CHAPTER VIII.

Wrought Iron Work—Making a Wrought Iron Leaf—Making a Volute Scroll—Grilles.

At the present time great interest is being taken in the teaching of art work in our public schools. Every school of importance is doing something in the way of giving the pupils a knowledge of art. One working in the school crafts should study art. There is no craft work that one can do well without this training. With art training one can see defects in his work much quicker than without such training. In fact, it opens up a new world of possibilities to the workman. The more one is convinced of the value of thoro acquaintance with the medium in which he is working, the higher the class of work he produces.

All fine workmen in any craft have more or less ability to draw. This not only gives them power to transfer their conceptions to paper, but it also helps them in the execution of the work. The iron-worker in particular should practice free-hand drawing. It enables him to form his material into proper shape. As a general thing, forge work is fashioned into shape by eye.

Fig. 1. Forged Leaf.

Wrought iron-work is one of the oldest of the handicrafts. It was extensively practiced by the ancients and carried to a high degree of excellence, both in execution and design. During the Middle Ages and up to the seventeenth century some of the finest examples were produced. A study of the older forms, especially those of Medieval German production, shows iron fashioned in keeping with its properties and with the spirit of the craftsman. It is impossible to utilize natural forms in wrought iron without convention. Realistic iron flowers are inconsistent with the material in which they are executed. They kill the strength and destroy the character of the metal. This should be learned early by one working in iron. When the iron-worker of the past imitated nature too closely in leaf and flower, he failed as a designer and his work deteriorated. Iron as a crude metal must be fashioned into shapes that are suitable and practical for the material. For instance, it readily allows itself to be worked into graceful curved forms which can be used to advantage in grille work. It may be surface-decorated by using chasing tools. This may be done on hot or cold metal, depending upon the depth wanted. Iron may also be punctured with openings thru the metal which give the play of light and shadow that is very pleasing. Grotesque figures and an endless variety of leaf forms may also be worked in iron. These should be conventionalized. Embossed or repousse work may be done to advantage. In doing this the metal while hot is hammered on the end grain of elm wood and on forms made from iron. When cold it is hammered on lead, and steel tools are used to sharpen up the detail.

Fig. 2.

Fig. 3. Cutting Tool.

Fig. 4. Modeling Hammer.

In [Figure 1] is shown a leaf made from Number 16 sheet steel and [Figure 2] shows a pattern of the same leaf. In making a leaf of this kind, a full-size drawing is made just as it should look when modeled. From this drawing a pattern is developed as the leaf would look when in the flat. It is impossible to lay it out accurately. The method used is to find the stretch out of the leaf by measuring along its greatest length. This can be done by using a pair of dividers. The length found is then laid off on the metal. The widest parts of the leaf are then measured and laid on the metal. Having the length and width, the rest can be sketched in. The leaf is now cut out with a narrow cold chisel that can be made to follow the curved line. This cutting should be done while the metal is cold. The leaf shown in the illustration has been fluted with a steel hand-tool. In doing this a tool as shown in [Figure 3] is used. This tool is made smooth, rounded at the base like an ordinary fuller and then hardened. The fluting is also done while the metal is cold. Lines are marked on the metal with a slate pencil and then sunken with the tool and hammer. In modeling the leaf a hammer like the one shown in [Figure 4] is used. It is called the modeling hammer. This hammer has a ball on one end and a pein on the other, both of which are made very smooth and without sharp corners. These hammers are made in various sizes. In modelling the leaf it is heated and hammered on the back side with the ball of the hammer, using the elm block to hammer on. The ends of the lobes are then formed to give the whole a decorative effect. These leaves are generally used in grille work and are welded into position. In [Figure 5] is shown part of a grille with a similar leaf welded on. In welding leaves to the members of grille work the bottom part of the leaf is formed around the bar; caught with a pair of tongs, it is heated, using a flux when hot. It is then taken to the anvil and welded. A small collar is finally welded in front of the leaf as shown in the illustration.

Fig. 5. Grille with Leaf.

The leaves shown in the illustrations are made to cover the grille on but one side. If a grille is to be seen from both sides when in place, the leaves are cut out symmetrically and then bent and modeled to fit over the top and sides of the bars so that they appear finished from both sides. [Figure 6] shows the pattern of such a leaf.

Fig. 6. Pattern of Leaf.

The following exercises will be of a simple nature to give the beginner an idea of the tools and processes used in producing this kind of work by hand. The writer does not claim that the following method is the only one to be used in doing this work. There are many other ways to execute these exercises and one should use his own ingenuity in designing and executing individual pieces. It is hoped that pupils will be encouraged to originate designs of their own to work out in this interesting metal.

The tools used in making these exercises will be the ordinary forge shop tools that can be made, and will be described later on, as they are needed.

Exercise No. 1.

Fig. 7. Volute Scrolls.

Volute Scroll. This exercise is given in order to familiarize one with the bending of curved forms and also to train the hand and eye in doing free-hand work. No metal lends itself more readily to the bending of curves than wrought iron. The scroll is an important element in the designing of iron doors, window grilles, etc. In bending, the scroll must not have kinks or flat places, but a gradual curve. If it is desired to suggest strength, the scroll is coiled tightly; or if lightness of effect is desired, it is coiled loosely. In making a scroll to fit some particular place a drawing is made with chalk on a surface plate. The scroll is then measured along the line with a string to find its length. In [Figure 7] are shown drawings of typical scrolls. The one at A shows too much space between the coils. The scroll at B is top-heavy owing to the coils being equal in size. The one at C has a continuous curve with unequal coils which balance better. In bending a scroll from a flat piece of stock, as shown in [Figure 8], the end is heated and hammered on the corners to make it round at one end. It is then bent over the outer edge of the anvil, as shown in [Figure 9] A and B, to form the eye. It is then heated for a considerable part of its length and rolled up as shown at C. If any kinks get into the bar they can be rectified by hammering on the horn. This is the method used in forming a scroll with the hammer. In heating the bar to be rolled into scroll form, it must not be heated to a white heat. Scrolls are also bent over forms when a great number are wanted. Heavy scrolls are formed by bending in a bending fork that fits into a square hole in the anvil. (See fork in [Figure 10].) A monkey wrench is used to bend the bar when in the fork.

Fig. 8.

Fig. 9.

Fig. 10. Bending Fork.

In [Figure 11] and [Figure 12] are shown grilles which are made from flat stock. The scrolls in this case were made after the bars had been welded in place. They could be made first and then riveted or fastened with iron bands, but welding of course makes a better job.

Fig. 11. Grille.

In [Figure 13] is shown a drawing for a welded scroll. Notice the dotted line at A. This is where the weld is made. At B, the pieces are shown in position to be welded by the separate heat method. In doing this the length is measured on the drawing with a string, and the three pieces cut. The two short ones are upset; and one is laid on top of the other; then heated and welded at the same time they are scarfed. The long piece is upset and welded to the short one. They are then formed.

Fig. 13.

Fig. 12. Grille.