles long and full six broad, was by this commotion swallowed up in the bowels of the earth. Forty villages were destroyed, some being engulfed and some covered by the substances thrown out on this occasion, and 2957 of the inhabitants perished. A proportionate number of cattle were also killed, and most of the plantations of cotton, indigo, and coffee in the adjacent districts were buried under the volcanic matter. This catastrophe appears to have resembled, although on a grander scale, that of the ancient Vesuvius in the year 79. The cone was reduced in height from 9000 to about 5000 feet; and, as vapors still escape from the crater on its summit, a new cone may one day rise out of the ruins of the ancient mountain, as the modern Vesuvius has risen from the remains of Somma.[675]
St. Domingo, 1770.—During a tremendous earthquake which destroyed a great part of St. Domingo, innumerable fissures were caused throughout the island, from which mephitic vapors emanated and produced an epidemic. Hot springs burst forth in many places where there had been no water before; but after a time they ceased to flow.[676]
In a previous earthquake, in November, 1751, a violent shock destroyed the capital, Port au Prince, and part of the coast, twenty leagues in length, sank down, and has ever since formed a bay of the sea.[677]
Hindostan, 1762.—The town of Chittagong, in Bengal, was violently shaken by an earthquake, on the 2d of April, 1762, the earth opening in many places, and throwing up water and mud of a sulphureous smell. At a place called Bardavan, a large river was dried up; and at Bar Charra, near the sea, a tract of ground sunk down, and 200 people, with all their cattle, were lost. It is said, that sixty square miles of the Chittagong coast suddenly and permanently subsided during this earthquake, and that Ces-lung-Toom, one of the Mug mountains, entirely disappeared, and another sank so low, that its summit only remained visible. Four hills are also described as having been variously rent asunder, leaving open chasms from thirty to sixty feet in width. Towns which subsided several cubits, were overflowed with water; among others, Deep Gong, which was submerged to the depth of seven cubits. Two volcanoes are said to have opened in the Secta Cunda hills. The shock was also felt at Calcutta.[678] While the Chittagong coast was sinking, a corresponding rise of the ground took place at the island of Ramree, and at Cheduba (see Map, [fig. 39], p. 351).[679]
Lisbon, 1755.—In no part of the volcanic region of southern Europe has so tremendous an earthquake occurred in modern times, as that which began on the 1st of November, 1755, at Lisbon. A sound of thunder was heard underground, and immediately afterwards a violent shock threw down the greater part of that city. In the course of about six minutes, sixty thousand persons perished. The sea first retired and laid the bar dry; it then rolled in, rising fifty feet or more above its ordinary level. The mountains of Arrabida, Estrella, Julio, Marvan, and Cintra, being some of the largest in Portugal, were impetuously shaken, as it were, from their very foundations; and some of them opened at their summits, which were split and rent in a wonderful manner, huge masses of them being thrown down into the subjacent valleys.[680] Flames are related to have issued from these mountains, which are supposed to have been electric; they are also said to have smoked; but vast clouds of dust may have given rise to this appearance.
The area over which this convulsion extended is very remarkable. It has been computed, says Humboldt,[681] that on the 1st November, 1755, a portion of the earth's surface four times greater than the extent of Europe was simultaneously shaken. The shock was felt in the Alps, and on the coast of Sweden, in small inland lakes on the shores of the Baltic, in Thuringia, and in the flat country of northern Germany. The thermal springs of Toplitz dried up, and again returned, inundating every thing with water discolored by ochre. In the islands of Antigua, Barbadoes, and Martinique in the West Indies, where the tide usually rises little more than two feet, it suddenly rose above twenty feet, the water being discolored and of an inky blackness. The movement was also sensible in the great lakes of Canada. At Algiers and Fez, in the north of Africa, the agitation of the earth was as violent as in Spain and Portugal; and at the distance of eight leagues from Morocco, a village with the inhabitants, to the number of about 8000 or 10,000 persons, are said to have been swallowed up; the earth soon afterwards closing over them.
Subsidence of the quay.—Among other extraordinary events related to have occurred at Lisbon during the catastrophe was the subsidence of a new quay, built entirely of marble at an immense expense. A great concourse of people had collected there for safety, as a spot where they might be beyond the reach of falling ruins; but suddenly the quay sank down with all the people on it, and not one of the dead bodies ever floated to the surface. A great number of boats and small vessels anchored near it, all full of people, were swallowed up, as in a whirlpool.[682] No fragments of these wrecks ever rose again to the surface, and the water in the place where the quay had stood is stated, in many accounts, to be unfathomable; but Whitehurst says he ascertained it to be one hundred fathoms.[683]
Circumstantial as are the contemporary narratives, I learn from a correspondent, Mr. F. Freeman, in 1841, that no part of the Tagus was then more than thirty feet deep at high tide, and an examination of the position of the new quay, and the memorials preserved of the time and manner in which it was built, rendered the statement of so great a subsidence in 1755 quite unintelligible. Perhaps a deep narrow chasm, such as was before described in Calabria (p. 481), opened and closed again in the bed of the Tagus, after swallowing up some incumbent buildings and vessels. We have already seen that such openings may collapse after the shock suddenly, or, in places where the strata are of soft and yielding materials, very gradually. According to the observations made at Lisbon, in 1837, by Mr. Sharpe, the destroying effects of this earthquake were confined to the tertiary strata, and were most violent on the blue clay, on which the lower part of the city is constructed. Not a building, he says, on the secondary limestone or the basalt was injured.[684]
Shocks felt at sea.—The shock was felt at sea, on the deck of a ship to the west of Lisbon, and produced very much the same sensation as on dry land. Off St. Lucar, the captain of the ship Nancy felt his vessel so violently shaken, that he thought she had struck the ground; but, on heaving the lead, found a great depth of water. Captain Clark, from Denia, in latitude 36° 24' N., between nine and ten in the morning, had his ship shaken and strained as if she had struck upon a rock, so that the seams of the deck opened, and the compass was overturned in the binnacle. Another ship, forty leagues west of St. Vincent, experienced so violent a concussion, that the men were thrown a foot and a half perpendicularly up from the deck.
Rate at which the movement travelled.—The agitation of lakes, rivers, and springs, in Great Britain, was remarkable. At Loch Lomond, in Scotland, for example, the water, without, the least apparent cause, rose against its banks, and then subsided below its usual level. The greatest perpendicular height of this swell was two feet four inches. It is said that the movement of this earthquake was undulatory, and that it travelled at the rate of twenty miles a minute, its velocity being calculated by the intervals between the time when the first shock was felt at Lisbon, and its time of occurrence at other distant places.[685]
Great wave and retreat of the sea.—A great wave swept over the coast of Spain, and is said to have been sixty feet high at Cadiz. At Tangier, in Africa, it rose and fell eighteen times on the coast. At Funchal, in Madeira, it rose full fifteen feet perpendicular above high-water mark, although the tide, which ebbs and flows there seven feet, was then at half-ebb. Besides entering the city, and committing great havoc, it overflowed other seaports in the island. At Kinsale, in Ireland, a body of water rushed into the harbor, whirled round several vessels, and poured into the market-place.
It was before stated that the sea first retired at Lisbon; and this retreat of the ocean from the shore, at the commencement of an earthquake, and its subsequent return in a violent wave, is a common occurrence. In order to account for the phenomenon, Michell imagined a subsidence at the bottom of the sea, from the giving way of the roof of some cavity in consequence of a vacuum produced by the condensation of steam. Such condensation, he observes, might be the first effect of the introduction of a large body of water into fissures and cavities already filled with steam, before there has been sufficient time for the heat of the incandescent lava to turn so large a supply of water into steam, which being soon accomplished causes a greater explosion.
Another proposed explanation is, the sudden rise of the land, which would cause the sea to abandon immediately the ancient line of coast; and if the shore, after being thus heaved up, should fall again to its original level, the ocean would return. This theory, however, will not account for the facts observed during the Lisbon earthquake; for the retreat preceded the wave, not only on the coast of Portugal, but also at the island of Madeira, and several other places. If the upheaving of the coast of Portugal had caused the retreat, the motion of the waters, when propagated to Madeira, would have produced a wave previous to the retreat. Nor could the motion of the waters at Madeira have been caused by a different local earthquake; for the shock travelled from Lisbon to Madeira in two hours, which agrees with the time which it required to reach other places equally distant.[686]
The following is another solution of the problem, which has been offered:—Suppose a portion of the bed of the sea to be suddenly upheaved; the first effect will be to raise over the elevated part a body of water, the momentum of which will carry it much above the level it will afterwards assume, causing a draught or receding of the water from the neighboring coasts, followed immediately by the return of the displaced water, which will also be impelled by its momentum much farther and higher on the coast than its former level.[687]
Mr. Darwin, when alluding to similar waves on the coast of Chili, states his opinion, that "the whole phenomenon is due to a common undulation in the water, proceeding from a line or point of disturbance some little way distant. If the waves," he says, "sent off from the paddles of a steam-vessel be watched breaking on the sloping shore of a still river, the water will be seen first to retire two or three feet, and then to return in little breakers, precisely analogous to those consequent on an earthquake." He also adds, that "the earthquake-wave occurs some time after the shock, the water at first retiring both from the shores of the mainland and of outlying islands, and then returning in mountainous breakers. Their size is modified by the form of the neighboring coast; for it is ascertained in South America, that places situated at the head of shoaling bays have suffered most, whereas towns like Valparaiso, seated close on the border of a profound ocean, have never been inundated, though severely shaken by earthquakes."[688]
More recently (February, 1846), Mr. Mallet, in his memoir above cited (p. [475]), has endeavored to bring to bear on this difficult subject the more advanced knowledge obtained of late years respecting the true theory of waves. He conceives that when the origin of the shock is beneath the deep ocean, one wave is propagated through the land, and another moving with inferior velocity is formed on the surface of the ocean. This last rolls in upon the land long after the earth-wave has arrived and spent itself. However irreconcilable it may be to our common notions of solid bodies, to imagine them capable of transmitting, with such extreme velocity, motions analogous to tidal waves, it seems nevertheless certain that such undulations are produced, and it is supposed that when the shock passes a given point, each particle of the solid earth describes an ellipse in space. The facility with which all the particles of a solid mass can be made to vibrate may be illustrated, says Gay Lussac, by many familiar examples. If we apply the ear to one end of a long wooden beam, and listen attentively when the other end is struck by a pin's head, we hear the shock distinctly; which shows that every fibre throughout the whole length has been made to vibrate. The rattling of carriages on the pavement shakes the largest edifices; and in the quarries underneath some quarters in Paris, it is found that the movement is communicated through a considerable thickness of rock.[689]
The great sea-wave originating directly over the centre of disturbance is propagated, as Michell correctly stated, in every direction, like the circle upon a pond when a pebble is dropped into it, the different rates at which it moves depending (as he also suggested) on variations in the depth of the water. This wave of the sea, says Mr. Mallet, is raised by the impulse of the shock immediately below it, which in great earthquakes lifts up the ground two or three feet perpendicularly. The velocity of the shock, or earth-wave, is greater because it "depends upon a function of the elasticity of the crust of the earth, whereas the velocity of the sea-wave depends upon a function of the depth of the sea."
"Although the shock in its passage under the deep ocean gives no trace of its progress, it no sooner gets into soundings or shallow water, than it gives rise to another and smaller wave of the sea. It carries, as it were, upon its back, this lesser aqueous undulation; a long narrow ridge of water which corresponds in form and velocity to itself, being pushed up by the partial elevation of the bottom. It is this small wave, called technically the 'forced sea-wave,' which communicates the earthquake-shock to ships at sea, as if they had struck upon a rock. It breaks upon a coast at the same moment that the shock reaches it, and sometimes it may cause an apparent slight recession from the shore, followed by its flowing up somewhat higher than the usual tide mark: this will happen where the beach is very sloping, as is usual where the sea is shallow, for then the velocity of the low flat earth-wave is such, that it slips as it were, from under the undulation in the fluid above. It does this at the moment of reaching the beach, which it elevates by a vertical height equal to its own, and as instantly lets drop again to its former level."
"While the shock propagated through the solid earth has thus travelled with extra rapidity to the land, the great sea-wave has been following at a slower pace, though advancing at the rate of several miles in a minute. It consists, in the deep ocean, of a long low swell of enormous volume, having an equal slope before and behind, and that so gentle that it might pass under a ship without being noticed. But when it reaches the edge of soundings, its front slope, like that of a tidal wave under similar circumstances, becomes short and steep, while its rear slope is long and gentle. If there be water of some depth close into shore, this great wave may roll in long after the shock, and do little damage; but if the shore be shelving, there will be first a retreat of the water, and then the wave will break upon the beach and roll in far upon the land."[690]
The various opinions which have been offered by Michell and later writers, respecting the remote causes of earthquake shocks in the interior of the earth, will more properly be discussed in the thirty-second chapter.
Chili, 1751.—On the 24th of May, 1751, the ancient town of Conception, otherwise called Penco, was totally destroyed by an earthquake, and the sea rolled over it. (See plan of the bay, [fig. 70], p. 455.) The ancient port was rendered entirely useless, and the inhabitants built another town about ten miles from the sea-coast, in order to be beyond the reach of similar inundations. At the same time, a colony recently settled on the sea-shore of Juan Fernandez was almost entirely overwhelmed by a wave which broke upon the shore.
It has been already stated, that in 1835, or eighty-four years after the destruction of Penco, the same coast was overwhelmed by a similar flood from the sea during an earthquake; and it is also known that twenty-one years before (or in 1730), a like wave rolled over these fated shores, in which many of the inhabitants perished. A series of similar catastrophes has also been tracked back as far as the year 1590,[691] beyond which we have no memorials save those of oral tradition. Molina, who has recorded the customs and legends of the aborigines, tells us, that the Araucanian Indians, a tribe inhabiting the country between the Andes and the Pacific, including the part now called Chili, "had among them a tradition of a great deluge, in which only a few persons were saved, who took refuge upon a high mountain called Thegtheg, "the thundering," which had three points. Whenever a violent earthquake occurs, these people fly for safety to the mountains, assigning as a reason, that they are fearful, after the shock, that the sea will again return and deluge the world.[692]
Notwithstanding the tendency of writers in his day to refer all traditionary inundations to one remote period, Molina remarks that this flood of the Araucanians "was probably very different from that of Noah." We have, indeed, no means of conjecturing how long this same tribe had flourished in Chili, but we can scarcely doubt, that if its experience reached back even for three or four centuries, several inroads of the ocean must have occurred within that period. But the memory of a succession of physical events, similar in kind, though distinct in time, can never be preserved by a people destitute of written annals. Before two or three generations have passed away all dates are forgotten, and even the events themselves, unless they have given origin to some customs, or religious rites and ceremonies. Oftentimes the incidents of many different earthquakes and floods become blended together in the same narrative; and in such cases the single catastrophe is described in terms so exaggerated, or is so disguised by mythological fictions, as to be utterly valueless to the antiquary or philosopher.
Proofs of elevation of twenty-four feet.—During a late survey of Conception Bay, Captain Beechey and Sir E. Belcher discovered that the ancient harbor, which formerly admitted all large merchant vessels which went round the Cape, is now occupied by a reef of sandstone, certain points of which project above the sea at low water, the greater part being very shallow. A tract of a mile and a half in length, where, according to the report of the inhabitants, the water was formerly four or five fathoms deep, is now a shoal; consisting, as our hydrographers found, of hard sandstone, so that it cannot be supposed to have been formed by recent deposits of the river Biobio, an arm of which carries down loose micaceous sand into the same bay.
It is impossible at this distance of time to affirm that the bed of the sea was uplifted at once to the height of twenty-four feet, during the single earthquake of 1751, because other movements may have occurred subsequently; but it is said, that ever since the shock of 1751, no vessels have been able to approach within a mile and a half of the ancient port of Penco. (See Map, p. 455.) In proof of the former elevation of the coast near Penco our surveyors found above high-water mark an enormous bed of shells of the same species as those now living in the bay, filled with micaceous sand like that which the Biobio now conveys to the bay. These shells, as well as others, which cover the adjoining hills of mica-schist to the height of several hundred feet, have lately been examined by experienced conchologists in London, and identified with those taken at the same time in a living state from the bay and its neighborhood.[693]
Ulloa, therefore, was perfectly correct in his statement that, at various heights above the sea between Talcahuano and Conception, "mines were found of various sorts of shells used for lime of the very same kinds as those found in the adjoining sea." Among them he mentions the great mussel called Choros, and two others which he describes. Some of these, he says, are entire, and others broken; they occur at the bottom of the sea, in four, six, ten, or twelve fathom water, where they adhere to a sea-plant called Cochayuyo. They are taken in dredges, and have no resemblance to those found on the shore or in shallow water; yet beds of them occur at various heights on the hills. "I was the more pleased with the sight," he adds, "as it appeared to me a convincing proof of the universality of the deluge, although I am not ignorant that some have attributed their position to other causes."[694] It has, however, been ascertained that the foundation of the Castle of Penco was so low in 1835, or at so inconsiderable an elevation above the highest spring tides, as to discountenance the idea of any permanent upheaval in modern times, on the site of that ancient port; but no exact measurements or levellings appear as yet to have been made to determine this point, which is the more worthy of investigation, because it may throw some light on an opinion often promulgated of late years, that there is a tendency in the Chilian coast, after each upheaval, to sink gradually and return towards its former position.
Peru, 1746.—Peru was visited, on the 28th of October, 1746, by a tremendous earthquake. In the first twenty-four hours, two hundred shocks were experienced. The ocean twice retired and returned impetuously upon the land: Lima was destroyed, and part of the coast near Callao was converted into a bay: four other harbors, among which were Cavalla and Guanape, shared the same fate. There were twenty-three ships and vessels, great and small, in the harbor of Callao, of which nineteen were sunk; and the other four, among which was a frigate called St. Fermin, were carried by the force of the waves to a great distance up the country, and left on dry ground at a considerable height above the sea. The number of inhabitants in this city amounted to four thousand. Two hundred only escaped, twenty-two of whom were saved on a small fragment of the fort of Vera Cruz, which remained as the only memorial of the town after this dreadful inundation. Other portions of its site were completely covered with heaps of sand and gravel.
A volcano in Lucanas burst forth the same night, and such quantities of water descended from the cone that the whole country was overflowed; and in the mountain near Pataz, called Conversiones de Caxamarquilla, three other volcanoes burst out, and frightful torrents of water swept down their sides.[695]
There are several records of prior convulsions in Peru, accompanied by similar inroads in the sea, one of which happened fifty-nine years before (in 1687), when the ocean, according to Ulloa, first retired and then returned in a mountainous wave, overwhelming Callao and its environs, with the miserable inhabitants.[696] This same wave, according to Lionel Wafer, carried ships a league into the country, and drowned man and beast for fifty leagues along the shore.[697] Inundations of still earlier dates are carefully recorded by Ulloa, Wafer, Acosta, and various writers, who describe them as having expended their chief fury, some on one part of the coast and some on another.
But all authentic accounts cease when we ascend to the era of the conquest of Peru by the Spaniards. The ancient Peruvians, although far removed from barbarism, were without written annals, and therefore unable to preserve a distinct recollection of a long series of natural events. They had, however, according to Antonio de Herrera, who, in the beginning of the seventeenth century, investigated their antiquities, a tradition, "that many years before the reign of the Incas, at a time when the country was very populous, there happened a great flood; the sea breaking out beyond its bounds, so that the land was covered with water and all the people perished. To this the Guacas, inhabiting the vale of Xausca, and the natives of Chiquito, in the province of Callao, add that some persons remained in the hollows and caves of the highest mountains, who again peopled the land. Others of the mountain people affirm that all perished in the deluge, only six persons being saved on a float, from whom descended all the inhabitants of that country."[698]
On the mainland near Lima, and on the neighboring island of San Lorenzo, Mr. Darwin found proofs that the ancient bed of the sea had been raised to the height of more than eighty feet above water within the human epoch, strata having been discovered at that altitude, containing pieces of cotton thread and plaited rush, together with sea-weed and marine shells.[699] The same author learnt from Mr. Gill, a civil engineer, that he discovered in the interior near Lima, between Casma and Huaraz, the dried-up channel of a large river, sometimes worn through solid rock, which, instead of continually ascending towards its source, has, in one place, a steep downward slope in that direction, for a ridge or line of hills has been uplifted directly across the bed of the stream, which is now arched. By these changes the water has been turned into some other course; and a district, once fertile, and still covered with ruins, and bearing the marks of ancient cultivation, has been converted into a desert.[700]
Java, 1699.—On the 5th of January, 1699, a terrible earthquake visited Java, and no less than 208 considerable shocks were reckoned. Many houses in Batavia were overturned, and the flame and noise of a volcanic eruption were seen and heard in that city, which were afterwards found to proceed from Mount Salek,[701] a volcano six days' journey distant. Next morning the Batavian river, which has its rise from that mountain, became very high and muddy, and brought down abundance of bushes and trees, half burnt. The channel of the river being stopped up, the water overflowed the country round the gardens about the town, and some of the streets, so that fishes lay dead in them. All the fish in the river, except the carps, were killed by the mud and turbid water. A great number of drowned buffaloes, tigers, rhinoceroses, deer, apes, and other wild beasts, were brought down by the current; and, "notwithstanding," observes one of the writers, "that a crocodile is amphibious, several of them were found dead among the rest."[702]
It is stated that seven hills bounding the river sank down; by which is merely meant, as by similar expressions in the description of the Calabrian earthquakes, seven great landslips. These hills, descending some from one side of the valley and some from the other, filled the channel, and the waters then finding their way under the mass, flowed out thick and muddy. The Tangaran river was also dammed up by nine hills, and in its channel were large quantities of drift trees. Seven of its tributaries also are said to have been "covered up with earth." A high tract of forest land, between the two great rivers before mentioned, is described as having been changed into an open country, destitute of trees, the surface being spread over with fine red clay. This part of the account may, perhaps, merely refer to the sliding down of woody tracts into the valleys, as happened to so many extensive vineyards and olive-grounds in Calabria, in 1783. The close packing of large trees in the Batavian river is represented as very remarkable, and it attests in a striking manner the destruction of soil bordering the valleys which had been caused by floods and landslips.[703]
Quito, 1698.—In Quito, on the 19th of July, 1698, during an earthquake, a great part of the crater and summit of the volcano Carguairazo fell in, and a stream of water and mud issued from the broken sides of the hill.[704]
Sicily, 1693.—Shocks of earthquakes spread over all Sicily in 1693, and on the 11th of January the city of Catania and forty-nine other places were levelled to the ground, and about one hundred thousand people killed. The bottom of the sea, says Vicentino Bonajutus, sank down considerably, both in ports, inclosed bays, and open parts of the coast, and water bubbled up along the shores. Numerous long fissures of various breadths were caused, which threw out sulphurous water; and one of them, in the plain of Catania (the delta of the Simeto), at the distance of four miles from the sea, sent forth water as salt as the sea. The stone buildings of a street in the city of Noto, for the length of half a mile, sank into the ground, and remained hanging on one side. In another street, an opening large enough to swallow a man and horse appeared.[705]
Moluccas, 1693.—The small Isle of Sorea, which consists of one great volcano, was in eruption in the year 1693. Different parts of the cone fell, one after the other, into a deep crater, until almost half the space of the island was converted into a fiery lake. Most of the inhabitants fled to Banda; but great pieces of the mountain continued to fall down, so that the lake of lava became wider; and finally the whole population was compelled to emigrate. It is stated that, in proportion as the burning lake increased in size, the earthquakes were less vehement.[706]
Jamaica, 1692.—In the year 1692, the island of Jamaica was visited by a violent earthquake; the ground swelled and heaved like a rolling sea, and was traversed by numerous cracks, two or three hundred of which were often seen at a time, opening and then closing rapidly again. Many people were swallowed up in these rents; some the earth caught by the middle, and squeezed to death; the heads of others only appeared above ground; and some were first engulfed, and then cast up again with great quantities of water. Such was the devastation, that even in Port Royal, then the capital, where more houses are said to have been left standing than in the whole island besides, three-quarters of the buildings, together with the ground they stood on, sank down with their inhabitants entirely under water.
Subsidence in the harbor.—The large storehouses on the harbor side subsided, so as to be twenty-four, thirty-six, and forty-eight feet under water; yet many of them appear to have remained standing, for it is stated that, after the earthquake, the mast-heads of several ships wrecked in the harbor, together with the chimney-tops of houses, were just seen projecting above the waves. A tract of land round the town, about a thousand acres in extent, sank down in less than one minute, during the first shock, and the sea immediately rolled in. The Swan frigate, which was repairing in the wharf, was driven over the tops of many buildings, and then thrown upon one of the roofs, through which it broke. The breadth of one of the streets is said to have been doubled by the earthquake.
According to Sir H. De la Beche, the part of Port Royal described as having sunk was built upon newly formed land, consisting of sand, in which piles had been driven; and the settlement of this loose sand, charged with the weight of heavy houses, may, he suggests, have given rise to the subsidence alluded to.[707]
There have undoubtedly been instances in Calabria and elsewhere of slides of land on which the houses have still remained standing; and it is possible that such may have been the case at Port Royal. The fact at least of submergence is unquestionable, for I was informed by the late Admiral Sir Charles Hamilton that he frequently saw the submerged houses of Port Royal in the year 1780, in that part of the harbor which lies between the town and the usual anchorage of men-of-war. Bryan Edwards also says, in his history of the West Indies, that in 1793 the ruins were visible in clear weather from the boats which sailed over them.[708] Lastly, Lieutenant B. Jeffery, R. N., tells me that, being engaged in a survey between the years 1824 and 1835, he repeatedly visited the site in question, where the depth of the water is from four to six fathoms, and whenever there was but little wind perceived distinct traces of houses. He saw these more clearly when he used the instrument called the "diver's eye," which is let down below the ripple of the wave.[709]
At several thousand places in Jamaica the earth is related to have opened. On the north of the island several plantations, with their inhabitants, were swallowed up, and a lake appeared in their place, covering above a thousand acres, which afterwards dried up, leaving nothing but sand and gravel, without the least sign that there had ever been a house or a tree there. Several tenements at Yallows were buried under land-slips; and one plantation was removed half a mile from its place, the crops continuing to grow upon it uninjured. Between Spanish Town and Sixteen-mile Walk, the high and perpendicular cliffs bounding the river fell in, stopped the passage of the river and flooded the latter place for nine days, so that the people "concluded it had been sunk as Port Royal was." But the flood at length subsided, for the river had found some new passage at a great distance.
Mountains shattered.—The Blue and other of the highest mountains are declared to have been strangely torn and rent. They appeared shattered and half-naked, no longer affording a fine green prospect, as before, but stripped of their woods and natural verdure. The rivers on these mountains first ceased to flow for about twenty-four hours, and then brought down into the sea, at Port Royal and other places, several hundred thousand tons of timber, which looked like floating islands on the ocean. The trees were in general barked, most of their branches having been torn off in the descent. It is particularly remarked in this, as in the narratives of so many earthquakes, that fish were taken in great numbers on the coast during the shocks. The correspondents of Sir Hans Sloane, who collected with care the accounts of eye-witnesses of the catastrophe, refer constantly to subsidences, and some supposed the whole of Jamaica to have sunk down.[710]
Reflections on the amount of change in the last one hundred and sixty years.—I have now only enumerated some few of the earthquakes of the last 160 years, respecting which facts illustrative of geological inquiries are on record. Even if my limits permitted, it would be an unprofitable task to examine all the obscure and ambiguous narratives of similar events of earlier epochs; although, if the places were now examined by geologists well practised in the art of interpreting the monuments of physical changes, many events which have happened within the historical era might doubtless be still determined with precision. It must not be imagined that, in the above sketch of the occurrences of a short period, I have given an account of all, or even the greater part, of the mutations which the earth has undergone by the agency of subterranean movements. Thus, for example, the earthquake of Aleppo, in the present century, and of Syria, in the middle of the eighteenth, would doubtless have afforded numerous phenomena, of great geological importance, had those catastrophes been described by scientific observers. The shocks in Syria in 1759, were protracted for three months, throughout a space of ten thousand square leagues: an area compared to which that of the Calabrian earthquake in 1783 was insignificant. Accon, Saphat, Balbeck, Damascus, Sidon, Tripoli, and many other places, were almost entirely levelled to the ground. Many thousands of the inhabitants perished in each; and, in the valley of Balbeck alone, 20,000 men are said to have been victims to the convulsion. In the absence of scientific accounts, it would be as irrelevant to our present purpose to enter into a detailed account of such calamities, as to follow the track of an invading army, to enumerate the cities burnt or rased to the ground, and reckon the number of individuals who perished by famine or the sword.
Deficiency of historical records.—If such, then, be the amount of ascertained changes in the last 160 years, notwithstanding the extreme deficiency of our records during that brief period, how important must we presume the physical revolutions to have been in the course of thirty or forty centuries, during which some countries habitually convulsed by earthquakes have been peopled by civilized nations! Towns engulfed during one earthquake may, by repeated shocks, have sunk to great depths beneath the surface, while the ruins remain as imperishable as the hardest rocks in which they are inclosed. Buildings and cities, submerged, for a time, beneath seas or lakes, and covered with sedimentary deposits, must, in some places, have been re-elevated to considerable heights above the level of the ocean. The signs of these events have, probably, been rendered visible by subsequent mutations, as by the encroachments of the sea upon the coast, by deep excavations made by torrents and rivers, by the opening of new ravines, and chasms, and other effects of natural agents, so active in districts agitated by subterranean movements.
If it be asked why, if such wonderful monuments exist, so few have hitherto been brought to light, we reply—because they have not been searched for. In order to rescue from oblivion the memorials of former occurrences, the inquirer must know what he may reasonably expect to discover, and under what peculiar local circumstances. He must be acquainted with the action and effect of physical causes, in order to recognize, explain, and describe correctly the phenomena when they present themselves.
The best known of the great volcanic regions, of which the boundaries were sketched in the twenty-second chapter, is that which includes Southern Europe, Northern Africa, and Central Asia; yet nearly the whole, even of this region, must be laid down, in a geological map, as "Terra Incognita." Even Calabria may be regarded as unexplored, as also Spain, Portugal, the Barbary States, the Ionian Isles, Asia Minor, Cyprus, Syria, and the countries between the Caspian and Black seas. We are, in truth, beginning to obtain some insight into one small spot of that great zone of volcanic disturbance, the district around Naples; a tract by no means remarkable for the violence of the earthquakes which have convulsed it.
If, in this part of Campania, we are enabled to establish that considerable changes in the relative level of land and sea have taken place since the Christian era, it is all that we could have expected; and it is to recent antiquarian and geological research, not to history, that we are principally indebted for the information. I shall now proceed to lay before the reader some of the results of modern investigations in the Bay of Baiæ and the adjoining coast.
PROOFS OF ELEVATION AND SUBSIDENCE IN THE BAY OF BAIÆ.
Ground plan of the coast of the Bay of Baiæ, in the environs of Puzzuoli
Temple of Jupiter Serapis.—This celebrated monument of antiquity, a representation of which is given in the frontispiece,[711] affords in itself alone, unequivocal evidence that the relative level of land and sea has changed twice at Puzzuoli since the Christian era; and each movement, both of elevation and subsidence, has exceeded twenty feet. Before examining these proofs, I may observe, that a geological examination of the coast of Baiæ, both on the north and south of Puzzuoli, establishes, in the most satisfactory manner, an elevation, at no remote period, of more than twenty feet, and, at one point, of more than thirty feet; and the evidence of this change would have been complete, if even the temple had, to this day, remained undiscovered.
Coast south of Puzzuoli.—If we coast along the shore from Naples to Puzzuoli, we find, on approaching the latter place, that the lofty and precipitous cliffs of indurated tuff, resembling that of which Naples is built, retire slightly from the sea; and that a low level tract of fertile land, of a very different aspect, intervenes between the present sea-beach and what was evidently the ancient line of coast.
The inland cliff may be seen opposite the small island of Nisida, about two miles and a half southeast of Puzzuoli (see Map, [fig. 40], p. 361), where, at the height of thirty-two feet above the level of the sea, Mr. Babbage observed an ancient mark, such as might have been worn by the waves; and, upon farther examination, discovered that, along that line, the face of the perpendicular rock, consisting of very hard tuff, was covered with barnacles (Balanus sulcatus, Lamk.), and drilled by boring testacea. Some of the hollows of the lithodomi contained the shells; Fig. 87.
a, Antiquities on hill S. E. of Puzzuoli
(see ground plan, [fig. 86]).
b, Ancient cliff now inland.
c, Terrace composed of recent
submarine deposit. while others were filled with the valves of a species of Area.[712] Nearer to Puzzuoli, the inland cliff is eighty feet high, and as perpendicular as if it was still undermined by the waves. At its base, a new deposit, constituting the fertile tract above alluded to, attains a height of about twenty feet above the sea; and, since it is composed of regular sedimentary deposits, containing marine shells, its position proves that, subsequently to its formation, there has been a change of more than twenty feet in the relative level of land and sea.
The sea encroaches on these new incoherent strata; and as the soil is valuable, a wall has been built for its protection; but when I visited the spot in 1828, the waves had swept away part of this rampart, and exposed to view a regular series of strata of tuff, more or less argillaceous, alternating with beds of pumice and lapilli, and containing great abundance of marine shells, of species now common on this coast, and amongst them Cardium rusticum, Ostrea edulis, Donax trunculus, Lamk., and others. The strata vary from about a foot to a foot and a half in thickness, and one of them contains abundantly remains of works of art, tiles, squares of mosaic pavement of different colors, and small sculptured ornaments, perfectly uninjured. Intermixed with these I collected some teeth of the pig and ox. These fragments of building occur below as well as above strata containing marine shells. Puzzuoli itself stands chiefly on a promontory of the older tufaceous formation, which cuts off the new deposit, although I detected a small patch of the latter in a garden under the town.
| 1. Puzzuoli. | 2. Temple of Serapis. | 3. Caligula's Bridge. | 4. Monte Barbaro. | 5. Monte Nuovo. |
| 6. Baths of Nero. | 7. Baiæ. | 8. Castle of Baiæ. | 9. Bauli. | 10. Cape Misenum. |
| 11. Mount Epomeo in Ischia. | 12. South Part of Ischia. | |||
From the town the ruins of a mole, called Caligula's Bridge, run out into the sea (see [fig. 88], p. 509).[713] This mole, which is believed to be eighteen centuries old, consists of a number of piers and arches, thirteen of which are now standing, and two others appear to have been overthrown. Mr. Babbage found, on the sixth pier, perforations of lithodomi four feet above the level of the sea; and, near the termination of the mole on the last pier but one, marks of the same, ten feet above the level of the sea, together with great numbers of balani and flustra. The depth of the sea, at a very small distance from most of the piers, is from thirty to fifty feet.
a, Remains of Cicero's villa, N. side of Puzzuoli.[714]
b, Ancient cliff now inland.
c, Terrace (called La Starza) composed of recent submarine deposits.
d, Temple of Serapis.
Coast north of Puzzuoli.—If we then pass to the north of Puzzuoli, and examine the coast between that town and Monte Nuovo, we find a repetition of analogous phenomena. The sloping sides of Monte Barbaro slant down within a short distance of the coast, and terminate in an inland cliff of moderate elevation, to which the geologist perceives at once that the sea must, at some former period, have extended. Between this cliff and the sea is a low plain or terrace, called La Starza (c, [fig. 89]), corresponding to that before described on the southeast of the town; and as the sea encroaches rapidly, fresh sections of the strata may readily be obtained, of which the annexed is an example.
Section on the shore north of the town of Puzzuoli:—
| Ft. | In. | |
| 1. Vegetable soil | 1 | 0 |
| 2. Horizontal beds of pumice and scoriæ, with broken fragments of unrolled bricks, bones of animals, and marine shells | 1 | 6 |
| 3. Beds of lapilli, containing abundance of marine shells, principally Cardium rusticum, Donax trunculus, Lam., Ostrea edulis, Triton cutaceum, Lam., and Buccinum serratum, Brocchi, the beds varying in thickness from one to eighteen inches | 10 | 0 |
| 4. Argillaceous tuff, containing bricks and fragments of buildings not rounded by attrition. | 1 | 6 |
The thickness of many of these beds varies greatly as we trace them along the shore, and sometimes the whole group rises to a greater height than at the point above described. The surface of the tract which they compose appears to slope gently upwards towards the base of the old cliffs.
Now, if such appearances presented themselves on the coast of England, a geologist might endeavor to seek an explanation in some local change in the set of the tides and currents: but there are scarce any tides in the Mediterranean; and, to suppose the sea to have sunk generally from twenty to twenty-five feet since the shores of Campania were covered with sumptuous buildings is an hypothesis obviously untenable. The observations, indeed, made during modern surveys on the moles and cothons (docks) constructed by the ancients in various ports of the Mediterranean, have proved that there has been no sensible variation of level in that sea during the last two thousand years.[715]
Thus we arrive, without the aid of the celebrated temple, at the conclusion, that the recent marine deposit at Puzzuoli was upraised in modern times above the level of the sea, and that not only this change of position, but the accumulation of the modern strata, was posterior to the destruction of many edifices, of which they contain the imbedded remains. If we next examine the evidence afforded by the temple itself, it appears, from the most authentic accounts, that the three pillars now standing erect continued, down to the middle of the last century, almost buried in the new marine strata (c, [fig. 89]). The upper part of each protruding several feet above the surface was concealed by bushes, and had not attracted, until the year 1749, the notice of antiquaries; but, when the soil was removed in 1750, they were seen to form part of the remains of a splendid edifice, the pavement of which was still preserved, and upon it lay a number of columns of African breccia and of granite. The original plan of the building could be traced distinctly: it was of a quadrangular form, seventy feet in diameter, and the roof had been supported by forty-six noble columns, twenty-four of granite and the rest of marble. The large court was surrounded by apartments, supposed to have been used as bathing-rooms; for a thermal spring, still used for medicinal purposes, issues just behind the building, and the water of this spring appears to have been originally conveyed by a marble duct, still extant, into the chambers, and then across the pavement by a groove an inch or two deep, to a conduit made of Roman brickwork, by which it gained the sea.
Many antiquaries have entered into elaborate discussions as to the deity to which this edifice was consecrated. It is admitted that, among other images found in excavating the ruins, there was one of the god Serapis; and at Puzzuoli a marble column was dug up, on which was carved an ancient inscription, of the date of the building of Rome 648 (or B. C. 105), entitled "Lex parieti faciundo." This inscription, written in very obscure Latin, sets forth a contract, between the municipality of the town, and a company of builders who undertook to keep in repair certain public edifices, the Temple of Serapis being mentioned amongst the rest, and described as being near or towards the sea, "mare vorsum." Sir Edmund Head, after studying, in 1828, the topography and antiquities of this district, and the Greek, Roman, and Italian writers on the subject, informed me, that at Alexandria, on the Nile, the chief seat of the worship of Serapis, there was a Serapeum of the same form as this temple at Puzzuoli, and surrounded in like manner by chambers, in which the devotees were accustomed to pass the night, in the hope of receiving during sleep a revelation from the god, as to the nature and cure of their diseases. Hence it was very natural that the priests of Serapis, a pantheistic divinity, who, among other usurpations, had appropriated to himself the attributes of Esculapius, should regard the hot spring as a suitable appendage to the temple, although the original Serapeum of Alexandria could boast no such medicinal waters. Signor Carelli[716] and others, in objecting to these views, have insisted on the fact, that the worship of Serapis, which we know prevailed at Rome in the days of Catullus (in the first century before Christ), was prohibited by the Roman Senate, during the reign of the Emperor Tiberius. But there is little doubt that, during the reigns of that emperor's successors, the shrines of the Egyptian god were again thronged by zealous votaries; and in no place more so than at Puteoli (now Puzzuoli), one of the principal marts for the produce of Alexandria.
Without entering farther into an inquiry which is not strictly geological, I shall designate this valuable relic of antiquity by its generally received name, and proceed to consider the memorials of physical changes inscribed on the three standing columns in most legible characters by the hand of Nature. (See Frontispiece.) These pillars, which have been carved each out of a single block of marble, are forty feet three inches and a half in height. A horizontal fissure nearly intersects one of the columns; the other two are entire. They are all slightly out of the perpendicular, inclining somewhat to the southwest, that is, towards the sea.[717] Their surface is smooth and uninjured to the height of about twelve feet above their pedestals. Above this is a zone, about nine feet in height, where the marble has been pierced by a species of marine perforating bivalve—Lithodomus, Cuv.[718] The holes of these animals are pear-shaped, the external opening being minute, and gradually increasing downwards. At the bottom of the cavities, many shells are still found, notwithstanding the great numbers that have been taken out by visitors; in many the valves of a species of arca, an animal which conceals itself in small hollows, occur. The perforations are so considerable in depth and size, that they manifest a long-continued abode of the lithodomi in the columns, for, as the inhabitant grows older and increases in size, it bores a larger cavity, to correspond with the increased magnitude of its shell. We must, consequently, infer a long-continued immersion of the pillars in sea-water, at a time when the lower part was covered up and protected by marine, fresh-water, and volcanic strata, afterwards to be described, and by the rubbish of buildings; the highest part, at the same time, projecting above the waters, and being consequently weathered, but not materially injured. (See fig. 90, p. 514.)
On the pavement of the temple lie some columns of marble, which are also perforated in certain parts; one, for example, to the length of eight feet, while, for the length of four feet, it is uninjured. Several of these broken columns are eaten into, not only on the exterior, but on the cross fracture, and, on some of them, other marine animals (serpulæ, &c.) have fixed themselves.[719] All the granite pillars are untouched by lithodomi. The platform of the temple, which is not perfectly even, was, when I visited it in 1828, about one foot below high-water mark (for there are small tides in the bay of Naples); and the sea, which was only one hundred feet distant, soaked through the intervening soil. The upper part of the perforations, therefore, were at least twenty-three feet above highwater mark; and it is clear that the columns must have continued for a long time in an erect position, immersed in salt water, and then the submerged portion must have been upraised to the height of about twenty-three feet above the level of the sea.
By excavations carried on in 1828, below the marble pavement on which the columns stand, another costly pavement of mosaic was found, at the depth of about five feet below the upper one (a, b, [fig. 90]). The existence of these two pavements, at different levels, clearly implies some subsidence previously to the building of the more modern temple which had rendered it necessary to construct the new floor at a higher level.
Temple of Serapis at its period of greatest depression.
| a b, Ancient mosaic pavement. | e e, Freshwater calcareous deposit. |
| c c, Dark marine incrustation. | f f, Second filling up. |
| d d, First filling up, shower of ashes. | A, Stadium. |
We have already seen (p. 512) that a temple of Serapis existed long before the Christian era. The change of level just mentioned must have taken place some time before the end of the second century, for inscriptions have been found in the temple, from which we learn that Septimius Severus adorned its walls with precious marbles, between the years 194 and 211 of our era, and the emperor Alexander Severus displayed the like munificence between the years 222 and 235.[720] From that era there is an entire dearth of historical information for a period of more than twelve centuries, except the significant fact that Alaric and his Goths sacked Puzzuoli in 456, and that Genseric did the like in 545, A. D. Yet we have fortunately a series of natural archives self-registered during the dark ages, by which many events which occurred in and about the temple are revealed to us. These natural records consist partly of deposits, which envelop the pillars below the zone of lithodomous perforations, and partly of those which surround the outer walls of the temple. Mr. Babbage, after a minute examination of these, has shown (see p. 507, [note]) that incrustations on the walls of the exterior chambers and on the floor of the building demonstrate that the pavement did not sink down suddenly, but was depressed by a gradual movement. The sea first entered the court or atrium and mingled its waters partially with those of the hot spring. From this brackish medium a dark calcareous precipitate (c c, [fig. 90]) was thrown down, which became, in the course of time, more than two feet thick, including some serpulæ in it. The presence of these annelids teaches us that the water was salt or brackish. After this period the temple was filled up with an irregular mass of volcanic tuff (d d, [fig. 90]), probably derived from an eruption of the neighboring crater of the Solfatara, to the height of from five to nine feet above the pavement. Over this again a purely freshwater deposit of carbonate of lime (e e, [fig. 90]) accumulated with an uneven bottom since it necessarily accommodated itself to the irregular outline of the upper surface of the volcanic shower before thrown down. The top of the same deposit (a freshwater limestone) was perfectly even and flat, bespeaking an ancient water level. It is suggested by Mr. Babbage that this freshwater lake may have been caused by the fall of ashes which choked up the channel previously communicating with the sea, so that the hot spring threw down calcareous matter in the atrium, without any marine intermixture. To the freshwater limestone succeeded another irregular mass of volcanic ashes and rubbish (f f, [fig. 90]), some of it perhaps washed in by the waves of the sea during a storm, its surface rising to ten or eleven feet above the pavement. And thus we arrive at the period of greatest depression expressed in the accompanying diagram, when the lower half of the pillars were enveloped in the deposits above enumerated, and the uppermost twenty feet were exposed in the atmosphere, the remaining or middle portion, about nine feet long, being for years immersed in salt water and drilled by perforating bivalves. After this period other strata, consisting of showers of volcanic ashes and materials washed in during storms, covered up the pillars to the height in some places of thirty-five feet above the pavement. The exact time when these enveloping masses were heaped up, and how much of them were formed during submergence, and how much after the re-elevation of the temple, cannot be made out with certainty.
The period of deep submergence was certainly antecedent to the close of the fifteenth century. Professor James Forbes[721] has reminded us of a passage in an old Italian writer Loffredo, who says that in 1530, or fifty years before he wrote, which was in 1580, the sea washed the base of the hills which rise from the flat land called La Starza, as represented in [fig. 90], so that, to quote his words, "a person might then have fished from the site of those ruins which are now called the stadium" (A, [fig. 90]).
But we know from other evidence that the upward movement had begun before 1530, for the Canonico Andrea di Jorio cites two authentic documents in illustration of this point. The first, dated Oct. 1503, is a deed written in Italian, by which Ferdinand and Isabella grant to the University of Puzzuoli a portion of land, "where the sea is drying up" (che va seccando el mare); the second, a document in Latin, dated May 23, 1511, or nearly eight years after, by which Ferdinand grants to the city a certain territory around Puzzuoli, where the ground is dried up from the sea (desiccatum).[722]
The principal elevation, however, of the low tract unquestionably took place at the time of the great eruption of Monte Nuovo in 1538. That event and the earthquakes which preceded it have been already described (p. 368); and we have seen that two of the eye-witnesses of the convulsion, Falconi and Giacomo di Toledo, agree in declaring that the sea abandoned a considerable tract of the shore, so that fish were taken by the inhabitants; and, among other things, Falconi mentions that he saw two springs in the newly discovered ruins.
The flat land, when first upraised, must have been more extensive than now, for the sea encroaches somewhat rapidly, both to the north and southeast of Puzzuoli. The coast had, when I examined it in 1828, given way more than a foot in a twelvemonth; and I was assured, by fishermen in the bay, that it has lost ground near Puzzuoli, to the extent of thirty feet, within their memory.
It is, moreover, very probable that the land rose to a greater height at first before it ceased to move upwards, than the level at which it was observed to stand when the temple was rediscovered in 1749, for we learn from a memoir, of Niccolini, published in 1838, that since the beginning of the nineteenth century, the temple of Serapis has subsided more than two feet. That learned architect visited the ruins frequently, for the sake of making drawings, in the beginning of the year 1807, and was in the habit of remaining there throughout the day, yet never saw the pavement overflowed by the sea, except occasionally when the south wind blew violently. On his return, sixteen years after, to superintend some excavations ordered by the king of Naples, he found the pavement covered by sea-water twice every day at high tide, so that he was obliged to place there a line of stones to stand upon. This induced him to make a series of observations from Oct. 1822 to July 1838, by which means he ascertained that the ground had been and was sinking, at the average rate of about seven millimetres a year, or about one inch in four years; so that, in 1838, fish were caught every day on that part of the pavement where, in 1807, there was never a drop of water in calm weather.[723]
On inquiring still more recently as to the condition of the temple and the continuance of the sinking of the ground, I learn from Signor Scacchi in a letter, dated June 1852, that the downward movement has ceased for several years, or has at least become almost inappreciable. During an examination undertaken by him at my request in the summer of that year (1852), he observed that the rising tide spread first over the seaward side of the flat surface of the pedestals of each column (confirming the fact previously noticed by others, that they are out of the perpendicular); and he also remarked that the water gained unequally on the base of each pillar, in such a manner as to prove that they have neither the same amount of inclination, nor lean precisely in the same direction.
From what was said before (p. 510), we saw that the marine shells in the strata forming the plain called La Starza, considered separately, establish the fact of an upheaval of the ground to the height of twenty-three feet and upwards. The temple proves much more, because it could not have been built originally under water, and must therefore first have sunk down twenty feet at least below the waves, to be afterwards restored to its original position. Yet if such was the order of events we ought to meet with other independent signs of a like subsidence round the margin of a bay once so studded with buildings as the Bay of Baiæ. Accordingly memorials of such submergence are not wanting. About a mile northwest of the temple of Serapis, and about 500 feet from the shore, are the ruins of a temple of Neptune and others of a temple of the Nymphs, now underwater. The columns of the former edifice stand erect in five feet of water, their upper portions just rising to the surface of the sea. The pedestals are doubtless buried in the sand or mud; so that, if this part of the bottom of the bay should hereafter be elevated, the exhumation of these temples might take place after the manner of that of Serapis. Both these buildings probably participated in the movement which raised the Starza; but either they were deeper under water than the temple of Serapis, or they were not raised up again to so great a height. There are also two Roman roads under water in the bay, one reaching from Puzzuoli to the Lucrine Lake, which may still be seen, and the other near the castle of Baiæ (No. 8, [fig. 88], p. 509). The ancient mole, too, of Puzzuoli (No. 4, ibid.) before alluded to, has the water up to a considerable height of the arches; whereas Brieslak justly observes, it is next to certain that the piers must formerly have reached the surface before the springing of the arches;[724] so that, although the phenomena before described prove that this mole has been uplifted ten feet above the level at which it once stood, it is still evident that it has not yet been restored to its original position.
A modern writer also reminds us, that these effects are not so local as some would have us to believe; for on the opposite side of the Bay of Naples, on the Sorrentine coast, which, as well as Puzzuoli, is subject to earthquakes, a road, with some fragments of Roman buildings, is covered to some depth by the sea. In the island of Capri, also, which is situated some way out at sea, in the opening of the Bay of Naples, one of the palaces of Tiberius is now covered with water.[725]
That buildings should have been submerged, and afterwards upheaved, without being entirely reduced to a heap of ruins, will appear no anomaly, when we recollect that, in the year 1819, when the delta of the Indus sank down, the houses within the fort of Sindree subsided beneath the waves without being overthrown. In like manner, in the year 1692, the buildings round the harbor of Port Royal, in Jamaica, descended suddenly to the depth of between thirty and fifty feet under the sea without falling. Even on small portions of land transported to a distance of a mile down a declivity, tenements, like those near Mileto, in Calabria, were carried entire. At Valparaiso buildings were left standing in 1822, when their foundations, together with a long tract of the Chilian coast, were permanently upraised to the height of several feet. It is still more easy to conceive that an edifice may escape falling during the upheaval or subsidence of land, if the walls are supported on the exterior and interior with a deposit like that which surrounded and filled to the height of ten or eleven feet the temple of Serapis all the time it was sinking, and which enveloped it to more than twice that height when it was rising again to its original level.
We can scarcely avoid the conclusion, as Mr. Babbage has hinted, "that the action of heat is in some way or other the cause of the phenomena of the change of level of the temple. Its own hot spring, its immediate contiguity to the Solfatara, its nearness to the Monte Nuovo, the hot spring at the baths of Nero (No. 6, [fig. 88]), on the opposite side of the Bay of Baiæ; the boiling springs and ancient volcanoes of Ischia on one side and Vesuvius on the other, are the most prominent of a multitude of facts which point to that conclusion."[726] And when we reflect on the dates of the principal oscillations of level, and the volcanic history of the country before described (chap. 23), we seem to discover a connection between each era of upheaval and a local development of volcanic heat, and again between each era of depression and the local quiescence or dormant condition of the subterranean igneous causes. Thus for example, before the Christian era, when so many vents were in frequent eruption in Ischia, and when Avernus and other points in the Phlegræan Fields were celebrated for their volcanic aspect and character, the ground on which the temple stood was several feet above water. Vesuvius was then regarded as a spent volcano; but when, after the Christian era, the fires of that mountain were rekindled, scarcely a single outburst was ever witnessed in Ischia, or around the Bay of Baiæ. Then the temple was sinking. Vesuvius, at a subsequent period, became nearly dormant for five centuries preceding the great outbreak of 1631 (see p. [374]), and in that interval the Solfatara was in eruption A. D. 1198, Ischia in 1302, and Monte Nuovo was formed in 1538. Then the foundations on which the temple stood were rising again. Lastly, Vesuvius once more became a most active vent, and has been so ever since, and during the same lapse of time the area of the temple, so far as we know any thing of its history, has been subsiding.
These phenomena would agree well with the hypothesis, that when the subterranean heat is on the increase, and when lava is forming without obtaining an easy vent, like that afforded by a great habitual chimney, such as Vesuvius, the incumbent surface is uplifted; but when the heated rocks below are cooling and contracting, and sheets of lava are slowly consolidating and diminishing in volume, then the incumbent land subsides.
Signor Niccolini, when he ascertained in 1838 that the relative levels of the floor of the temple and of the sea were slowly changing from year to year, embraced the opinion that it was the sea which was rising. But Signor Capocci successfully controverted this view, appealing to many appearances which attest the local character of the movements of the adjoining country, besides the historical fact that in 1538, when the sea retired permanently 200 yards from the ancient shore at Puzzuoli, there was no simultaneous retreat of the waters from Naples, Castelamare, and Ischia.[727]
Permanence of the ocean's level.—In concluding this subject I may observe, that the interminable controversies to which the phenomena of the Bay of Baiæ gave rise, have sprung from an extreme reluctance to admit that the land, rather than the sea, is subject alternately to rise and fall. Had it been assumed that the level of the ocean was invariable, on the ground that no fluctuations have as yet been clearly established, and that, on the other hand, the continents are inconstant in their level, as has been demonstrated by the most unequivocal proofs again and again, from the time of Strabo to our own times, the appearances of the temple at Puzzuoli could never have been regarded as enigmatical. Even if contemporary accounts had not distinctly attested the upraising of the coast, this explanation should have been proposed in the first instance as the most natural, instead of being now adopted unwillingly when all others have failed.
To the strong prejudices still existing in regard to the mobility of the land, we may attribute the rarity of such discoveries as have been recently brought to light in the Bay of Baiæ and the Bay of Conception. A false theory, it is well known, may render us blind to facts which are opposed to our prepossessions, or may conceal from us their true import when we behold them. But it is time that the geologist should, in some degree, overcome those first and natural impressions, which induced the poets of old to select the rock as the emblem of firmness—the sea as the image of inconstancy. Our modern poet, in a more philosophical spirit, saw in the sea "The image of eternity," and has finely contrasted the fleeting existence of the successive empires which have flourished and fallen on the borders of the ocean with its own unchanged stability.
———Their decay Has dried up realms to deserts:—not so thou, Unchangeable, save to thy wild wave's play: Time writes no wrinkle on thine azure brow; Such as creation's dawn beheld, thou rollest now. Childe Harold, Canto iv.
CHAPTER XXX.
ELEVATION AND SUBSIDENCE OF LAND WITHOUT EARTHQUAKES.
Changes in the relative level of land and sea in regions not volcanic—Opinion of Celsius that the waters of the Baltic Sea and Northern Ocean were sinking—Objections raised to his opinion—Proofs of the stability of the sea level in the Baltic—Playfair's hypothesis that the land was rising in Sweden—Opinion of Von Buch—Marks cut on the rocks—Survey of these in 1820—Facility of detecting slight alterations of level on coast of Sweden—Shores of the ocean also rising—Area upheaved—Shelly deposits of Uddevalla—Of Stockholm, containing fossil shells characteristic of the Baltic—Subsidence in south of Sweden—Fishing hut buried under marine strata—Upheaval in Sweden not always in horizontal planes—Sinking of land in Greenland—Bearing of these facts on geology.
We have now considered the phenomena of volcanoes and earthquakes according to the division of the subject before proposed (p. 345), and have next to turn our attention to those slow and insensible changes in the relative level of land and sea which take place in countries remote from volcanoes, and where no violent earthquakes have occurred within the period of human observation. Early in the last century the Swedish naturalist, Celsius, expressed his opinion that the waters, both of the Baltic and Northern Ocean, were gradually subsiding. From numerous observations, he inferred that the rate of depression was about fifty Swedish inches in a century.[728] In support of this position, he alleged that there were many rocks both on the shores of the Baltic and the ocean known to have been once sunken reefs, and dangerous to navigators, but which were in his time above water—that the waters of the Gulf of Bothnia had been gradually converted into land, several ancient ports having been changed into inland cities, small islands joined to the continent, and old fishing-grounds deserted as being too shallow, or entirely dried up. Celsius also maintained, that the evidence of the change rested not only on modern observations, but on the authority of the ancient geographers, who had stated that Scandinavia was formerly an island. This island, he argued, must in the course of centuries, by the gradual retreat of the sea, have become connected with the continent; an event which he supposed to have happened after the time of Pliny, and before the ninth century of our era.
To this argument it was objected that the ancients were so ignorant of the geography of the most northern parts of Europe, that their authority was entitled to no weight; and that their representation of Scandinavia as an island, might with more propriety be adduced to prove the scantiness of their information, than to confirm so bold an hypothesis. It was also remarked that if the land which connected Scandinavia with the main continent was laid dry between the time of Pliny and the ninth century, to the extent to which it is known to have risen above the sea at the latter period, the rate of depression could not have been uniform, as was pretended; for it ought to have fallen much more rapidly between the ninth and eighteenth centuries.
Many of the proofs relied on by Celsius and his followers were immediately controverted by several philosophers, who saw clearly that a fall of the sea in any one region could not take place without a general sinking of the waters over the whole globe: they denied that this was the fact, or that the depression was universal, even in the Baltic. In proof of the stability of the level of that sea, they appealed to the position of the island of Saltholm, not far from Copenhagen. This island is so low, that in autumn and winter it is permanently overflowed; and it is only dry in summer, when it serves for pasturing cattle. It appears, from the documents of the year 1280, that Saltholm was then also in the same state, and exactly on a level with the mean height of the sea, instead of having been about twenty feet under water, as it ought to have been, according to the computation of Celsius. Several towns, also, on the shores of the Baltic, as Lubeck, Wismar, Rostock, Stralsund, and others, after six and even eight hundred years, are as little elevated above the sea as at the era of their foundation, being now close to the water's edge. The lowest part of Dantzic was no higher than the mean level of the sea in the year 1000; and after eight centuries its relative position remains exactly the same.[729]
Several of the examples of the gain of land and shallowing of the sea pointed out by Celsius, and afterwards by Linnæus, who embraced the same opinions, were ascribed by others to the deposition of sediment at points where rivers entered; and, undoubtedly, Celsius had not sufficiently distinguished between changes due to these causes and such as would arise if the waters of the ocean itself were diminishing. Many large rivers descending from a mountainous country, at the head of the Gulf of Bothnia, enter the sea charged with sand, mud, and pebbles; and it was said that in these places the low land had advanced rapidly, especially near Torneo. At Piteo also, half a mile had been gained in forty-five years; at Luleo,[730] no less than a mile in twenty-eight years; facts which might all be admitted consistently with the assumption that the level of the Baltic has remained unchanged, like that of the Adriatic, during a period when the plains of the Po and the Adige have greatly extended their area.
It was also alleged that certain insular rocks, once entirely covered with water, had at length protruded themselves above the waves, and grown, in the course of a century and a half, to be eight feet high. The following attempt was made to explain away this phenomenon:—In the Baltic, large erratic blocks, as well as sand and smaller stones which lie on shoals, are liable every year to be frozen into the ice, where the sea freezes to the depth of five or six feet. On the melting of the snow in spring, when the sea rises about half a fathom, numerous ice-islands float away, bearing up these rocky fragments so as to convey them to a distance; and if they are driven by the waves upon shoals, they may convert them into islands by depositing the blocks; if stranded upon low islands, they may considerably augment their height.
Browallius, also, and some other Swedish naturalists, affirmed that some islands were lower than formerly; and that, by reference to this kind of evidence, there was equally good reason for contending that the level of the Baltic was gradually rising. They also added another curious proof of the permanency of the water level, at some points at least, for many centuries. On the Finland coast were some large pines, growing close to the water's edge; these were cut down, and, by counting the concentric rings of annual growth, as seen in a transverse section of the trunk, it was demonstrated that they had stood there for four hundred years. Now, according to the Celsian hypothesis, the sea had sunk about fifteen feet during that period, in which case the germination and early growth of these pines must have been, for many seasons, below the level of the water. In like manner it was asserted, that the lower walls of many ancient castles, such as those of Sonderburg and Åbo, reached then to the water's edge, and must, therefore, according to the theory of Celsius, have been originally constructed below the level of the sea.
In reply to this last argument, Colonel Hällstrom, a Swedish engineer, well acquainted with the Finland coast, assured me, that the base of the walls of the castle of Åbo is now ten feet above the water, so that there may have been a considerable rise of the land at that point since the building was erected.
Playfair, in his "Illustrations of the Huttonian Theory," in 1802, admitted the sufficiency of the proofs adduced by Celsius, but attributed the change of level to the movement of the land, rather than to a diminution of the waters. He observed, "that in order to depress or elevate the absolute level of the sea, by a given quantity, in any one place, we must depress or elevate it by the same quantity over the whole surface of the earth; whereas no such necessity exists with respect to the elevation or depression of the land."[731] The hypothesis of the rising of the land he adds, "agrees well with the Huttonian theory, which holds, that our continents are subject to be acted upon by the expansive forces of the mineral regions; that by these forces they have been actually raised up, and are sustained by them in their present situation.[732]
In the year 1807, Von Buch, after returning from a tour in Scandinavia, announced his conviction, "that the whole country, from Frederickshall in Norway to Åbo in Finland, and perhaps as far as St. Petersburg, was slowly and insensibly rising." He also suggested "that Sweden may rise more than Norway, and the northern more than the southern part."[733] He was led to these conclusions principally by information obtained from the inhabitants and pilots, and in part by the occurrence of marine shells of recent species, which he had found at several points on the coast of Norway above the level of the sea. He also mentions the marks set on the rocks. Von Buch, therefore, has the merit of being the first geologist who, after a personal examination of the evidence, declared in favor of the rise of land in Scandinavia.
The attention excited by this subject in the early part of the last century, induced many philosophers in Sweden to endeavor to determine, by accurate observations, whether the standard level of the Baltic was really subject to periodical variations; and under their direction, lines or grooves, indicating the ordinary level of the water on a calm day, together with the date of the year, were chiselled out upon the rocks. In 1820-21, all the marks made before those years were examined by the officers of the pilotage establishment of Sweden; and in their report to the Royal Academy of Stockholm they declared, that on comparing the level of the sea at the time of their observations with that indicated by the ancient marks, they found that the Baltic was lower relatively to the land in certain places, but the amount of change during equal periods of time had not been everywhere the same. During their survey, they cut new marks for the guidance of future observers, several of which I had an opportunity of examining fourteen years after (in the summer of 1834), and in that interval the land appeared to me to have risen at certain places north of Stockholm four or five inches. I also convinced myself, during my visit to Sweden, after conversing with many civil engineers, pilots, and fishermen, and after examining some of the ancient marks, that the evidence formerly adduced in favor of the change of level, both on the coasts of Sweden and Finland, was full and satisfactory.[734] The alteration of level evidently diminishes as we proceed from the northern parts of the Gulf of Bothnia towards the south, being very slight around Stockholm. Some writers have indeed represented the rate of depression of the waters at Stockholm as very considerable, because certain houses in that city which are built on piles have sunk down within the memory of persons still living, so as to be out of the perpendicular; and this in consequence of the tops of the piles giving way and decaying, owing to a fall of the waters which has exposed them to be alternately wet and dry. The houses alluded to are situated on the borders of Lake Maeler, a large lake, the outlet of which joins the Baltic, in the middle of Stockholm. This lake is certainly lower than formerly; but the principal cause of the change is not the elevation of the land, but the removal of two old bridges built on piles, which formerly obstructed the discharge of the fresh water into the sea. Another cause is the opening, in the year 1819, of a new canal at Södertelje, a place south of Stockholm, by means of which a new line of communication was formed between Lake Maeler and the Baltic.[735]
It will naturally be asked, whether the mean level of a sea like the Baltic can ever be determined so exactly as to permit us to appreciate a variation of level, amounting only to one or two feet. In reply, I may observe, that, except near the Cattegat, there are no tides in the Baltic; and it is only when particular winds have prevailed for several days in succession, or at certain seasons when there has been an unusually abundant influx of river water, or when these causes have combined, that this sea is made to rise two or three feet above its standard level. The fluctuations due to these causes are nearly the same from year to year; so that the pilots and fishermen believe and apparently with reason, that they can mark a deviation, even of a few inches, from the ordinary or mean height of the waters.
There are, moreover, peculiarities in the configuration of the shores of Norway and Sweden, which facilitate in a remarkable degree the appreciation of slight changes in the relative level of land and water. It has often been said, that there are two coasts, an inner and an outer one; the inner being the shore of the main land; the outer one, a fringe of countless rocky islands of all dimensions, called the skär (shair). Boats and small vessels make their coasting voyages within this skär: for here they may sail in smooth water, even when the sea without is strongly agitated. But the navigation is very intricate, and the pilot must possess a perfect acquaintance with the breadth and depth of every narrow channel, and the position of innumerable sunken rocks. If on such a coast the land rises one or two feet in the course of half a century, the minute topography of the skär is entirely altered. To a stranger, indeed, who revisits it after an interval of many years, its general aspect remains the same; but the inhabitant finds that he can no longer penetrate with his boat through channels where he formerly passed, and he can tell of countless other changes in the height and breadth of isolated rocks, now exposed, but once only seen through the clear water.
The rocks of gneiss, mica-schist, and quartz are usually very hard on this coast, slow to decompose, and, when protected from the breakers, remaining for ages unaltered in their form. Hence it is easy to mark the stages of their progressive emergence by the aid of natural and artificial marks imprinted on them. Besides the summits of fixed rocks, there are numerous erratic blocks of vast size strewed over the shoals and islands in the skär, which have been probably drifted by ice in the manner before suggested.[736] All these are observed to have increased in height and dimension with the last half century. Some, which were formerly known as dangerous sunken rocks, are now only hidden when the water is highest. On their first appearance, they usually present a smooth, bare, rounded protuberance, a few feet or yards in diameter; and a single sea-gull often appropriates to itself this resting-place, resorting there to devour its prey. Similar points, in the mean time, have grown to long reefs, and are constantly whitened by a multitude of sea-fowl; while others have been changed from a reef, annually submerged, to a small islet, on which a few lichens, a fir-seedling, and a few blades of grass, attest that the shoal has at length been fairly changed into dry land. Thousands of wooded islands around show the great alterations which time can work. In the course of centuries also, the spaces intervening between the existing islands may be laid dry, and become grassy plains encircled by heights well clothed with lofty firs. This last step of the process, by which long fiords and narrow channels, once separating wooded islands, are deserted by the sea, has been exemplified within the memory of living witnesses on several parts of the coast.
Had the apparent fall of the waters been observed in the Baltic only, we might have endeavored to explain the phenomenon by local causes affecting that sea alone. For instance, the channel by which the Baltic discharges its surplus waters into the Atlantic, might be supposed to have been gradually widened and deepened by the waves and currents, in which case a fall of the water like that before alluded to in Lake Maeler, might have occurred. But the lowering of level would in that case have been uniform and universal, and the waters could not have sunk at Torneo, while they retained their former level at Copenhagen. Such an explanation is also untenable on other grounds; for it is a fact, as Celsius long ago affirmed, that the alteration of level extends to the western shores of Sweden, bordering the ocean. The signs of elevation observed between Uddevalla and Gothenburg are as well established as those on the shores of the Bothnian Gulf. Among the places where they may be studied, are the islands of Marstrand and Gulholmen, the last-mentioned locality being one of those particularly pointed out by Celsius.
The inhabitants there and elsewhere affirm, that the rate of the sinking of the sea (or elevation of land) varies in different and adjoining districts, being greatest at points where the land is low. But in this they are deceived; for they measure the amount of rise by the area gained, which is most considerable where the land descends with a gentle slope into the sea. In the same manner, some advocates of the Celsian theory formerly appealed to the increase of lands near the mouths of rivers, not sufficiently adverting to the fact, that if the bed of the sea is rising, the change will always be most sensible where the bottom has been previously rendered shallow; whereas, at a distance from these points where the scarped granitic cliffs plunge at once into deep water, a much greater amount of elevation is necessary to produce an equally conspicuous change.
As to the area in northern Europe which is subject to this slow upheaving movement, we have not as yet sufficient data for estimating it correctly. It seems probable, however, that it reaches from Gothenburg to Torneo, and from thence to the North Cape, the rate of elevation increasing always as we proceed farther northwards. The two extremities of this line are more than a thousand geographical miles distant from each other; and as both terminate in the ocean, we know not how much farther the motion may be prolonged under water. As to the breadth of the tract, its limits are equally uncertain, though it evidently extends across the widest parts of the Gulf of Bothnia, and may probably stretch far into the interior, both of Sweden and Finland. Now if the elevation continue, a larger part of the Gulf of Bothnia will be turned into land, as also more of the ocean off the west coast of Sweden between Gothenburg and Uddevalla; and on the other hand, if the change has been going on for thousands of years at the rate of several feet in a century, large tracts of what is now land must have been submarine at periods comparatively modern. It is natural therefore to inquire whether there are any signs of the recent sojourn of the sea on districts now inland? The answer is most satisfactory.—Near Uddevalla and the neighboring coastland, we find upraised deposits of shells belonging to species such as now live in the ocean; while on the opposite or eastern side of Sweden, near Stockholm, Gefle, and other places bordering the Bothnian Gulf, there are analogous beds containing shells of species characteristic of the Baltic.
Von Buch announced in 1807, that he had discovered in Norway and at Uddevalla in Sweden, beds of shells of existing species, at considerable heights above the sea. Since that time, other naturalists have confirmed his observation; and, according to Ström, deposits occur at an elevation of more than 400 feet above the sea in the northern part of Norway. M. Alex. Brongniart, when he visited Uddevalla, ascertained that one of the principal masses of shells, that of Capellbacken, is raised more than 200 feet above the sea, resting on rocks of gneiss, all the species being identical with those now inhabiting the contiguous ocean. The same naturalist also stated, that on examining with care the surface of the gneiss, immediately above the ancient shelly deposit, he found barnacles (balani) adhering to the rocks, showing that the sea had remained there for a long time. I was fortunate enough to be able to verify this observation by finding in the summer of 1834, at Kured, about two miles north of Uddevalla, and at the height of more than 100 feet above the sea, a surface of gneiss newly laid open by the partial removal of a mass of shells used largely in the district for making lime and repairing the roads. So firmly did these barnacles adhere to the gneiss, that I broke off portions of the rock with the shells attached. The face of the gneiss was also incrusted with small zoophytes (Cellepora? Lam.); but had these or the barnacles been exposed in the atmosphere ever since the elevation of the rocks above the sea, they would doubtless have decomposed and been obliterated.
The town of Uddevalla (see Map, p. [523]) stands at the head of a narrow creek overhung by steep and barren rocks of gneiss, of which all the adjacent country is composed, except in the low grounds and bottoms of valleys, where strata of sand, clay, and marl frequently hide the fundamental rocks. To these newer and horizontal deposits the fossil shells above mentioned belong, and similar marine remains are found at various heights above the sea on the opposite island of Orust. The extreme distance from the sea to which such fossils extend is as yet unknown; but they have been already found at Trollhättan in digging the canal there, and still farther inland on the northern borders of Lake Wener, fifty miles from the sea, at an elevation of 200 feet near Lake Rogvarpen.
To pass to the Baltic: I observed near its shores at Södertelje, sixteen miles S. W. of Stockholm, strata of sand, clay, and marl, more than 100 feet high, and containing shells of species now inhabiting the Bothnian Gulf. These consist partly of marine and partly of freshwater species; but they are few in number, the brackishness of the water appearing to be very unfavorable to the development of testacea. The most abundant species are the common cockle and the common mussel and periwinkle of our shores (Cardium edule, Mytilus edulis, and Littorina littorea), together with a small tellina (T. Baltica) and a few minute univalves allied to Paludina ulva. These live in the same water as a Lymneus, a Neritina (N. fluviatilis), and some other freshwater shells.
But the marine mollusks of the Baltic above mentioned, although very numerous in individuals, are dwarfish in size, scarcely ever attaining a third of the average dimensions which they acquire in the salter waters of the ocean. By this character alone a geologist would generally be able to recognize an assemblage of Baltic fossils as distinguished from those derived from a deposit in the ocean. The absence also of oysters, barnacles, whelks, scallops, limpets (ostrea, balanus, buccinum, pecten, patella), and many other forms abounding alike in the sea near Uddevalla, and in the fossiliferous deposits of modern date on that coast, supplies an additional negative character of the greatest value, distinguishing assemblages of Baltic from those of oceanic shells. Now the strata containing Baltic shells are found in many localities near Stockholm, Upsala, and Gefle, and will probably be discovered everywhere around the borders of the Bothnian Gulf; for I have seen similar remains brought from Finland, in marl resembling that found near Stockholm. The utmost distance to which these deposits have yet been traced inland, is on the southern shores of Lake Maeler, at a place seventy miles from the sea.[737] Hence it appears from the distinct assemblage of fossil shells found on the eastern and western coasts of Sweden, that the Baltic has been for a long period separated as now from the ocean, although the intervening tract of land was once much narrower, even after both seas had become inhabited by all the existing species of testacea.
As no accurate observations on the rise of the Swedish coast refer to periods more remote than a century and a half from the present time, and as traditional information, and that derived from ancient buildings on the coast, do not enable the antiquary to trace back any monuments of change for more than five or six centuries, we cannot declare whether the rate of the upheaving force is uniform during very long periods. In those districts where the fossil shells are found at the height of more than 200 feet above the ocean, as at Uddevalla, Orust, and Lake Rogvarpen, the present rate of rise seems less than four feet in a century. Even at that rate it would have required five thousand years to lift up those deposits. But as the movement is now very different in different places, it may also have varied much in intensity at different eras.
We have, moreover, yet to learn not only whether the motion proceeds always at the same rate, but also whether it has been uniformly in one direction. The level of the land may oscillate; and for centuries there may be a depression, and afterwards a re-elevation, of the same district. Some phenomena in the neighborhood of Stockholm appear to me only explicable on the supposition of the alternate rising and sinking of the ground since the country was inhabited by man. In digging a canal, in 1819, at Södertelje, about sixteen miles to the south of Stockholm, to unite Lake Maeler with the Baltic, marine strata, containing fossil shells of Baltic species, were passed through. At a depth of about sixty feet, they came down upon what seems to have been a buried fishing-hut, constructed of wood in a state of decomposition, which soon crumbled away on exposure to the air. The lowest part, however, which had stood on a level with the sea, was in a more perfect state of preservation. On the floor of this hut was a rude fireplace, consisting of a ring of stones, and within this were cinders and charred wood. On the outside lay boughs of the fir, cut as with an axe, with the leaves or needles still attached. It seems very difficult to explain the position of this buried hut, without imagining, as in the case of the temple of Serapis (see p. [486]), first a subsidence to the depth of more than sixty feet, then a reelevation. During the period of submergence, the hut must have become covered over with gravel and shelly marl, under which not only the hut, but several vessels also were found, of a very antique form, and having their timbers fastened together by wooden pegs instead of nails.[738]
Whether any of the land in Norway is now rising, must be determined by future investigations. Marine fossil shells, of recent species, have been collected from inland places near Drontheim; but Mr. Everest, in his "Travels through Norway," informs us that the small island of Munkholm, which is an insulated rock in the harbor of Drontheim, affords conclusive evidence of the land having in that region remained stationary for the last eight centuries. The area of this isle does not exceed that of a small village, and by an official survey, its highest point has been determined to be twenty-three feet above the mean highwater mark, that is, the mean between neap and spring tides. Now, a monastery was founded there by Canute the Great, A. D. 1028, and thirty-three years before that time it was in use as a common place of execution. According to the assumed average rate of rise in Sweden (about forty inches in a century), we should be obliged to suppose that this island had been three feet eight inches below high-water mark when it was originally chosen as the site of the monastery.
Professor Keilhau of Christiania, after collecting the observations of his predecessors respecting former changes of level in Norway, and combining them with his own, has made the fact of a general change of level at a modern period, that is to say, within the period of the actual testaceous fauna, very evident. He infers that the whole country from Cape Lindesnæs to Cape North, and beyond that as far as the fortress of Vardhuus, has been gradually upraised, and on the southeast coast the elevation has amounted to more than 600 feet. The marks which denote the ancient coast-line are so nearly horizontal that the deviation from horizontality, although the measurements have been made at a great number of points, is too small to be appreciated.
More recently (1844), however, it appears from the researches of M. Bravais, member of the French scientific commission of the North, that in the Gulf of Alten in Finmark, the most northerly part of Norway, there are two distinct lines of upraised ancient sea-coast, one above the other, which are not parallel, and both of them imply that within a distance of fifty miles a considerable slope can be detected in such a direction as to show that the ancient shores have undergone a greater amount of upheaval in proportion as we advance inland.[739]
It has been already stated, that, in proceeding from the North Cape to Stockholm, the rate of upheaval diminishes from several feet to a few inches in a century. To the south of Stockholm, the upward movement ceases, and at length in Scania, or the southernmost part of Sweden, it appears to give place to a movement in an opposite direction. In proof of this fact, Professor Nilsson observes, in the first place, that there are no elevated beds of recent marine shells in Scania like those farther to the north. Secondly, Linnæus, with a view of ascertaining whether the waters of the Baltic were retiring from the Scanian shore, measured, in 1749, the distance between the sea and a large stone near Trelleborg. This same stone was, in 1836, a hundred feet nearer the water's edge than in Linnæus's time, or eighty-seven years before. Thirdly, there is also a submerged peat moss, consisting of land and freshwater plants, beneath the sea at a point to which no peat could have been drifted down by any river. Fourthly, and what is still more conclusive, it is found that in seaport towns, all along the coast of Scania, there are streets below the high-water level of the Baltic, and in some cases below the level of the lowest tide. Thus, when the wind is high at Malmo, the water overflows one of the present streets, and some years ago some excavations showed an ancient street in the same place eight feet lower, and it was then seen that there had been an artificial raising of the ground, doubtless in consequence of that subsidence. There is also a street at Trelleborg, and another at Skanör, a few inches below high-water mark, and a street at Ystad is exactly on a level with the sea, at which it could not have been originally built.
The inferences deduced from the foregoing facts are in perfect harmony with the proofs brought to light by two Danish investigators, Dr. Pingel and Captain Graah, of the sinking down of part of the west coast of Greenland, for a space of more than 600 miles from north to south. The observations of Captain Graah were made during a survey of Greenland in 1823-24; and afterwards in 1828-29; those by Dr. Pingel were made in 1830-32. It appears from various signs and traditions, that the coast has been subsiding for the last four centuries from the firth called Igaliko, in lat. 60° 43' N. to Disco Bay, extending to nearly the 69th degree of north latitude. Ancient buildings on low rocky islands and on the shore of the main land have been gradually submerged, and experience has taught the aboriginal Greenlander never to build his hut near the water's edge. In one case the Moravian settlers have been obliged more than once to move inland the poles upon which their large boats were set, and the old poles still remain beneath the water as silent witnesses of the change.[740]
The probable cause of the movements above alluded to, whether of elevation or depression, will be more appropriately discussed in the following chapters, when the origin of subterranean heat is considered. But I may remark here, that the rise of Scandinavia has naturally been regarded as a very singular and scarcely credible phenomenon, because no region on the globe has been more free within the times of authentic history from violent earthquakes. In common, indeed, with our own island and with almost every spot on the globe, some movements have been, at different periods, experienced, both in Norway and Sweden. But some of these, as for example during the Lisbon earthquake in 1755, may have been mere vibrations or undulatory movements of the earth's crust prolonged from a great distance. Others, however, have been sufficiently local to indicate a source of disturbance immediately under the country itself. Notwithstanding these shocks, Scandinavia has, upon the whole, been as tranquil in modern times, and as free from subterranean convulsions, as any region of equal extent on the globe. There is also another circumstance which has made the change of level in Sweden appear anomalous, and has for a long time caused the proofs of the fact to be received with reluctance. Volcanic action, as we have seen, is usually intermittent: and the variations of level to which it has given rise have taken place by starts, not by a prolonged and insensible movement similar to that experienced in Sweden. Yet, as we enlarge our experience of modern changes, we discover instances in which the volcanic eruption, the earthquake, and the permanent rise or fall of land, whether slow or sudden, are all connected. The union of these various circumstances was exemplified in the case of the temple of Serapis, described in the last chapter, and we might derive other illustrations from the events of the present century in South America.
Some writers, indeed, have imagined that there is geological evidence in Norway, of the sudden upheaval of land to a considerable height at successive periods, since the era when the sea was inhabited by the living species of testacea. They point in proof to certain horizontal lines of inland cliffs and sea-beaches containing recent shells at various heights above the level of the sea.[741] But these appearances, when truly interpreted, simply prove that there have been long pauses in the process of upheaval or subsidence. They mark eras at which the level of the sea has remained stationary for ages, and during which new strata were deposited near the shore in some places, while in others the waves and currents had time to hollow out rocks, undermine cliffs, and throw up long ranges of shingle. They undoubtedly show that the movement has not been always uniform or continuous, but they do not establish the fact of any sudden alterations of level.
When we are once assured of the reality of the gradual rise of a large region, it enables us to account for many geological appearances otherwise of very difficult explanation. There are large continental tracts and high table-lands where the strata are nearly horizontal, bearing no marks of having been thrown up by violent convulsions, nor by a series of movements, such as those which occur in the Andes, and cause the earth to be rent open, and raised or depressed from time to time, while large masses are engulfed in subterranean cavities. The result of a series of such earthquakes might be to produce in a great lapse of ages a country of shattered, inclined, and perhaps vertical strata. But a movement like that of Scandinavia would cause the bed of the sea, and all the strata recently formed in it, to be upheaved so gradually, that it would merely seem as if the ocean had formerly stood at a higher level, and had slowly and tranquilly sunk down into its present bed.
The fact also of a very gradual and insensible elevation of land may explain many geological movements of denudation, on a grand scale. If, for example, instead of the hard granitic rocks of Norway and Sweden, a large part of the bed of the Atlantic, consisting chiefly of soft strata, should rise up century after century, at the rate of about half an inch, or an inch, in a year, how easily might oceanic currents sweep away the thin film of matter thus brought up annually within the sphere of aqueous denudation! The tract, when it finally emerged, might present table-lands and ridges of horizontal strata, with intervening valleys and vast plains, where originally, and during its period of submergence, the surface was level and nearly uniform.
These speculations relate to superficial changes; but others must be continually in progress in the subterranean regions. The foundations of the country, thus gradually uplifted in Sweden, must be undergoing important modifications. Whether we ascribe these to the expansion of solid matter by continually increasing heat, or to the liquefaction of rock, or to the crystallization of a dense fluid, or the accumulation of pent-up gases, in whatever conjectures we indulge, we can never doubt for a moment, that at some unknown depth beneath Sweden and the Baltic, the structure of the globe is in our own times becoming changed from day to day, throughout a space probably more than a thousand miles in length, and several hundred in breadth.
CHAPTER XXXI.
CAUSES OF EARTHQUAKES AND VOLCANOES.
Intimate connection between the causes of volcanoes and earthquakes—Supposed original state of fusion of the planet—Universal fluidity not proved by spheroidal figure of the earth—Attempt to calculate the thickness of the solid crust of the earth by precessional motion—Heat in mines increasing with the depth—Objections to the supposed intense heat of a central fluid—Whether chemical changes may produce volcanic heat—Currents of electricity circulating in the earth's crust.
It will hardly be questioned, after the description before given of the phenomena of earthquakes and volcanoes, that both of these agents have, to a certain extent, a common origin; and I may now, therefore, proceed to inquire into their probable causes. But first, it may be well to recapitulate some of those points of relation and analogy which lead naturally to the conclusion that they spring from a common source.
The regions convulsed by violent earthquakes include within them the site of all the active volcanoes. Earthquakes, sometimes local, sometimes extending over vast areas, often precede volcanic eruptions. The subterranean movement and the eruption return again and again, at irregular intervals of time, and with unequal degrees of force, to the same spots. The action of either may continue for a few hours, or for several consecutive years. Paroxysmal convulsions are usually followed, in both cases, by long periods of tranquillity. Thermal and mineral springs are abundant in countries of earthquakes and active volcanoes. Lastly, hot springs situated in districts considerably distant from volcanic vents have been observed to have their temperature suddenly raised, and the volume of their water augmented, by subterranean movements.
All these appearances are evidently more or less connected with the passage of heat from the interior of the earth to the surface; and where there are active volcanoes, there must exist, at some unknown depth below, enormous masses of matter intensely heated, and, in many instances, in a constant state of fusion. We have first, then, to inquire, whence is this heat derived?
It has long been a favorite conjecture, that the whole of our planet was originally in a state of igneous fusion, and that the central parts still retain a great portion of their primitive heat. Some have imagined, with the late Sir W. Herschel, that the elementary matter of the earth may have been first in a gaseous state, resembling those nebulæ which we behold in the heavens, and which are of dimensions so vast, that some of them would fill the orbits of the remotest planets of our system. The increased power of the telescope has of late years resolved the greater number of these nebulous appearances into clusters of stars, but so long as they were confidently supposed to consist of aeriform matter it was a favorite conjecture that they might, if concentrated, form solid spheres; and it was also imagined that the evolution of heat, attendant on condensation, might retain the materials of the new globes in a state of igneous fusion.
Without dwelling on such speculations, which can only have a distant bearing on geology, we may consider how far the spheroidal form of the earth affords sufficient ground for presuming that its primitive condition was one of universal fluidity. The discussion of this question would be superfluous, were the doctrine of original fluidity less popular; for it may well be asked, why the globe should be supposed to have had a pristine shape different from the present one?—why the terrestrial materials, when first called into existence, or assembled together in one place, should not have been subject to rotation, so as to assume at once that form which alone could retain their several parts in a state of equilibrium?
Let us, however, concede that the statical figure may be a modification of some other pre-existing form, and suppose the globe to have been at first a perfect and quiescent sphere, covered with a uniform ocean—what would happen when it was made to turn round on its axis with its present velocity? This problem has been considered by Playfair in his Illustrations, and he has decided, that if the surface of the earth, as laid down in Hutton's theory, has been repeatedly changed by the transportation of the detritus of the land to the bottom of the sea, the figure of the planet must in that case, whatever it may have been originally, be brought at length to coincide with the spheroid of equilibrium.[742] Sir John Herschel also, in reference to the same hypothesis, observes, "a centrifugal force would in that case be generated, whose general tendency would be to urge the water at every point of the surface to recede from the axis. A rotation might indeed be conceived so swift as to flirt the whole ocean from the surface, like water from a mop. But this would require a far greater velocity than what we now speak of. In the case supposed, the weight of the water would still keep it on the earth; and the tendency to recede from the axis could only be satisfied therefore by the water leaving the poles, and flowing towards the equator; there heaping itself up in a ridge, and being retained in opposition to its weight or natural tendency towards the centre by the pressure thus caused. This, however, could not take place without laying dry the polar regions, so that protuberant land would appear at the poles, and a zone of ocean be disposed around the equator. This would be the first or immediate effect. Let us now see what would afterwards happen if things were allowed to take their natural course.
"The sea is constantly beating on the land, grinding it down, and scattering its worn-off particles and fragments, in the state of sand and pebbles, over its bed. Geological facts afford abundant proof that the existing continents have all of them undergone this process even more than once, and been entirely torn in fragments, or reduced to powder, and submerged and reconstructed. Land, in this view of the subject, loses its attribute of fixity. As a mass it might hold together in opposition to forces which the water freely obeys; but in its state of successive or simultaneous degradation, when disseminated through the water, in the state of sand or mud, it is subject to all the impulses of that fluid. In the lapse of time, then, the protuberant land would be destroyed, and spread over the bottom of the ocean, filling up the lower parts, and tending continually to remodel the surface of the solid nucleus, in correspondence with the form of equilibrium. Thus after a sufficient lapse of time, in the case of an earth in rotation, the polar protuberances would gradually be cut down and disappear, being transferred to the equator (as being then the deepest sea), till the earth would assume by degrees the form we observe it to have—that of a flattened or oblate ellipsoid.
"We are far from meaning here to trace the process by which the earth really assumed its actual form; all we intend is to show that this is the form to which, under a condition of a rotation on its axis, it must tend, and which it would attain even if originally and (so to speak) perversely constituted otherwise."[743]
In this passage, the author has contemplated the superficial effects of aqueous causes only; but neither he nor Playfair seem to have followed out the same inquiry with reference to another part of Hutton's system; namely, that which assumes the successive fusion by heat of different parts of the solid earth. Yet the progress of geology has continually strengthened the evidence in favor of the doctrine that local variations of temperature have melted one part after another of the earth's crust, and this influence has perhaps extended downwards to the very centre. If, therefore, before the globe had assumed its present form, it was made to revolve on its axis, all matter to which freedom of motion was given by fusion, must before consolidating have been impelled towards the equatorial regions in obedience to the centrifugal force. Thus lava flowing out in superficial streams would have its motion retarded when its direction was towards the pole, accelerated when towards the equator; or if lakes and seas of lava existed beneath the earth's crust in equatorial regions, as probably now beneath the Peruvian Andes, the imprisoned fluid would force outwards and permanently upheave the overlying rocks. The statical figure, therefore, of the terrestrial spheroid (of which the longest diameter exceeds the shortest by about twenty-five miles), may have been the result of gradual and even of existing causes, and not of a primitive, universal, and simultaneous fluidity.[744]
Experiments made with the pendulum, and observations on the manner in which the earth attracts the moon, have shown that our planet is not an empty sphere, but, on the contrary, that its interior, whether solid or fluid, has a higher specific gravity than the exterior. It has also been inferred, that there is a regular increase in density from the surface towards the centre, and that the equatorial protuberance is continued inwards; that is to say, that layers of equal density are arranged elliptically, and symmetrically, from the exterior to the centre. These conclusions, however, have been deduced rather as a consequence of the hypothesis of primitive and simultaneous fluidity than proved by experiment. The inequalities in the moon's motion, by which some have endeavored to confirm them, are so extremely slight, that the opinion can be regarded as little more than a probable conjecture.
The mean density of the earth has been computed by Laplace to be about 5½, or more than five times that of water. Now the specific gravity of many of our rocks is from 2½ to 3, and the greater part of the metals range between that density and 21. Hence some have imagined that the terrestrial nucleus may be metallic—that it may correspond, for example, with the specific gravity of iron, which is about 7. But here a curious question arises in regard to the form which materials, whether fluid or solid, might assume, if subjected to the enormous pressure which must obtain at the earth's centre. Water, if it continued to decrease in volume according to the rate of compressibility deduced from experiment, would have its density doubled at the depth of ninety-three miles, and be as heavy as mercury at the depth of 362 miles. Dr. Young computed that, at the earth's centre, steel would be compressed into one-fourth, and stone into one-eighth of its bulk.[745] It is more than probable, however, that after a certain degree of condensation, the compressibility of bodies may be governed by laws altogether different from those which we can put to the test of experiment; but the limit is still undetermined, and the subject is involved in such obscurity, that we cannot wonder at the variety of notions which have been entertained respecting the nature and conditions of the central nucleus. Some have conceived it to be fluid, others solid; some have imagined it to have a cavernous structure, and have even endeavored to confirm this opinion by appealing to observed irregularities in the vibrations of the pendulum in certain countries.
An attempt has recently been made by Mr. Hopkins to determine the least thickness which can be assigned to the solid crust of the globe, if we assume the whole to have been once perfectly fluid, and a certain portion of the exterior to have acquired solidity by gradual refrigeration. This result he has endeavored to obtain by a new solution of the delicate problem of the processional motion of the pole of the earth. It is well known that while the earth revolves round the sun the direction of its axis remains very nearly the same, i. e. its different positions in space are all nearly parallel to each other. This parallelism, however, is not accurately preserved, so that the axis, instead of coming exactly into the position which it occupied a year before, becomes inclined to it at a very small angle, but always retaining very nearly the same inclination to the plane of the earth's orbit. This motion of the pole changes the position of the equinoxes by about fifty seconds annually, and always in the same direction. Thus the pole-star, after a certain time, will entirely lose its claim to that appellation, until in the course of somewhat more than 25,000 years the earth's axis shall again occupy its present angular position, and again point very nearly as now to the pole-star. This motion of the axis is called precession. It is caused by the attraction of the sun and moon, and principally the moon, on the protuberant parts of the earth's equator; and if these parts were solid to a great depth, the motion thus produced would differ considerably from that which would exist if they were perfectly fluid, and incrusted over with a thin shell only a few miles thick. In other words, the disturbing action of the moon will not be the same upon a globe all solid and upon one nearly all fluid, or it will not be the same upon a globe in which the solid shell forms one-half of the mass, and another in which it forms only one-tenth.
Mr. Hopkins has, therefore, calculated the amount of precessional motion which would result if we assume the earth to be constituted as above stated; i. e. fluid internally, and enveloped by a solid shell; and he finds that the amount will not agree with the observed motion, unless the crust of the earth be of a certain thickness. In calculating the exact amount some ambiguity arises in consequence of our ignorance of the effect of pressure in promoting the solidification of matter at high temperatures. The hypothesis least favorable for a great thickness is found to be that which assumes the pressure to produce no effect on the process of solidification. Even on this extreme assumption the thickness of the solid crust must be nearly four hundred miles, and this would lead to the remarkable result that the proportion of the solid to the fluid part would be as 49 to 51, or, to speak in round numbers, there would be nearly as much solid as fluid matter in the globe. The conclusion, however, which Mr. Hopkins announces as that to which his researches have finally conducted him, is thus expressed: "Upon the whole, then, we may venture to assert that the minimum thickness of the crust of the globe, which can be deemed consistent with the observed amount of precession, cannot be less than one-fourth or one-fifth of the earth's radius." That is from 800 to 1000 miles.[746]
It will be remarked, that this is a minimum, and any still greater amount would be quite consistent with the actual phenomena; the calculations not being opposed to the supposition of the general solidity of the entire globe. Nor do they preclude us from imagining that great lakes or seas of melted matter may be distributed through a shell 400 or 800 miles thick, provided they be so inclosed as to move with it, whatever motion of rotation may be communicated by the disturbing forces of the sun and moon.
Central heat.—The hypothesis of internal fluidity calls for the more attentive consideration, as it has been found that the heat in mines augments in proportion as we descend. Observations have been made, not only on the temperature of the air in mines, but on that of the rocks, and on the water issuing from them. The mean rate of increase, calculated from results obtained in six of the deepest coal mines in Durham and Northumberland, is 1° Fahr. for a descent of forty-four English feet.[747] A series of observations, made in several of the principal lead and silver mines in Saxony, gave 1° Fahr. for every sixty-five feet. In this case, the bulb of the thermometer was introduced into cavities purposely cut in the solid rock at depths varying from 200 to above 900 feet. But in other mines of the same country, it was necessary to descend thrice as far for each degree of temperature.[748]
A thermometer was fixed in the rock of the Dolcoath mine, in Cornwall, by Mr. Fox, at the great depth of 1380 feet, and frequently observed during eighteen months; the mean temperature was 68° Fahr., that of the surface being 50°, which gives 1° for every seventy-five feet.
Kupffer, after an extensive comparison of the results in different countries, makes the increase 1° F. for about every thirty-seven English feet.[749] M. Cordier announces, as the result of his experiments and observations on the temperature of the interior of the earth, that the heat increases rapidly with the depth; but the increase does not follow the same law over the whole earth, being twice or three times as much in one country as in another, and these differences are not in constant relation either with the latitudes or longitudes of places.[750] He is of opinion, however, that the increase would not be overstated at 1° Cent. for every twenty-five metres, or about 1° F. for every forty-five feet.[751] The experimental well bored at Grenelle, near Paris, gave about 1° F. for every sixty English feet, when they had reached a depth of 1312 feet.
Some writers have endeavored to refer these phenomena (which, however discordant as to the ratio of increasing heat, appear all to point one way) to the condensation of air constantly descending from the surface into the mines. For the air under pressure would give out latent heat, on the same principle as it becomes colder when rarefied in the higher regions of the atmosphere. But, besides that the quantity of heat is greater than could be supposed to flow from this source, the argument has been answered in a satisfactory manner by Mr. Fox, who has shown, that in the mines of Cornwall the ascending have generally a higher temperature than the descending aerial currents. The difference between them was found to vary from 9° to 17° F.; a proof that, instead of imparting heat, these currents actually carry off a large quantity from the mines.[752]
If we adopt M. Cordier's estimate of 1° F. for every 45 feet of depth as the mean result, and assume, with the advocates of central fluidity, that the increasing temperature is continued downwards, we should reach the ordinary boiling point of water at about two miles below the surface, and at the depth of about twenty-four miles should arrive at the melting point of iron, a heat sufficient to fuse almost every known substance. The temperature of melted iron was estimated at 21,000° F., by Wedgwood; but his pyrometer gives, as is now demonstrated, very erroneous results. Professor Daniell ascertained that the point of fusion is 2,786° F.[753]
Section of the earth, in which the breadth of the outer boundary line represents a thickness of 25 miles; the space between the circles, including the breadth of the lines, 200 miles.
According to Mr. Daniell's scale, we ought to encounter the internal melted matter before penetrating through a thickness represented by that of the outer circular line in the annexed diagram ([fig. 92]); whereas, if the other or less correct scale be adopted, we should meet with it at some point between the two circles; the space between them, together with the lines themselves, representing a crust of 200 miles in depth. In either case, we must be prepared to maintain that a temperature many times greater than that sufficient to melt the most refractory substances known to us, is sustained at the centre of the globe; while a comparatively thin crust, resting upon the fluid, remains unmelted; or is even, according to M. Cordier, increasing in thickness, by the continual addition of new internal layers solidified during the process of refrigeration.
The mathematical calculations of Fourier, on the passage of heat through conducting bodies, have been since appealed to in support of these views; for he has shown that it is compatible with theory that the present temperature of the surface might coexist with an intense heat at a certain depth below. But his reasoning seems to be confined to the conduction of heat through solid bodies; and the conditions of the problem are wholly altered when we reason about a fluid nucleus, as we must do if it be assumed that the heat augments from the surface to the interior, according to the rate observed in mines. For when the heat of the lower portion of a fluid is increased, a circulation begins throughout the mass, by the ascent of hotter, and the descent of colder currents. And this circulation, which is quite distinct from the mode in which heat is propagated through solid bodies, must evidently occur in the supposed central ocean, if the laws of fluids and of heat are the same there as upon the surface.
In Mr. Daniell's experiments for obtaining a measure of the heat of bodies at their point of fusion, he invariably found that it was impossible to raise the heat of a large crucible of melted iron, gold, or silver, a single degree beyond the melting point, so long as a bar of the respective metals was kept immersed in the fluid portions. So in regard to other substances, however great the quantities fused, their temperature could not be raised while any solid pieces immersed in them remained unmelted; every accession of heat being instantly absorbed during their liquefaction. These results are, in fact, no more than the extension of a principle previously established, that so long as a fragment of ice remains in water, we cannot raise the temperature of the water above 32° F.
If, then, the heat of the earth's centre amount to 450,000° F., as M. Cordier deems highly probable, that is to say, about twenty times the heat of melted iron, even according to Wedgwood's scale, and upwards of 160 times according to the improved pyrometer, it is clear that the upper parts of the fluid mass could not long have a temperature only just sufficient to melt rocks. There must be a continual tendency towards a uniform heat; and until this were accomplished, by the interchange of portions of fluid of different densities, the surface could not begin to consolidate. Nor, on the hypothesis of primitive fluidity, can we conceive any crust to have been formed until the whole planet had cooled down to about the temperature of incipient fusion.
It cannot be objected that hydrostatic pressure would prevent a tendency to equalization of temperature; for, as far as observations have yet been made, it is found that the waters of deep lakes and seas are governed by the same laws as a shallow pool; and no experiments indicate that solids resist fusion under high pressure. The arguments, indeed, now controverted, always proceed on the admission that the internal nucleus is in a state of fusion.
It may be said that we may stand upon the hardened surface of a lava-current while it is still in motion,—nay, may descend into the crater of Vesuvius after an eruption, and stand on the scoriæ while every crevice shows that the rock is red-hot two or three feet below us; and at a somewhat greater depth, all is, perhaps, in a state of fusion. May not, then, a much more intense heat be expected at the depth of several hundred yards, or miles? The answer is,—that until a great quantity of heat has been given off, either by the emission of lava, or in a latent form by the evolution of steam and gas, the melted matter continues to boil in the crater of a volcano. But ebullition ceases when there is no longer a sufficient supply of heat from below, and then a crust of lava may form on the top, and showers of scoriæ may then descend upon the surface, and remain unmelted. If the internal heat be raised again, ebullition will recommence, and soon fuse the superficial crust. So in the case of the moving current, we may safely assume that no part of the liquid beneath the hardened surface is much above the temperature sufficient to retain it in a state of fluidity.
It may assist us in forming a clearer view of the doctrine now controverted, if we consider what would happen were a globe of homogeneous composition placed under circumstances analogous, in regard to the distribution of heat, to those above stated. If the whole planet, for example, were composed of water covered with a spheroidal crust of ice fifty miles thick, and with an interior ocean having a central heat about two hundred times that of the melting point of ice, or 6400° F.; and if, between the surface and the centre, there was every intermediate degree of temperature between that of melting ice and that of the central nucleus—could such a state of things last for a moment? If it must be conceded, in this case, that the whole spheroid would be instantly in a state of violent ebullition, that the ice (instead of being strengthened annually by new internal layers) would soon melt, and form part of an atmosphere of steam—on what principle can it he maintained that analogous effects would not follow, in regard to the earth, under the conditions assumed in the theory of central heat?[754]
M. Cordier admits that there must be tides in the internal melted ocean; but their effect, he says, has become feeble, although originally, when the fluidity of the globe was perfect, "the rise and fall of these ancient land tides could not have been less than from thirteen to sixteen feet." Now, granting for a moment, that these tides have become so feeble as to be incapable of causing the fissured shell of the earth to be first uplifted and then depressed every six hours, still may we not ask whether, during eruptions, the lava, which is supposed to communicate with a great central ocean, would not rise and fall sensibly in a crater such as Stromboli, where there is always melted matter in a state of ebullition?
Whether chemical changes may produce volcanic heat.—Having now explained the reasons which have induced me to question the hypothesis of central heat as the primary source of volcanic action, it remains to consider what has been termed the chemical theory of volcanoes. It is well known that many, perhaps all, of the substances of which the earth is composed are continually undergoing chemical changes. To what depth these processes may be continued downwards must, in a great degree, be matter of conjecture; but there is no reason to suspect that, if we could descend to a great distance from the surface, we should find elementary substances differing essentially from those with which we are acquainted.
All the solid, fluid, and gaseous bodies known to us consist of a very small number of these elementary substances variously combined: the total number of elements at present known is less than sixty; and not half of these enter into the composition of the more abundant inorganic productions. Some portions of such compounds are daily undergoing decomposition, and their constituent parts being set free are passing into new combinations. These processes are by no means confined to minerals at the earth's surface, and are very often accompanied by the evolution of heat, which is intense in proportion to the rapidity of the combinations. At the same time there is a development of electricity.
The spontaneous combustion of beds of bituminous shale, and of refuse coal thrown out of mines, is generally due to the decomposition of pyrites; and it is the contact of air and water which brings about the change. Heat results from the oxidation of the sulphur and iron, though on what principle heat is generated, when two or more bodies having a strong affinity for each other unite suddenly, is wholly unexplained.
Electricity a source of volcanic heat.—It has already been stated, that chemical changes develop electricity; which, in its turn, becomes a powerful disturbing cause. As a chemical agent, says Davy, its silent and slow operation in the economy of nature is much more important than its grand and impressive operation in lightning and thunder. It may be considered, not only as directly producing an infinite variety of changes, but as influencing almost all which take place; it would seem, indeed, that chemical attraction itself is only a peculiar form of the exhibition of electrical attraction.[755]
Now that it has been demonstrated that magnetism and electricity are always associated, and are perhaps only different conditions of the same power, the phenomena of terrestrial magnetism have become of no ordinary interest to the geologist. Soon after the first great discoveries of Oersted in electro-magnetism, Ampère suggested that all the phenomena of the magnetic needle might be explained by supposing currents of electricity to circulate constantly in the shell of the globe in directions parallel to the magnetic equator. This theory has acquired additional consistency the farther we have advanced in science; and according to the experiments of Mr. Fox, on the electro-magnetic properties of metalliferous veins, some trace of electric currents seems to have been detected in the interior of the earth.[756]
Some philosophers ascribe these currents to the chemical action going on in the superficial parts of the globe to which air and water have the readiest access; while others refer them, in part at least, to thermo-electricity excited by the solar rays on the surface of the earth during its rotation; successive parts of the atmosphere, land, and sea being exposed to the influence of the sun, and then cooled again in the night. That this idea is not a mere speculation, is proved by the correspondence of the diurnal variations of the magnet with the apparent motion of the sun; and by the greater amount of variation in summer than in winter, and during the day than in the night. M. de la Rive, although conceding that such minor variations of the needle may be due to thermo-electricity, contends that the general phenomena of terrestrial magnetism must be attributed to currents far more intense; which, though liable to secular fluctuations, act with much greater constancy and regularity than the causes which produce the diurnal variations.[757] The remark seems just; yet it is difficult to assign limits to the accumulated influence even of a very feeble force constantly acting on the whole surface of the earth. This subject, however, must evidently remain obscure, until we become acquainted with the causes which give a determinate direction to the supposed electric currents. Already the experiments of Faraday on the rotation of magnets have led him to speculate on the manner in which the earth, when once it had become magnetic, might produce electric currents within itself, in consequence of its diurnal rotation.[758] We have seen also in a former chapter (p. 129) that the recent observations of Schwabe, 1852, have led Col. Sabine to the discovery of a connection between certain periodical changes, which take place in the spots on the sun, and a certain cycle of variations in terrestrial magnetism. These seem to point to the existence of a solar magnetic period, and suggest the idea of the sun's magnetism exerting an influence on the mass of our planet.
In regard to thermo-electricity, I may remark, that it may be generated by great inequalities of temperature, arising from a partial distribution of volcanic heat. Wherever, for example, masses of rock occur of great horizontal extent, and of considerable depth, which are at one point in a state of fusion (as beneath some active volcano); at another, red-hot; and at a third, comparatively cold—strong thermo-electric action may be excited.
Some, perhaps, may object, that this is reasoning in a circle; first to introduce electricity as one of the primary causes of volcanic heat, and then to derive the same heat from thermo-electric currents. But there must, in truth, be much reciprocal action between the agents now under consideration; and it is very difficult to decide which should be regarded as the prime mover, or to see where the train of changes, once begun, would terminate. Whether subterranean electric currents if once excited might sometimes possess the decomposing power of the voltaic pile, is a question not perhaps easily answered in the present state of science; but such a power, if developed, would at once supply us with a never-failing source of chemical action from which volcanic heat might be derived.
Recapitulation.—Before entering, in the next chapter, still farther into the inquiry, how far the phenomena of volcanoes and earthquakes accord with the hypothesis of a continued generation of heat by chemical action, it may be desirable to recapitulate, in a few words, the conclusions already obtained.
1st. The primary causes of the volcano and the earthquake are, to a great extent, the same, and must be connected with the passage of heat from the interior to the surface.
2dly. This heat has been referred, by many, to a supposed state of igneous fusion of the central parts of the planet when it was first created, of which a part still remains in the interior, but is always diminishing in intensity.
3dly. The spheroidal figure of the earth, adduced in support of this theory, does not of necessity imply a universal and simultaneous fluidity, in the beginning; for supposing the original figure of our planet had been strictly spherical—which, however, is a gratuitous assumption, resting on no established analogy—still the statical figure must have been assumed, if sufficient time be allowed, by the gradual operation of the centrifugal force, acting on the materials brought successively within its action by aqueous and igneous causes.
4thly. It appears, from experiment, that the heat in mines increases progressively with their depth; and if the ratio of increase be continued uniformly from the surface to the interior, the whole globe, with the exception of a small external shell, must be fluid, and the central parts must have a temperature many times higher than that of melted iron.
5thly. But the theory adopted by M. Cordier and others, which maintains the actual existence of such a state of things, seems wholly inconsistent with the laws which regulate the circulation of heat through fluid bodies. For, if the central heat were as intense as is represented, there must be a circulation of currents, tending to equalize the temperature of the resulting fluids, and the solid crust itself would be melted.
6thly. Instead of an original central heat, we may, perhaps, refer the heat of the interior to chemical changes constantly going on in the earth's crust; for the general effect of chemical combination is the evolution of heat and electricity, which in their turn become sources of new chemical changes.
CHAPTER XXXII.
CAUSES OF EARTHQUAKES AND VOLCANOES—continued.
Review of the proofs of internal heat—Theory of an unoxidated metallic nucleus—Whether the decomposition of water may be a source of volcanic heat—Geysers of Iceland—Causes of earthquakes—Wavelike motion—Expansive power of liquid gases—Connection between the state of the atmosphere and earthquakes—Permanent upheaval and subsidence of land—Expansion of rocks by heat—The balance of dry land how preserved—Subsidence in excess—Conclusion.
When we reflect that the largest mountains are but insignificant protuberances upon the surface of the earth, and that these mountains are nevertheless composed of different parts which have been formed in succession, we may well feel surprise that the central fluidity of the planet should have been called in to account for volcanic phenomena. To suppose the entire globe to be in a state of igneous fusion, with the exception of a solid shell, not more than from thirty to one hundred miles thick, and to imagine that the central heat of this fluid spheroid exceeds by more than two hundred times that of liquid lava, is to introduce a force altogether disproportionate to the effects which it is required to explain.
The ordinary repose of the surface implies, on the contrary, an inertness in the internal mass which is truly wonderful. When we consider the combustible nature of the elements of the earth, so far as they are known to us,—the facility with which their compounds may be decomposed and made to enter into new combinations,—the quantity of heat which they evolve during these processes; when we recollect the expansive power of steam, and that water itself is composed of two gases which, by their union, produce intense heat; when we call to mind the number of explosive and detonating compounds which have been already discovered, we may be allowed to share the astonishment of Pliny, that a single day should pass without a general conflagration:—"Excedit profectò omnia miracula, ullum diem fuisse quo non cuncta conflagrarent."[759]
The signs of internal heat observable on the surface of the earth do not necessarily indicate the permanent existence of subterranean heated masses, whether fluid or solid, by any means so vast as our continents and seas; yet how insignificant would these appear if distributed through an external shell of the globe one or two hundred miles in depth! The principal facts in proof of the accumulation of heat below the surface may be summed up in a few words. Several volcanoes are constantly in eruption, as Stromboli and Nicaragua; others are known to have been active for periods of 60, or even 150 years, as those of Sangay in Quito, Popocatepetl in Mexico, and the volcano of the Isle of Bourbon. Many craters emit hot vapors in the intervals between eruptions, and solfataras evolve incessantly the same gases as volcanoes. Steam of high temperature has continued for more than twenty centuries to issue from the "stufas," as the Italians call them; thermal springs abound not only in regions of earthquakes, but are found in almost all countries, however distant from active vents; and, lastly, the temperature in the mines of various parts of the world is found to increase in proportion as we descend.
The diagram ([fig. 93]) in the next page, may convey some idea of the proportion which our continents and the ocean bear to the radius of the earth.[760] If all the land were about as high as the Himalaya mountains, and the ocean everywhere as deep as the Pacific, the whole of both might be contained within a space expressed by the thickness of the line a b; and masses of nearly equal volume might be placed in the space marked by the line c d, in the interior. Seas of lava, therefore, of the size of the Mediterranean, or even of the Atlantic, would be as nothing if distributed through such an outer shell of the globe as is represented by the shaded portion of the figure a b c d. If throughout that space we imagine electro-chemical causes to be continually in operation, even of very feeble power, they might give rise to heat which, if accumulated at certain points, might melt or render red-hot entire mountains, or sustain the temperature of stufas and hot springs for ages.
Theory of an unoxidated metallic nucleus.—When Sir H. Davy first discovered the metallic basis of the earths and alkalies, he threw out the idea that those metals might abound in an unoxidized state in the subterranean regions to which water must occasionally penetrate. Whenever this happened, gaseous matter would be set free, the metals would combine with the oxygen of the water, and sufficient heat might be evolved to melt the surrounding rocks. This hypothesis, although afterwards abandoned by its author, was at first very favorably received both by the chemist and the geologist: for silica, alumina, lime, soda, and oxide of iron,—substances of which lavas are principally composed,—would all result from the contact of the inflammable metals alluded to with water. But whence this abundant store of unsaturated metals in the interior? It was assumed that, in the beginning of things, the nucleus of the earth was mainly composed of inflammable metals, and that oxidation went on with intense energy at first; till at length, when a superficial crust of oxides had been formed, the chemical action became more and more languid.
Centre of the earth.
This speculation, like all others respecting the primitive state of the earth's nucleus, rests unavoidably on arbitrary assumptions. But we may fairly inquire whether any existing causes may have the power of deoxidating the earthy and alkaline compounds formed from time to time by the action of water upon the metallic bases. If so, and if the original crust or nucleus of the planet contained distributed through it here and there some partial stores of potassium, sodium, and other metallic bases, these might be oxidated and again deoxidated, so as to sustain for ages a permanent chemical action. Yet even then we should be unable to explain why such a continuous circle of operations, after having been kept up for thousands of years in one district, should entirely cease, and why another region, which had enjoyed a respite from volcanic action for one or many geological periods, should become a theatre for the development of subterranean heat.
It is well known to chemists, that the metallization of oxides, the most difficult to reduce, may be effected by hydrogen brought into contact with them at a red heat; and it is more than probable that the production of potassium itself, in the common gun-barrel process, is due to the power of nascent hydrogen derived from the water which the hydrated oxide contains. According to the recent experiments, also, of Faraday, it would appear that every case of metallic reduction by voltaic agency, from saline solutions, in which water is present, is due to the secondary action of hydrogen upon the oxide; both of these being determined to the negative pole and then reacting upon one another.
It is admitted that intense heat would be produced by the occasional contact of water with the metallic bases; and it is certain that, during the process of saturation, vast volumes of hydrogen must be evolved. The hydrogen, thus generated, might permeate the crust of the earth in different directions, and become stored up for ages in fissures and caverns, sometimes in a liquid form, under the necessary pressure. Whenever, at any subsequent period, in consequence of the changes effected by earthquakes in the shell of the earth, this gas happened to come in contact with metallic oxides at a high temperature, the reduction of these oxides might be the result.
No theory seems at first more startling than that which represents water as affording an inexhaustible supply of fuel to the volcanic fires; yet is it by no means visionary. It is a fact that must not be overlooked, that while a great number of volcanoes are entirely submarine, the remainder occur for the most part in islands or maritime tracts. There are a few exceptions; but some of these, observes Dr. Daubeny, are near inland salt lakes, as in Central Tartary; while others form part of a train of volcanoes, the extremities of which are near the sea.
Sir H. Davy suggested that, when the sea is distant, as in the case of some of the South American volcanoes, they may still be supplied with water from subterranean lakes; since, according to Humboldt, large quantities of fish are often thrown out during eruptions.[761] Mr. Dana also, in his valuable and original observations on the volcanoes of the Sandwich Islands, reminds us of the prodigious volume of atmospheric water which must be absorbed into the interior of such large and lofty domes, composed as they are entirely of porous lava. To this source alone he refers the production of the steam by which the melted matter is propelled upwards, even to the summit of cones three miles in height.[762]
When treating of springs and overflowing wells, I have stated that porous rocks are percolated by fresh water to great depths, and that sea-water probably penetrates in the same manner through the rocks which form the bed of the ocean. But, besides this universal circulation in regions not far from the surface, it must be supposed that, wherever earthquakes prevail, much larger bodies of water will be forced by the pressure of the ocean into fissures at great depths, or swallowed up in chasms; in the same manner as on the land, towns, houses, cattle, and trees are sometimes engulfed. It will be remembered, that these chasms often close again after houses have fallen into them; and for the same reason, when water has penetrated to a mass of melted lava, the steam into which it is converted may often rush out at a different aperture from that by which the water entered.
The gases, it is said, exhaled from volcanoes, together with steam, are such as would result from the decomposition of salt water, and the fumes which escape from the Vesuvian lava have been observed to deposit common salt.[763] The emission of free muriatic acid gas in great quantities is also thought by many to favor the theory of the decomposition of the salt contained in sea-water. It has been objected, however, that M. Boussingault did not meet with this gas in his examination of the elastic fluids evolved from the volcanoes of equatorial America; which only give out aqueous vapor (in very large quantity), carbonic acid gas, sulphurous acid gas, and sometimes fumes of sulphur.[764] In reply, Dr. Daubeny has remarked, that muriatic acid may have ceased to be disengaged, because the volcanic action has become languid in equatorial America, and sea-water may no longer obtain admission.
M. Gay Lussac, while he avows his opinion that the decomposition of water contributes largely to volcanic action, called attention, nevertheless, to the supposed fact, that hydrogen had not been detected in a separate form among the gaseous products of volcanoes; nor can it, he says, be present; for, in that case, it would be inflamed in the air by the red-hot stones thrown out during an eruption. Dr. Davy, in his account of Graham Island, says, "I watched when the lightning was most vivid, and the eruption of the greatest degree of violence, to see if there was any inflammation occasioned by this natural electric spark—any indication of the presence of inflammable gas; but in vain."[765]
May not the hydrogen, Gay Lussac inquires, be combined with chlorine, and produce muriatic acid? for this gas has been observed to be evolved from Vesuvius—and the chlorine may have been derived from sea salt; which was, in fact, extracted by simple washing from the Vesuvian lava of 1822, in the proportion of nine per cent.[766] But it was answered, that Sir H. Davy's experiments had shown, that hydrogen is not combustible when mixed with muriatic acid gas; so that if muriatic gas was evolved in large quantities, the hydrogen might be present without inflammation.[767] M. Abich, on the other hand, assures us, "that although it be true that vapor illuminated by incandescent lava has often been mistaken for flame," yet he clearly detected in the eruption of Vesuvius in 1834 the flame of hydrogen.[768]
M. Gay Lussac, in the memoir just alluded to, expressed doubt as to the presence of sulphurous acid; but the abundant disengagement of this gas during eruptions has been since ascertained: and thus all difficulty in regard to the general absence of hydrogen in an inflammable state is removed; for, as Dr. Daubeny suggests, the hydrogen of decomposed water may unite with sulphur to form sulphuretted hydrogen gas, and this gas will then be mingled with the sulphurous acid as it rises to the crater. It is shown by experiment, that these gases mutually decompose each other when mixed where steam is present; the hydrogen of the one immediately uniting with the oxygen of the other to form water, while the excess of sulphurous acid alone escapes into the atmosphere. Sulphur is at the same time precipitated.
This explanation is sufficient; but it may also be observed that the flame of hydrogen would rarely be visible during an eruption; as that gas, when inflamed in a pure state, burns with a very faint blue flame, which even in the night could hardly be perceptible by the side of redhot and incandescent cinders. Its immediate, conversion into water when inflamed in the atmosphere, might also account for its not appearing in a separate form.
Dr. Daubeny is of opinion that water containing atmospheric air may descend from the surface of the earth to the volcanic foci, and that the same process of combustion by which water is decomposed may deprive such subterranean air of its oxygen. In this manner he explains the great quantities of nitrogen evolved from volcanic vents and thermal waters, and the fact that air disengaged from the earth in volcanic regions is either wholly or in part deprived of its oxygen.
Sir H. Davy, in his memoir on the "Phenomena of Volcanoes," remarks, that there was every reason to suppose in Vesuvius the existence of a descending current of air; and he imagined that subterranean cavities which threw out large volumes of steam during the eruption, might afterwards, in the quiet state of the volcano, become filled with atmospheric air.[769] The presence of ammoniacal salts in volcanic emanations, and of ammonia (which is in part composed of nitrogen) in lava, favors greatly the notion of air as well as water being deoxidated in the interior of the earth.[770]
It has been alleged by Professor Bischoff that the slight specific gravity of the metals of the alkalies is fatal to Davy's hypothesis, for if the mean density of the earth, as determined by astronomers, surpass that of all kinds of rocks, these metals cannot exist, at least not in great quantities in the interior of the earth.[771] But Dr. Daubeny has shown, that if we take the united specific gravity of potassium, sodium, silicon, iron, and all the materials which, when united with oxygen, constitute ordinary lava, and then compare their weight with lava of equal bulk, the difference is not very material, the specific gravity of the lava only exceeding by about one-fourth that of the unoxidized metals. Besides, at great depths, the metallic bases of the earths and alkalies may very probably be rendered heavier by pressure.[772] Nor is it fair to embarrass the chemical theory of volcanoes with a doctrine so purely gratuitous, as that which supposes the entire nucleus of the planet to have been at first composed of unoxidated metals.
Professor Bunsen of Marburg, after analyzing the gases which escape from the volcanic fumeroles and solfataras of Iceland, and after calculating the quantity of hydrogen evolved between two eruptions, affirms, in contradiction of opinions previously entertained, that the hydrogen bears a perfect relation in quantity to the magnitude of the streams of lava, assuming the fusion of these last to have been the result of the heat evolved during the oxidation of alkaline and earthy metals, and this to have been brought about by the decomposition of water. Yet after having thus succeeded in removing the principal objection once so triumphantly urged against Davy's hypothesis, Bunsen concludes by declaring that the hydrogen evolved in volcanic regions cannot have been generated by the decomposition of water coming in contact with alkaline and earthy metallic bases. For, says the Professor, this process presupposes the prevalence of a temperature in which carbonic acid cannot exist in contact with hydrogen without suffering a partial reduction to carbonic oxide; "and not a trace of carbonic oxide is ever found in volcanic exhalations."[773] At the same time it will be seen, by consulting the able memoirs of the Marburg chemist, that he supposes many energetic kinds of chemical action to be continually going on in the interior of the earth, capable of causing the disengagement of hydrogen; and there can be no doubt that this gas may be a source of innumerable new changes, capable of producing the local development of internal heat.
Cause of volcanic eruptions.—The most probable causes of a volcanic outburst at the surface have been in a great degree anticipated in the preceding speculations on the liquefaction of rocks and the generation of gases. When a minute hole is bored in a tube filled with gas condensed into a liquid, the whole becomes instantly aeriform, or, as some writers have expressed it, "flashes into vapor," and often bursts the tube. Such an experiment may represent the mode in which gaseous matter may rush through a rent in the rocks, and continue to escape for days or weeks through a small orifice, with an explosive power sufficient to reduce every substance which opposes its passage into small fragments or even dust. Lava may be propelled upwards at the same time, and ejected in the form of scoriæ. In some places, where the fluid lava lies at the bottom of a deep fissure, communicating on the one hand with the surface, and on the other with a cavern in which a considerable body of vapor has been formed, there may be an efflux of lava, followed by the escape of gas. Eruptions often commence and close with the discharge of vapor; and, when this is the case, the next outburst may be expected to take place by the same vent, for the concluding evolution of elastic fluids will keep open the duct, and leave it unobstructed.
The breaking out of lava from the side or base of a lofty cone, rather than from the summit, may be attributed to the hydrostatic pressure to which the flanks of the mountain are exposed, when the column of lava has risen to a great height. Or if, before it has reached the top, there should happen to be any stoppage in the main duct, the upward pressure of the ascending column of gas and lava may burst a lateral opening.
In the case however of Mount Loa, in the Sandwich Islands, there appears to be a singular want of connection or sympathy between the eruptions of the central and the great lateral vent. The great volcanic cone alluded to rises to the height of 13,760 feet above the level of the sea, having a crater at its summit, from which powerful streams of lava have flowed in recent times, and having another still larger crater, called Kilauea, on its southeastern slope, about 4000 feet above the sea. This lateral cavity resembles a huge quarry cut in the mountain's side, being about 1000 feet deep when in its ordinary state. It is seven miles and a half in circuit, and scattered over its bottom, at different levels, are lakes and pools of lava, always in a state of ebullition. The liquid in one of these will sometimes sink 100 or 150 feet, while it is overflowing in another at a higher elevation, there being, it should seem, no communication between them. In like manner, lava overflows in the summit crater of Mount Loa, nearly 14,000 feet high, while the great lateral cauldron just alluded to (of Kilauea) continues as tranquil as usual, affording no relief to any part of the gases or melted matter which are forcing their way upwards in the centre of the mountain. "How," asks Mr. Dana, "if there were any subterranean channel connecting the two great vents, could this want of sympathy exist? How, according to the laws of hydrostatic pressure, can a column of fluid stand 10,000 feet higher in one leg of the siphon than in the other?" The eruptions, he observes, are not paroxysmal; on the contrary, the lava rises slowly and gradually to the summit of the lofty cone, and then escapes there without any commotion manifesting itself in Kilauea, a gulf always open on the flanks of the same mountain. One conclusion, he says, is certain, namely, that volcanoes are no safety valves as they have been called; for here two independent and apparently isolated centres of volcanic activity, only sixteen miles distant from each other, are sustained in one and the same cone.[774]
Without pretending to solve this enigma, I cannot refrain from remarking, that the supposed independence of several orifices of eruption in one crater like Kilauea, when adduced in confirmation of the doctrine of two distinct sources of volcanic action underneath one mountain, proves too much. No one can doubt, that the pools of lava in Kilauea have been derived from some common reservoir, and have resulted from a combination of causes commonly called volcanic, which are at work in the interior at some unknown distance below. These causes have given rise in Mount Loa to eruptions from many points, but principally from one centre, so that a vast dome of ejected matter has been piled up. The subsidiary crater has evidently never given much relief to the imprisoned, heated, and liquefied matter, for Kilauea does not form a lateral protuberance interfering with the general shape or uniform outline of Mount Loa.
Geysers of Iceland.—As aqueous vapor constitutes the most abundant of the aeriform products of volcanoes in eruption, it may be well to consider attentively a case in which steam is exclusively the moving power—that of the Geysers of Iceland. These intermittent hot springs occur in a district situated in the southwestern division of Iceland, where nearly one hundred of them are said to break out within a circle of two miles. That the water is of atmospheric origin, derived from rain and melted snow, is proved, says Professor Bunsen, by the nitrogen which rises from them either pure or mixed with other gases. The springs rise through a thick current of lava, which may perhaps have flowed from Mount Hecla, the summit of that volcano being seen from the spot at the distance of more than thirty miles. In this district the rushing of water is sometimes heard in chasms beneath the surface; for here, as on Etna, rivers flow in subterranean channels through the porous and cavernous lavas. It has more than once happened, after earthquakes, that some of the boiling fountains have increased or diminished in violence and volume, or entirely ceased, or that new ones have made their appearance—changes which may be explained by the opening of new rents and the closing of pre-existing fissures.
Few of the Geysers play longer than five or six minutes at a time, although sometimes half an hour. The intervals between their eruptions are for the most part very irregular. The Great Geyser rises out of a spacious basin at the summit of a circular mound composed of siliceous incrustations deposited from the spray of its waters. The diameter of this basin, in one direction, is fifty-six feet, and forty-six in another. (See [fig. 94].) In the centre is a pipe seventy-eight feet in perpendicular depth, and from eight to ten feet in diameter, but gradually widening, as it rises into the basin. The inside of the basin is whitish, consisting of a siliceous crust, and perfectly smooth, as are likewise two small channels on the sides of the mound, down which the water escapes when the bowl is filled to the margin. The circular basin is sometimes empty, as represented in the following sketch; but is usually filled with beautifully transparent water in a state of ebullition. During the rise of the boiling water in the pipe, especially when the ebullition is most violent, and when the water is thrown up in jets, subterranean noises are heard, like the distant firing of cannon, and the earth is slightly shaken. The sound then increases and the motion becomes more violent, till at length a column of water is thrown up, with loud explosions, to the height of one or two hundred feet. After playing for a time like an artificial fountain, and giving off great clouds of vapor, the pipe or tube is emptied; and a column of steam, rushing up with amazing force and a thundering noise, terminates the eruption.
View of the Crater of the Great Geyser in Iceland.[775]
If stones are thrown into the crater, they are instantly ejected; and such is the explosive force, that very hard rocks are sometimes shivered by it into small pieces. Henderson found that by throwing a great quantity of large stones into the pipe of Strockr, one of the Geysers, he could bring on an eruption in a few minutes.[776] The fragments of stone, as well as the boiling water, were thrown in that case to a much greater height than usual. After the water had been ejected, a column of steam continued to rush up with a deafening roar for nearly an hour; but the Geyser, as if exhausted by this effort, did not send out a fresh eruption when its usual interval of rest had elapsed. The account given by Sir George Mackenzie of a Geyser which he saw in eruption in 1810 (see [fig. 95]), agrees perfectly with the above description by Henderson. The steam and water rose for half an hour to the height of 70 feet, and the white column remained perpendicular notwithstanding a brisk gale of wind which was blowing against it. Stones thrown into the pipe were projected to a greater height than the water. To leeward of the vapor a heavy shower of rain was seen to fall.[777]
Eruption of the New Geyser in 1810. (Mackenzie.)
Among the different theories proposed to account for these phenomena, I shall first mention one suggested by Sir. J. Herschel. An imitation of these jets, he says, may be produced on a small scale, by heating red hot the stem of a tobacco pipe, filling the bowl with water, and so inclining the pipe as to let the water run through the stem. Its escape, instead of taking place in a continued stream, is then performed by a succession of violent explosions, at first of steam alone, then of water mixed with steam; and, as the pipe cools, almost wholly of water. At every such paroxysmal escape of the water, a portion is driven back, accompanied with steam, into the bowl. The intervals between the explosions depend on the heat, length, and inclination of the pipe; their continuance, on its thickness and conducting power.[778] The application of this experiment to the Geysers merely requires that a subterranean stream, flowing through the pores and crevices of lava, should suddenly reach a fissure in which the rock is red hot or nearly so. Steam would immediately be formed, which, rushing up the fissure, might force up water along with it to the surface, while, at the same time, part of the steam might drive back the water of the supply for a certain distance towards its source. And when, after the space of some minutes, the steam was all condensed, the water would return, and a repetition of the phenomena take place.
Supposed reservoir and pipe of a Geyser in Iceland.[779]
There is, however, another mode of explaining the action of the Geyser, perhaps more probable than that above described. Suppose water percolating from the surface of the earth to penetrate into the subterranean cavity A D ([fig. 96]) by the fissures F F, while, at the same time, steam at an extremely high temperature, such as is commonly given out from the rents of lava currents during congelation, emanates from the fissures C. A portion of the steam is at first condensed into water, while the temperature of the water is raised by the latent heat thus evolved, till, at last, the lower part of the cavity is filled with boiling water and the upper with steam under high pressure. The expansive force of the steam becomes, at length, so great, that the water is forced up the fissure or pipe E B, and runs over the rim of the basin. When the pressure is thus diminished, the steam in the upper part of the cavity A expands, until all the water D is driven into the pipe; and when this happens, the steam, being the lighter of the two fluids, rushes up through the water with great velocity. If the pipe be choked up artificially, even for a few minutes, a great increase of heat must take place; for it is prevented from escaping in a latent form in steam; so that the water is made to boil more violently, and this brings on an eruption.
Professor Bunsen, before cited, adopts this theory to account for the play of the "Little Geyser," but says it will not explain the phenomena of the Great one. He considers this, like the others, to be a thermal spring, having a narrow funnel-shaped tube in the upper part of its course, where the walls of the channel have become coated over with siliceous incrustations. At the mouth of this tube the water has a temperature, corresponding to the pressure of the atmosphere, of about 212° Fahr., but at a certain depth below it is much hotter. This the professor succeeded in proving by experiment; a thermometer suspended by a string in the pipe rising to 266° Fahr., or no less than 48 degrees above the boiling point. After the column of water has been expelled, what remains in the basin and pipe is found to be much cooled.
Previously to these experiments of Bunsen and Descloizeaux, made in Iceland in 1846, it would scarcely have been supposed possible that the lower part of a free and open column of water could be raised so much in temperature without causing a circulation of ascending and descending currents, followed by an almost immediate equalization of heat. Such circulation is no doubt impeded greatly by the sides of the well not being vertical, and by numerous contractions of its diameter, but the phenomenon may be chiefly due to another cause. According to recent experiments on the cohesion of liquids by Mr. Donny of Ghent, it appears that when water is freed from all admixture of air, its temperature can be raised, even under ordinary atmospheric pressure, to 275° Fahr., so much does the cohesion of its molecules increase[780] when they are not separated by particles of air. As water long boiled becomes more and more deprived of air, it is probably very free from such intermixture at the bottom of the Geysers.
Among other results of the experiments of Bunsen and his companion, they convinced themselves that the column of fluid filling the tube is constantly receiving accessions of hot water from below, while it becomes cooler above by evaporation on the broad surface of the basin. They also came to a conclusion of no small interest, as bearing on the probable mechanism of ordinary volcanic eruptions, namely that the tube itself is the main seat or focus of mechanical force. This was proved by letting down stones suspended by strings to various depths. Those which were sunk to considerable distances from the surface were not cast up again, whereas those nearer the mouth of the tube were ejected to great heights. Other experiments also were made tending to demonstrate the singular fact, that there is often scarce any motion below, when a violent rush of steam and water is taking place above. It seems that when a lofty column of water possesses a temperature increasing with the depth, any slight ebullition or disturbance of equilibrium in the upper portion may first force up water into the basin, and then cause it to flow over the edge. A lower portion, thus suddenly relieved of part of its pressure, expands and is converted into vapor more rapidly than the first, owing to its greater heat. This allows the next subjacent stratum, which is much hotter, to rise and flash into a gaseous form; and this process goes on till the ebullition has descended from the middle to near the bottom of the funnel.[781]
In speculating, therefore, on the mechanism of an ordinary volcanic eruption, we may suppose that large subterranean cavities exist at the depth of some miles below the surface of the earth, in which melted lava accumulates; and when water containing the usual mixture of air penetrates into these, the steam thus generated may press upon the lava and force it up the duct of a volcano, in the same manner as a column of water is driven up the pipe of a Geyser. In other cases we may suppose a continuous column of liquid lava mixed with red-hot water (for water may exist in that state, as Professor Bunsen reminds us, under pressure), and this column may have a temperature regularly increasing downwards. A disturbance of equilibrium may first bring on an eruption near the surface, by the expansion and conversion into gas of entangled water and other constituents of what we call lava, so as to occasion a diminution of pressure. More steam would then be liberated, carrying up with it jets of melted rock, which being hurled up into the air may fall in showers of ashes on the surrounding country, and at length, by the arrival of lava and water more and more heated at the orifice of the duct or the crater of the volcano, expansive power may be acquired sufficient to expel a massive current of lava. After the eruption has ceased, a period of tranquillity succeeds, during which fresh accessions of heat are communicated from below, and additional masses of rock fused by degrees, while at the same time atmospheric or sea water is descending from the surface. At length the conditions required for a new outburst are obtained, and another cycle of similar changes is renewed.
Causes of earthquakes—wave-like motion.—I shall now proceed to examine the manner in which the heat of the interior may give rise to earthquakes. One of the most common phenomena attending subterranean movements, is the undulatory motion of the ground. And this, says Michell, will seem less extraordinary, if we call to mind the extreme elasticity of the earth and the compressibility of even the most solid materials. Large districts, he suggests, may rest on fluid lava; and, when this is disturbed, its motions may be propagated through the incumbent rocks. He also adds the following ingenious speculation:—"As a small quantity of vapor almost instantly generated at some considerable depth below the surface of the earth will produce a vibratory motion, so a very large quantity (whether it be generated almost instantly, or in any small portion of time) will produce a wave-like motion. The manner in which this wave-like motion will be propagated may, in some measure, be represented by the following experiment:—Suppose a large cloth, or carpet (spread upon a floor), to be raised at one edge, and then suddenly brought down again to the floor; the air under it, being by this means propelled, will pass along till it escapes at the opposite side, raising the cloth in a wave all the way as it goes. In like manner, a large quantity of vapor may be conceived to raise the earth in a wave, as it passes along between the strata, which it may easily separate in a horizontal direction, there being little or no cohesion between one stratum and another. The part of the earth that is first raised being bent from its natural form, will endeavor to restore itself by its elasticity; and the parts next to it being to have their weight supported by the vapor, which will insinuate itself under them, will be raised in their turn, till it either finds some vent, or is again condensed by the cold into water, and by that means prevented from proceeding any farther."[782] In a memoir published in 1843, on the structure of the Appalachian chain, by the Professors Rogers,[783] the following hypothesis is proposed as "simpler and more in accordance with dynamical considerations, and the recorded observations on earthquakes."—"In place," say they, "of supposing it possible for a body of vapor or gaseous matter to pass horizontally between the strata, or even between the crust and the fluid lava upon which it floats, and with which it must be closely entangled, we are inclined to attribute the movement to an actual pulsation, engendered in the molten matter itself, by a linear disruption under enormous tension, giving vent explosively to elastic vapors, escaping either to the surface, or into cavernous spaces beneath. According to this supposition, the movement of the subterranean vapors would be towards, and not from, the disrupted belt, and the oscillation of the crust would originate in the tremendous and sudden disturbance of the previous pressure on the surface of the lava mass below, brought about by the instantaneous and violent rending of the overlying strata."
This theory requires us to admit that the crust of the earth is so flexible, that it can assume the form, and follow the motion of an undulation in the fluid below. Even if we grant this, says Mr. Mallet, another more serious objection presents itself, viz. the great velocity attributed to the transit of the wave in the subterranean sea of lava. We are called upon to admit that the speed of the wave below equals that of the true earthquake shock at the surface, which is so immense, that it is not inferior to the velocity of sound in the same solids. But the undulation in the fluid below must follow the laws of a tidal wave, or of the great sea-wave already spoken of. "Its velocity, like that of the tidal wave of our seas, will be a function of its length and of the depth of the fluid, diminished in this case by certain considerations as to the density and degree of viscidity of the liquid; and although it would be at present impossible, for want of data, to calculate the exact velocity with which this subterraneous lava-wave could move, it may be certainly affirmed that its velocity would be immeasurably short of the observed or theoretic velocity of the great earth-wave, or true shock in earthquakes."[784]
Liquid gases.—The rending and upheaving of continental masses are operations which are not difficult to explain, when we are once convinced that heat, of sufficient power, not only to melt but to reduce to a gaseous form a great variety of substances, is accumulated in certain parts of the interior. We see that elastic fluids are capable of projecting solid masses to immense heights in the air; and the volcano of Cotopaxi has been known to throw out, to the distance of eight or nine miles, a mass of rock about one hundred cubic yards in volume. When we observe these aeriform fluids rushing out from particular vents for months, or even years, continuously, what power may we not expect them to exert in other places, where they happen to be confined under an enormous weight of rock?
The experiments of Faraday and others have shown, within the last twelve years, that many of the gases, including all those which are most copiously disengaged from volcanic vents, as the carbonic, sulphurous, and muriatic acids, may be condensed into liquids by pressure. At temperatures of from 30° to 50° F., the pressure required for this purpose varies from fifteen to fifty atmospheres; and this amount of pressure we may regard as very insignificant in the operations of nature. A column of Vesuvian lava that would reach from the lip of the crater to the level of the sea, must be equal to about three hundred atmospheres; so that, at depths which may be termed moderate in the interior of the crust of the earth, the gases may be condensed into liquids, even at very high temperatures. The method employed to reduce some of these gases to a liquid state is, to confine the materials, from the mutual action of which they are evolved, in tubes hermetically sealed, so that the accumulated pressure of the vapor, as it rises and expands, may force some part of it to assume the liquid state. A similar process may, and indeed must, frequently take place in subterranean caverns and fissures, or even in the pores and cells of many rocks; by which means, a much greater store of expansive power may be packed into a small space than could happen if these vapors had not the property of becoming liquid. For, although the gas occupies much less room in a liquid state, yet it exerts exactly the same pressure upon the sides of the containing cavity as if it remained in the form of vapor.
If a tube, whether of glass or other materials, filled with condensed gas, have its temperature slightly raised, it will often burst; for a slight increment of heat causes the elasticity of the gas to increase in a very high ratio. We have only to suppose certain rocks, permeated by these liquid gases (as porous strata are sometimes filled with water), to have their temperature raised some hundred degrees, and we obtain a power capable of lifting superincumbent masses of almost any conceivable thickness; while, if the depth at which the gas is confined be great, there is no reason to suppose that any other appearances would be witnessed by the inhabitants of the surface than vibratory movements and rents, from which no vapor might escape. In making their way through fissures a very few miles only in length, or in forcing a passage through soft yielding strata, the vapors may be cooled and absorbed by water. For water has a strong affinity to several of the gases, and will absorb large quantities, with a very slight increase of volume. In this manner, the heat or the volume of springs may be augmented, and their mineral properties made to vary.
Connection between the state of the atmosphere and earthquakes.—The inhabitants of Stromboli, who are mostly fishermen, are said to make use of that volcano as a weather-glass, the eruptions being comparatively feeble when the sky is serene, but increasing in turbulence during tempestuous weather, so that in winter the island often seems to shake from its foundations. Mr. P. Scrope, after calling attention to these and other analogous facts, first started the idea (as long ago as the year 1825) that the diminished pressure of the atmosphere, the concomitant of stormy weather, may modify the intensity of the volcanic action. He suggests that where liquid lava communicates with the surface, as in the crater of Stromboli, it may rise or fall in the vent on the same principle as mercury in a barometer; because the ebullition or expansive power of the steam contained in the lava would be checked by every increase, and augmented by every diminution of weight. In like manner, if a bed of liquid lava be confined at an immense depth below the surface, its expansive force may be counteracted partly by the weight of the incumbent rocks, and also in part by atmospheric pressure acting contemporaneously on a vast superficial area. In that case, if the upheaving force increase gradually in energy, it will at length be restrained by only the slightest degree of superiority in the antagonist or repressive power, and then the equilibrium may be suddenly destroyed by any cause, such as an ascending draught of air, which is capable of depressing the barometer. In this manner we may account for the remarkable coincidence so frequently observed between the state of the weather and subterranean commotions, although it must be admitted that earthquakes and volcanic eruptions react in their turn upon the atmosphere, so that disturbances of the latter are generally the consequences rather than the forerunners of volcanic disturbances.[785]
From an elaborate catalogue of the earthquakes experienced in Europe and Syria during the last fifteen centuries, M. Alexis Perrey has deduced the conclusion that the number which happen in the winter season preponderates over those which occur in any one of the other seasons of the year, there being, however, some exceptions to this rule, as in the Pyrenees. Curious and valuable as are these data, M. d'Archiac justly remarks, in commenting upon them, that they are not as yet sufficiently extensive or accordant in different regions, to entitle us to deduce any general conclusions from them respecting the laws of subterranean movements throughout the globe.[786]
Permanent elevation and subsidence.—It is easy to conceive that the shattered rocks may assume an arched form during a convulsion, so that the country above may remain permanently upheaved. In other cases gas may drive before it masses of liquid lava, which may thus be injected into newly opened fissures. The gas having then obtained more room, by the forcing up of the incumbent rocks, may remain at rest; while the lava congealing in the rents may afford a solid foundation for the newly raised district.
Experiments have recently been made in America, by Colonel Totten, to ascertain the ratio according to which some of the stones commonly used in architecture expand with given increments of heat.[787] It was found impossible, in a country where the annual variation of temperature was more than 90° F., to make a coping of stones, five feet in length, in which the joints should fit so tightly as not to admit water between the stone and the cement; the annual contraction and expansion of the stones causing, at the junctions, small crevices, the width of which varied with the nature of the rock. It was ascertained that fine-grained granite expanded with 1° F. at the rate of ·000004825; while crystalline marble ·000005668; and red sandstone ·000009532, or about twice as much as granite.
Now, according to this law of expansion, a mass of sandstone a mile in thickness, which should have its temperature raised 200° F., would lift a superimposed layer of rock to the height of ten feet above its former level. But, suppose a part of the earth's crust, one hundred miles in thickness and equally expansive, to have its temperature raised 600° or 800°, this might produce an elevation of between two and three thousand feet. The cooling of the same mass might afterwards cause the overlying rocks to sink down again and resume their original position. By such agency we might explain the gradual rise of Scandinavia or the subsidence of Greenland, if this last phenomenon should also be established as a fact on farther inquiry.
It is also possible that as the clay in Wedgwood's pyrometer contracts, by giving off its water, and then, by incipient vitrification; so, large masses of argillaceous strata on the earth's interior may shrink, when subjected to heat and chemical changes, and allow the incumbent rocks to subside gradually.
Moreover, if we suppose that lava cooling slowly at great depths may be converted into various granitic rocks, we obtain another source of depression; for, according to the experiments of Deville and the calculations of Bischoff, the contraction of granite when passing from a melted or plastic to a solid and crystalline state must be more than ten per cent.[788] The sudden subsidence of land may also be occasioned by subterranean caverns giving way, when gases are condensed, or when they escape through newly-formed crevices. The subtraction, moreover, of matter from certain parts of the interior, by the flowing of lava and of mineral springs, must, in the course of ages, cause vacuities below, so that the undermined surface may at length fall in.
The balance of dry land, how preserved.—In the present state of our knowledge, we cannot pretend to estimate the average number of earthquakes which may happen in the course of a single year. As the area of the ocean is nearly three times that of the land, it is probable that about three submarine earthquakes may occur for one exclusively continental; and when we consider the great frequency of slight movements in certain districts, we can hardly suppose that a day, if, indeed, an hour, ever passes without one or more shocks being experienced in some part of the globe. We have also seen that in Sweden, and other countries, changes in the relative level of sea and land may take place without commotion, and these perhaps produce the most important geographical and geological changes; for the position of land may be altered to a greater amount by an elevation or depression of one inch over a vast area, than by the sinking of a more limited tract, such as the forest of Aripao, to the depth of many fathoms at once.[789]
It must be evident, from the historical details above given, that the force of subterranean movement, whether intermittent or continuous, whether with or without disturbance, does not operate at random, but is developed in certain regions only; and although the alterations produced during the time required for the occurrence of a few volcanic eruptions may be inconsiderable, we can hardly doubt that, during the ages necessary for the formation of large volcanic cones, composed of thousands of lava currents, shoals might be converted into lofty mountains, and low lands into deep seas.
In a former chapter (p. 198), I have stated that aqueous and igneous agents may be regarded as antagonist forces; the aqueous laboring incessantly to reduce the inequalities of the earth's surface to a level, while the igneous are equally active in renewing the unevenness of the surface. By some geologists it has been thought that the levelling power of running water was opposed rather to the elevating force of earthquakes than to their action generally. This opinion is, however, untenable; for the sinking down of the bed of the ocean is one of the means by which the gradual submersion of land is prevented. The depth of the sea cannot be increased at any one point without a universal fall of the waters, nor can any partial deposition of sediment occur without the displacement of a quantity of water of equal volume, which will raise the sea, though in an imperceptible degree, even to the antipodes. The preservation, therefore, of the dry land may sometimes be effected by the subsidence of part of the earth's crust (that part, namely, which is covered by the ocean), and in like manner an upheaving movement must often tend to destroy land; for if it render the bed of the sea more shallow, it will displace a certain quantity of water, and thus tend to submerge low tracts.
Astronomers having proved (see above, p. [129]) that there has been no change in the diameter of the earth during the last two thousand years, we may assume it as probable, that the dimensions of the planet remain uniform. If, then, we inquire in what manner the force of earthquakes must be regulated, in order to restore perpetually the inequalities of the surface which the levelling power of water tends to efface, it will be found, that the amount of depression must exceed that of elevation. It would be otherwise if the action of volcanoes and mineral springs were suspended; for then the forcing outwards of the earth's envelope ought to be no more than equal to its sinking in.
To understand this proposition more clearly, it must be borne in mind, that the deposits of rivers and currents probably add as much to the height of lands which are rising, as they take from those which have risen. Suppose a large river to bring down sediment to a part of the ocean two thousand feet deep, and that the depth of this part is gradually reduced by the accumulation of sediment till only a shoal remains, covered by water at high tides; if now an upheaving force should uplift this shoal to the height of 2000 feet, the result would be a mountain 2000 feet high. But had the movement raised the same part of the bottom of the sea before the sediment of the river had filled it up; then, instead of changing a shoal into a mountain 2000 feet high, it would only have converted a deep sea into a shoal.
It appears, then, that the operations of the earthquake are often such as to cause the levelling power of water to counteract itself; and, although the idea may appear paradoxical, we may be sure, wherever we find hills and mountains composed of stratified deposits, that such inequalities of the surface would have had no existence if water, at some former period, had not been laboring to reduce the earth's surface to one level.
But, besides the transfer of matter by running water from the continents to the ocean, there is a constant transportation from below upwards, by mineral springs and volcanic vents. As mountain masses are, in the course of ages, created by the pouring forth of successive streams of lava, so stratified rocks, of great extent, originate from the deposition of carbonate of lime, and other mineral ingredients, with which springs are impregnated. The surface of the land, and portions of the bottom of the sea, being thus raised, the external accessions due to these operations would cause the dimensions of the planet to enlarge continually, if the amount of depression of the earth's crust were no more than equal to the elevation. In order, therefore, that the mean diameter of the earth should remain uniform, and the unevenness of the surface be preserved, it is necessary that the amount of subsidence should be in excess. And such a predominance of depression is far from improbable, on mechanical principles, since every upheaving movement must be expected either to produce caverns in the mass below, or to cause some diminution of its density. Vacuities must, also, arise from the subtraction of the matter poured out from volcanoes and mineral springs, or from the contraction of argillaceous masses by subterranean heat; and the foundations having been thus weakened, the earth's crust, shaken and rent by reiterated convulsions, must, in the course of time, fall in.
If we embrace these views, important geological consequences will follow; since, if there be, upon the whole, more subsidence than elevation, the average depth to which former surfaces have sunk beneath their original level must exceed the height which ancient marine strata have attained above the sea. If, for example, marine strata, about the age of our chalk and greensand, have been lifted up in Europe to an extreme height of more than eleven thousand feet, and a mean elevation of some hundreds, we may conclude that certain parts of the surface, which existed when those strata were deposited, have sunk to an extreme depth of more than eleven thousand feet below their original level, and to a mean depth of more than a few hundreds.
In regard to faults, also, we must infer, according to the hypothesis now proposed, that a greater number have arisen from the sinking down than from the elevation of rocks.
To conclude: it seems to be rendered probable, by the views above explained, that the constant repair of the land, and the subserviency of our planet to the support of terrestrial as well as aquatic species, are secured by the elevating and depressing power of causes acting in the interior of the earth; which, although so often the source of death and terror to the inhabitants of the globe—visiting in succession every zone, and filling the earth with monuments of ruin and disorder—are nevertheless the agents of a conservative principle above all others essential to the stability of the system.
