I. THE DISTINCTIVE FEATURES OF ORGANIC PROCESSES.
There is no reason to suppose that life processes, as we know them, were in operation in the earliest stages of the earth’s history. They were introduced and developed gradually during its progress. With life there came into the processes of the earth’s development three distinctive factors:
A. Certain chemical actions giving rise to compounds that are not known to occur independently of life.
B. Certain modes of aggregation of material, and certain kinds of bodily movements, not known except in association with life.
C. The mental element, under the direction of which certain new processes were inaugurated, and certain previous processes were modified and controlled.
A. The Chemical Work of Life.
The peculiar chemical phenomena connected with life chiefly concern the carbon compounds. In the inorganic world the carbon compounds are few and simple. In the organic world they become extremely numerous and complicated. These compounds are very unstable, for the greater part, and their partial decomposition gives rise to many additional compounds. Some of the true organic compounds and some of their decomposition products have the power of combining with inorganic substances, and so produce an additional series of semi-organic combinations. The total number of the compounds thus directly and indirectly connected with life greatly exceeds that of all inorganic compounds. Their mass, however, is very greatly inferior.
Life material chiefly atmospheric.—In the building up of the organic compounds, a necessary step is the decomposition of certain inorganic compounds. The chief of these is the carbon dioxide of the atmosphere and hydrosphere, the decomposition of which furnishes the carbon needed for the organic compounds. On this account carbon dioxide may be regarded as in some sense the basal material or the fundamental food of the organic kingdom, and hence it plays a radical rôle in the life-history of the earth.
Water, and the constituents of water, oxygen and hydrogen, play a larger part quantitatively, but a less distinctive part.
Nitrogen is also an essential element, and usually stands next to carbon, oxygen, and hydrogen in quantity.
These, it will be noted, are all atmospheric constituents, and the material of life is, therefore, dominantly atmospheric. This is even true of aquatic life, for it lives largely on the atmospheric constituents dissolved in the water. The function of life, considered from the material point of view, is not only fundamentally concerned with the atmosphere, and intimately dependent on its conditions, but its most important material effects appear to lie in its modification of the constitution of the atmosphere.
The non-atmospheric factors.—The atmospheric constituents are not, however, the only elements intimately connected with the life function. Compounds of sulphur, phosphorus, potassium, sodium, chlorine, iron, calcium, magnesium, silicon, and other elements are more or less essential to the life of many organisms, or are employed by them for their skeletons, coverings, etc. Incidentally, nearly all the common elements become intimately related to living organisms either in the relations of active elements in their physiological functions, or of passive elements in their structure or in their auxiliary parts.
Three Classes of Effects.
Out of life processes grow three rather distinct classes of results: (1) changes in the amounts and proportions of the constituents of the atmosphere and, to some slight extent, of the hydrosphere and lithosphere; (2) aid or hindrance to inorganic processes, such as disintegration, erosion, and deposition; and (3) distinctive products, either (a) of organic matter that would not have come into the existing combination but for life, such as peat, lignite, amber, etc., or (b) of special forms of inorganic matter that would not have arisen but for life, such as coral deposits, shell-marl, diatom ooze, etc.
(1) Changes in the composition of the atmosphere.
The succession of modifications which the atmosphere has undergone from time to time through the action of life will be discussed as the earth’s history is followed in the second volume. It may suffice here to note briefly the chief ways in which the atmosphere has probably been modified by the agency of life, not only as regards its quantity but also as regards the proportions of its constituents.
The consumption and restoration of carbon dioxide.—As the fundamental food of the organic world, carbon dioxide has suffered enormous consumption in the course of the geological ages, and is now reduced to the very small proportion of .0004 or .0003 of the whole. At the outset it was probably one of the most abundant constituents; possibly even the chief one. It has been partially restored, concurrently with its consumption, by animal respiration, by certain classes of plant action, and by combustion and other forms of inorganic combination. This restorative action has been incomplete at all known stages of the earth’s history, and hence there has been constant loss of carbon dioxide. The inorganic processes which have also profoundly affected both the consumption and restoration of carbon dioxide are here neglected and discussed elsewhere.
The freeing and consumption of oxygen.—The oxygen of the atmosphere is actively consumed by animals and by plants, but on the other hand, it is set free abundantly by green plants, and hence its amount has probably fluctuated from time to time according to the state of balance between the organic processes of its production, and those of its consumption. The consumption of oxygen by organic processes is, however, little more than a reversal of the previous process by which it was set free; for instance, green plants in forming their food set free the oxygen of the carbon dioxide used for the purpose. When the organic substance so formed is ultimately consumed through plant or animal action or by inorganic means, an equivalent amount of oxygen reunites with the carbon to again form carbon dioxide. And so if the whole of the organic matter is returned to the inorganic state, no more oxygen is consumed than had been before set free in the process of forming the organic matter. But, as a matter of fact, a large amount of organic matter has not gone back completely to the inorganic state, and this residue constitutes a factor of no small importance in the geological record.
The organic residue.—There is a certain portion of vegetation that is not consumed by animals or by other plants, and that escapes combustion and all kinds of ordinary decay, and this constitutes a part of the organic residue. Animals never completely oxidize all the organic matter they take into their systems; their bodies never entirely consume themselves. A like statement may be made respecting those plants that feed on organic matter. That which animals and plants leave unoxidized is indeed more or less preyed upon by other animals and plants, and relatively little escapes final reoxidation, but there is a remnant, and this constitutes another part of the organic residue. The more conspicuous forms of the organic residue are found in the mucks, peats, lignites, coals, organic oils, and gases, but in addition there is not a little disseminated organic matter in nearly all the sedimentary rocks; in the aggregate, this probably amounts to more than the distinct organic deposits.
The meaning of the organic residue.—All the unoxidized, or incompletely oxidized, carbon in the organic residue implies that oxygen has previously been separated from this residual carbon by plants and given to the atmosphere, and hence has been a source of atmospheric enrichment in oxygen. The amount thus contributed is equal to that which is required to restore the residual carbon to its original state of oxidation. So, in a similar way, the unoxidized hydrogen in the organic hydrocarbons and like compounds implies that oxygen has been separated from the hydrogen of water and given to the atmosphere, and hence this also is a source of atmospheric enrichment in oxygen. It seems safe, therefore, to conclude that the action of life, taken as a whole, has increased the free oxygen of the atmosphere.
While not here under consideration, it is not to be forgotten that inorganic processes involving the same atmospheric constituents have been in operation concurrently with the organic processes, and that they have also affected the amounts and proportions of the atmospheric constituents. Rocks have been oxidized in greater or less measure at the expense of the atmospheric oxygen, and hence when the total atmospheric problem is considered, there arises the question whether the amount of oxygen in the atmosphere has been increased or diminished during geological history, when the balance is struck between the inorganic and the organic actions. The probabilities seem to us to strongly favor the view that organic action has preponderated, and that the oxygen has been increased beyond its primitive amount, but that it has fluctuated during known geological history. The reasons for this view will appear in the historical chapters.
The disintegration of the crystalline rocks and the solution of limestone have consumed much carbon dioxide, and this is to be added to the loss through organic action. On the other hand, there are inorganic processes that supply carbon dioxide, and hence when the larger problem of the atmosphere is raised, the factors become so complicated that their consideration is best deferred to the historical chapters. This passing reference may stand us in good part lest we forget, for the moment, the inorganic factors in the atmospheric problem.
The more inert factor.—Nitrogen in the free state is relatively inert chemically, and it does not appear that it can be used directly by the higher plants and animals in appreciable amounts. Certain bacteria, and perhaps certain algæ[288] and other low forms of plants, have the power of using free nitrogen, and this is a principal way in which it is put within the reach of higher plants. Nitrogen is also combined in small quantity in the atmosphere by electric action, and thus made available for plants. On account of the inertness of nitrogen and of the relatively limited amount required for organic purposes, the nitrogen of the atmosphere has been less consumed than the carbon dioxide. Besides this, the nitrogen compounds are very decomposable, and are very generally and completely returned to their original state. Deposits of nitrates or other nitrogenous compounds are relatively rare.
It is obvious that if there is any considerable source of supply concurrent with this slight loss, the amount of nitrogen in the atmosphere must have been increasing. We have seen that volcanoes give forth considerable quantities of nitrogen, and that this may be a real addition to the atmosphere, and not merely a return of the atmospheric nitrogen that had been carried down previously by underground-water. It has also been noted that crystalline rocks contain occluded nitrogen, which is doubtless freed by their disintegration. It is, therefore, not improbable that the nitrogen of the atmosphere has been increasing, both actually and relatively.
Probable fluctuations of atmospheric composition.—With this general sketch of the interplay of the atmospheric elements under organic influence, we are prepared for the further conception that if one or another of these actions was relatively more vigorous than usual for a period, it would bring about a variation in the proportions of the atmospheric constituents. If, for example, vegetation flourished luxuriantly for a long period, but was measurably protected from the organisms that preyed upon it and from inorganic decomposition, as by falling into water or by prompt burial under sediment, the atmosphere might be growing richer in oxygen. If, on the other hand, vegetation were being relatively reduced, as perhaps it is being reduced now by man, and if previous organic products were being reoxidized at an unusual rate, as they are now in the burning of timber, coal, natural oil and gas, the carbon dioxide of the atmosphere might be relatively increasing, while the oxygen might be relatively diminishing. The possible fluctuations of the atmosphere as the result of organic action are, therefore, matters of vital importance, and invite attention in the historical study of the earth and in the outlook into its future.
The climatic effects of organic action.—Interest does not, however, rest at this point. The researches of physicists have made it probable, if they have not altogether demonstrated, that the composition of the atmosphere has much to do with the climatic conditions at the surface of the earth. The atmosphere blankets the earth and equalizes its temperature. Acting as a screen, it subdues in some measure the intensity of the sun’s rays by day, while it retards the radiation of the earth’s acquired heat at night. This is in some measure the function of all the constituents of the atmosphere, but by no means of all equally. The oxygen and nitrogen are relatively diathermous, letting the sun’s rays pass in freely, and the earth’s rays pass out freely; but carbon dioxide and the vapor of water are much less diathermous, particularly to rays of low intensity, such as are thrown out by non-luminous bodies like the earth. It follows that while the solar rays come in rather freely and heat the surface of the earth, the dark rays which the earth radiates back are measurably arrested by the carbon dioxide and vapor of water, and serve to keep the air warm. The influence of the vapor of water is vividly shown in the different degrees to which cooling takes place at night in a dry and in a moist atmosphere, respectively, where other conditions are the same. Ice is said to form at night in desert regions where the air is extremely dry, even within the tropics, while in humid regions of the same latitude and altitude oppressively hot nights are common. The influence of the carbon dioxide is not thus familiarly demonstrated, since its amount varies but slightly in different localities, but physical experiment indicates that it has a similar function.
If the amount of carbon dioxide in the atmosphere varies from age to age, the climate of the earth must apparently vary accordingly, and on this is built one of the hypotheses of climatic variation subsequently to be considered. We shall find that there have been great changes in the climate of the earth during its history. There is good evidence of former glaciation, not only in the northern United States and in England, Germany, and central Russia, but in India, Australia, and South Africa. At other times, figs and magnolias grew in Greenland and Spitzbergen, and corals flourished in the Arctic seas. There is good evidence of arid periods where humidity now prevails, and of humid periods where aridity now prevails. It is not assumed that the influence of organic action on the atmosphere has been the sole, or perhaps even the main, cause of these great climatic changes, but it is believed that it has been an important contributing factor. It is even possible that the climate of the future is much dependent on the agency of man, as implied above, however little ground there may be to suppose that he will, with altruistic purpose, control his action with a view to its bearing on the generations that may live tens of thousands of years hence.
(2) Aid and hindrance to inorganic action.
The promotion of disintegration.—While the influence of organic action on the lithosphere is quite superficial, and far less radical than that on the atmosphere, it is still important. Plants promote both disintegration and disaggregation under certain conditions, and hinder them under others, as already set forth. Chemical action of a decomposing and solvent nature takes place in connection with the roots of plants, while their growth sometimes rends rocks into whose crevices they have insinuated themselves. The acids and other products of organic growth and of organic decomposition attack some of the constituents of the rocks and contribute to their solution and disintegration. On the other hand, organic matter entrapped in the sediments, and so introduced into the strata at various depths, often acts as a reducing agency, causing the deposit of substances carried in solution in the underground-waters. Ores are sometimes thus formed, as explained in the discussion of ore-deposits ([p. 476]). Organic action on the whole promotes solution and disintegration at the surface, and prepares the way for deposition below.
Protection against erosion.—Another important function of vegetation is the protection of the land surface against erosion, as already noted in the discussion of erosion. A mantle of grass, especially if it forms a turf, or a carpet of leaves protected by bush and forest, greatly retards surface wash. It does this not only because it directly covers the soil, but because it holds back the run-off and tends to prevent those violent floods which give to erosion its greatest intensity. There is a marked difference between the erosive work which a given amount of water will do if, in the one case, it runs off gradually, and in the other, precipitately. By way of offset, it is to be noted that the disintegrating action of vegetation prepares the rock material for easy erosion, and to this extent helps in its removal by the drainage; but on the average this is greatly overbalanced by the protection afforded by the vegetal covering, though this is not true in every instance.
The influence of land vegetation on the character of the sediments.—The presence or absence of a vegetal covering influences the kind of deposit which is derived from the land, particularly if the surface be occupied by crystalline rocks. If the surface be well clothed with vegetation, the crystals of the complex silicates, such as the feldspars, micas, and ferromagnesian minerals, are usually disintegrated into clayey products before they are removed, so that, when borne away and deposited, the result is common shale. Concurrently, the relatively undecomposable quartz-grains are rounded into sand, and deposited as common quartzose sandstone, while the calcareous material is borne away in solution and deposited as limestone. But if the surface be bare of vegetation, the crystalline rocks are usually disaggregated before they are decomposed, for destructive action works best at the junctions of crystals, and along cleavage lines, and hence the crystals are usually separated from one another before they are fully decomposed. In the absence of a covering to hold them in place until they are decomposed, they are apt to be washed away, and the resulting deposit consists in considerable part of grains of feldspar, mica, hornblende, and other minerals, which do not usually occur in well-decomposed sediments. The deposits are, therefore, of the nature of arkose, if the original rocks are granitic, or of the nature of wacke, as the term is used in this book, if they are of the basic type. On this is based the inference that a vegetal covering of the land extended as far back in the history of the earth as clay shales, quartzose sandstones, and limestones form the prevailing sediments.
(3) Distinctive deposits.
Organic rocks.—In the chapter on the origin and descent of rocks, a group of rocks formed directly from organic matter is recognized and described. The chief of these are peat, lignite, bituminous coal, anthracite, and graphite. It is the belief of many geologists that natural gases, oils, and asphalts are also mainly derived from animal and vegetal remains. An alternative view, advocated by Mendelejeff and Moissan, assigns the oils, gases, etc., in part at least, to deep-seated carbides to which water has gained access and developed hydrocarbons, after the analogy of acetylene.[289] Whatever may be the truth relative to inorganic action, it is clear from geological conditions that some of the natural gases and oils are organic products. Besides the more common organic deposits, there is a long list of minor products, among which are amber, copalite, paraffine, ozocerite, camphene, etc. Guano and coprolites represent the excrementitious class.
Inorganic rocks due to life.—Besides these deposits of organic matter, or of its decomposition products, there is a large class formed from the inorganic matter that served auxiliary functions in the economy of life, such as shells, skeletons, etc. For the greater part these are composed of calcium carbonate, and give rise to limestones, marls, chalk, etc. Not a few, however, are silicious, and give rise to flints, cherts, and silicious earths. Some are formed of calcium phosphate, and a few of other inorganic material. The deposits formed in these ways have been defined in the chapter on rocks.
Fossils.
The term fossil is used so comprehensively as to include not only the remains of plants and animals themselves, but their tracks, impressions, casts, replacements, and all other distinct traces. It also embraces nests, borings, implements, and other distinctive products. These enter into the formation of the two classes of rocks just considered, but they have an independent function. They constitute the specific record of life, and their study not only reveals much of the past history of plants and animals, but furnishes one of the most important means by which the ages of formations are determined. In the early development of the science it was found that the uppermost and hence the latest beds of rock contain fossil forms either identical with those now living, or closely similar to them; that beds below these bear life relics that depart somewhat more from the living forms, and are somewhat less highly developed; that beds still lower bear fossils that depart still more from the living types, and are more primitive in general, and so on down as far as fossils are found.
The general order of life succession determined by stratigraphy.—Thus it appeared from the evidence of the strata that there was a general order of life succession. It was also found that this was, in its main features, the same for all the continents. By continued and close studies, the particulars of the succession were worked out more and more fully, and the work is still being pushed forward to greater and greater degrees of refinement. At the same time, it was found that there were different faunas and floras in different parts of the world in past times, much as there are now; that there were shiftings and migrations as now; that given species were increasing in some regions and dying out in others, and that innumerable variations and complications entered into the evolution and distribution of the life forms. But under and through all these there run a sufficient number of common features to show beyond reasonable question the order of succession of life.
Throughout all this study, the chief guide was the actual order in which the fossils were found in the succession of strata, because there is no evidence so conclusive of the order of events as the superposition of the sedimentary beds when they are normal and undisturbed. By the study of the fossils in the successive beds, it was found that there was a more or less progressive evolution of plants and animals brought about by modifications of their forms, and that these modifications assisted in determining the order of succession when the evidence of the strata was defective; and so the biological and stratigraphical factors reacted helpfully on each other.
Fossils as means of correlation.—While stratigraphy was thus, in the earliest stages, the main reliance in determining the order of events, and biology was the chief gainer, in the end stratigraphy received ample compensation, if indeed it did not become the greater beneficiary; for at no known and accessible place is there a complete succession of sedimentary beds. There are great series here and there, but their connections with one another are more or less concealed by surface formations or water-bodies. So also at many places the stratified series has been broken up by deformation, or cut away by erosion. Hence there was need for some reliable means of matching the beds of separated series, and of making up a complete ideal series. This means is found in the fossils they contain. While the variations of the faunas and floras in different regions, and their migrations, introduce some minor difficulties, the relations of the fossiliferous beds of one region to those of another can be determined with great satisfaction, and often with great precision. This is particularly so when abundant floating or free-swimming species lived in the seas and were freely fossilized, for they were deposited on the coasts of all the continents at practically the same time, and no uncertainties from migration or local differences in rate of evolution intervened to throw doubt upon the correlation. Without the aid of fossils, the correlation of the deposits on the separate continents would be attended with grave obstacles and much uncertainty, if not with quite prohibitive difficulties.
B. Special Modes of Aggregation and of Movement.
Inorganic solid matter is chiefly crystalloidal; organic matter is chiefly colloidal; but there are colloidal states of inorganic matter and there are crystalloids among the organic products. In the inorganic world, solids very generally tend to organize in the form of crystals; in the organic world, they as generally tend to organize in the form of cells. Neither tendency is complete or exclusive, but each is dominant in its own sphere.
Still more distinctive than the formation of cells is the growth of complex organized bodies, the differentiated members of which perform special functions for one another, and are mutually dependent on one another. This is a profound departure from the habitual modes of the inorganic world.
Still more so is the power of voluntary motion in more or less disregard of outside physical influences. Through this power, distribution may take place contrary to current and wind, and to gravitation itself. From the view-point of past geologic transportation, this is perhaps more singular than important, for no great mass of matter has been transported contrary to the influences of gravity, wind, and current, by the exercise of this peculiar power of animals, but it is not without geologic importance in the migrations and in the redistributions of organic influences that arise from migrations. When the influence of man is included, the geologic effects require consideration, but here the third distinctive factor, the mental element, comes into effective play, and we pass to its consideration.
C. The Mental Element.
Current opinion does not recognize a mental element as residing in the plant world, and it is divided as to the degree of its development in the lower animal kingdom, but its influential presence in the higher animal orders and in man is beyond legitimate question. Two phases are to be recognized: (1) the material work done under the stimulus and direction of mental impulses, as, for example, excavations, transportations, changes of drainage, removal of forests, cultivation of soil, etc., and (2) the intellectual work of the faculties themselves irrespective of material changes. In one view, geology is a purely material science concerned solely with the formation of the earth and with the physical development and relations of its inhabitants. In another, geology is a comprehensive historical science concerned with every phase of the world’s history, and certainly not least with the higher forms of life development, with their psychological, sociological, and other phases of mental attainments, since these are the highest output of the earth’s evolution. The latter seems to us the more comprehensive view.
(1) The material effects of the mental element.—Lyell long since urged that the direct work of man in changing the face of the earth was slight compared with that of the contemporaneous inorganic agencies. He called attention to the relative insignificance of the quarries, pits, cellars, and other excavations of man, compared with the work of streams, waves, and other inorganic agencies. There is justness in this view, but it needs qualification. It is to be observed that the mental era has but just begun, and that its effects are increasing with a rapidity quite phenomenal when measured by the slow pace of most geologic events. The excavations and transportations of material to-day show an enormous advance on those of Lyell’s day, which was, geologically speaking, but a moment ago. The mile-tons of industrial freightage in the Mississippi basin are to-day not wholly incomparable with the drainage transportation of the same area a century ago. A century ago is named, because the surface was then covered with natural vegetation, and the normal effect of surface erosion, independent of man, was then experienced. At present the indirect effects of man’s action are mingled with those of natural processes, and these indirect effects are probably much more important than the direct ones. The removal of the native vegetation and the cultivation of the soil expose the surface to wash to a degree far beyond that prevalent when the surface was prairie sod, or leaf-carpeted forest, and denudation and transportation have been greatly multiplied in consequence. Not only has this cultivation increased the exposure to erosion, but, by increasing the rate of run-off, it has added to the erosive power of the streams. The ditching of swamps and other tracts of retarded drainage has contributed to this acceleration. The naked, soil-less uplands of some of the once populous kingdoms of the Orient, notably portions of Syria and Greece, are sad witnesses of the accelerated erosion that attends cultivation. The erosion of certain southern fields of the United States in the last forty years is another striking illustration. It is doubtful whether some parts of this region suffered as much erosion in the preceding five centuries as they have during the last one. On the other hand, some compensation is found in the reservoirs established for water-power, and in artificial devices for retarding and steadying stream flow.
In the light of considerations such as these, man may well be regarded not only as a potent geological agent, but as dangerously so to himself. The hope is that the intelligence that has wrought a change of surface conditions serviceable for the present, but dangerous to the future, will be so enlarged as to inspire a still more intelligent control of surface conditions which shall compass the future welfare as well as transient benefit.
Human modification of the animal and vegetal kingdoms.—Man’s agency is also coming to be felt powerfully in the modification of the plant and animal life of the land and even to some extent of the sea. The larger animals that are not propagated by man are fast approaching extinction. At the present rate of extension of man’s dominion, a century or so will see the disappearance of nearly every large mammal and reptile that he does not choose to protect or propagate. By way of compensation, certain selected animals are increasing and will doubtless continue to increase. The result is, therefore, likely to be a peculiar assemblage of animal life dependent strictly on the choice of a dominant type, a state of things that has apparently never occurred in an equal degree in the past history of the earth. How far the minor forms of life, especially the insect life, and the denizens of the sea, may be brought under this monopolistic control may not be predicted so easily.
A similar profound transition in vegetation is being forced by man. The native vegetation is rapidly being replaced by selected varieties, and by varieties that take advantage of conditions furnished by man. As the agricultural control of the earth becomes more complete and effective, a result toward which very rapid progress is being made, a new flora of man’s selection will very generally prevail over the whole land surface of the globe. It is doubtful whether at any time in the history of the earth changes of flora and of fauna, and of surface, have been more rapid than those that are now taking place under the accelerating influence of man’s action, and this accelerating influence springs not mainly from automatic or instinctive reaction, but from conscious impulse and intelligent direction.
(2) The psychological factors as such.—Are the introduction and the evolution of the psychological factors themselves to be regarded as subjects of geological study? We shall find that, at the outset, the geologic record is a complete blank so far as clear evidence of terrestrial organisms actuated by their own intelligence is concerned; that later, organisms with some apparent consciousness and intelligence appeared, and that the mental element increased apace unto its present attainment. We know that relationships of a sociological nature arose in apparent feebleness, and gradually evolved into more definite, higher, and more complex forms. By sociological factors we mean merely those conscious relations which one organism bears to another, of which the parental and the gregarious impulses are two fundamental expressions. For manifest reasons, the introduction and evolution of the psychological and sociological factors themselves have received little direct recognition as a portion of geological studies. The record of such factors in the fossils of past ages is necessarily obscure and imperfect, and the interpretation of what there is lacks certainty and precision. None the less, this psychological record, with all its imperfections, is beyond valuation, and must, we think, come to be an indispensable factor in the study of psychological and sociological evolution, for it shows, what nothing else can show equally well, the extremely prolonged history of that evolution, and it gives hints of modes and means which no study of existing stages can equally reveal. The organization of the Cambrian trilobites, for example, implies no small development of the senses and of the coordinating faculties even at that early stage, and a study of the relations of these to their fellow creatures opens up the first known chapter in the sociological record of the earth’s inhabitants. From this stage onward the progress in the development of the higher faculties, and of the sociological relations of the leading forms, is one of the most instructive phases of the great history. Such a study reveals the fact that many questions, narrowly supposed to be purely human, have had their prototypes in the earlier experiences of the animal kingdom. Some of these questions have found solutions, temporary or permanent, which passed under the test of ages to whose length human experience affords no parallel, and have received the sanction or disapproval of such tests according as they were well or ill adapted to the actual conditions involved. If one seeks the lessons of history in the largest sense, he cannot wisely neglect the prolonged record of the great biological family.