THE PERPETUATION OF LIVING BEINGS, HEREDITARY TRANSMISSION AND VARIATION.

The inquiry which we undertook, at our last meeting, into the state of our knowledge of the causes of the phenomena of organic nature,—of the past and of the present,—resolved itself into two subsidiary inquiries: the first was, whether we know anything, either historically or experimentally, of the mode of origin of living beings; the second subsidiary inquiry was, whether, granting the origin, we know anything about the perpetuation and modifications of the forms of organic beings. The reply which I had to give to the first question was altogether negative, and the chief result of my last lecture was, that, neither historically nor experimentally, do we at present know anything whatsoever about the origin of living forms. We saw that, historically, we are not likely to know anything about it, although we may perhaps learn something experimentally; but that at present we are an enormous distance from the goal I indicated.

I now, then, take up the next question, What do we know of the reproduction, the perpetuation, and the modifications of the forms of living beings, supposing that we have put the question as to their origination on one side, and have assumed that at present the causes of their origination are beyond us, and that we know nothing about them? Upon this question the state of our knowledge is extremely different; it is exceedingly large, and, if not complete, our experience is certainly most extensive. It would be impossible to lay it all before you, and the most I can do, or need do to-night, is to take up the principal points and put them before you with such prominence as may subserve the purposes of our present argument.

The method of the perpetuation of organic beings is of two kinds,—the asexual and the sexual. In the first the perpetuation takes place from and by a particular act of an individual organism, which sometimes may not be classed as belonging to any sex at all. In the second case, it is in consequence of the mutual action and interaction of certain portions of the organisms of usually two distinct individuals,—the male and the female. The cases of asexual perpetuation are by no means so common as the cases of sexual perpetuation; and they are by no means so common in the animal as in the vegetable world. You are all probably familiar with the fact, as a matter of experience, that you can propagate plants by means of what are called "cuttings;" for example, that by taking a cutting from a geranium plant, and rearing it properly, by supplying it with light and warmth and nourishment from the earth, it grows up and takes the form of its parent, having all the properties and peculiarities of the original plant.

Sometimes this process, which the gardener performs artificially, takes place naturally; that is to say, a little bulb, or portion of the plant, detaches itself, drops off, and becomes capable of growing as a separate thing. That is the case with many bulbous plants, which throw off in this way secondary bulbs, which are lodged in the ground and become developed into plants. This is an asexual process, and from it results the repetition or reproduction of the form of the original being from which the bulb proceeds.

Among animals the same thing takes place. Among the lower forms of animal life, the infusorial animalculae we have already spoken of throw off certain portions, or break themselves up in various directions, sometimes transversely or sometimes longitudinally; or they may give off buds, which detach themselves and develop into their proper forms. There is the common fresh-water Polype, for instance, which multiplies itself in this way. Just in the same way as the gardener is able to multiply and reproduce the peculiarities and characters of particular plants by means of cuttings, so can the physiological experimentalist—as was shown by the Abbe Trembley many years ago—so can he do the same thing with many of the lower forms of animal life. M. de Trembley showed that you could take a polype and cut it into two, or four, or many pieces, mutilating it in all directions, and the pieces would still grow up and reproduce completely the original form of the animal. These are all cases of asexual multiplication, and there are other instances, and still more extraordinary ones, in which this process takes place naturally, in a more hidden, a more recondite kind of way. You are all of you familiar with those little green insects, the 'Aphis' or blight, as it is called. These little animals, during a very considerable part of their existence, multiply themselves by means of a kind of internal budding, the buds being developed into essentially asexual animals, which are neither male nor female; they become converted into young 'Aphides', which repeat the process, and their offspring after them, and so on again; you may go on for nine or ten, or even twenty or more successions; and there is no very good reason to say how soon it might terminate, or how long it might not go on if the proper conditions of warmth and nourishment were kept up.

Sexual reproduction is quite a distinct matter. Here, in all these cases, what is required is the detachment of two portions of the parental organisms, which portions we know as the egg and the spermatozoon. In plants it is the ovule and the pollen-grain, as in the flowering plants, or the ovule and the antherozooid, as in the flowerless. Among all forms of animal life, the spermatozoa proceed from the male sex, and the egg is the product of the female. Now, what is remarkable about this mode of reproduction is this, that the egg by itself, or the spermatozoa by themselves, are unable to assume the parental form; but if they be brought into contact with one another, the effect of the mixture of organic substances proceeding from two sources appears to confer an altogether new vigour to the mixed product. This process is brought about, as we all know, by the sexual intercourse of the two sexes, and is called the act of impregnation. The result of this act on the part of the male and female is, that the formation of a new being is set up in the ovule or egg; this ovule or egg soon begins to be divided and subdivided, and to be fashioned into various complex organisms, and eventually to develop into the form of one of its parents, as I explained in the first lecture. These are the processes by which the perpetuation of organic beings is secured. Why there should be the two modes—why this re-invigoration should be required on the part of the female element we do not know; but it is most assuredly the fact, and it is presumable, that, however long the process of asexual multiplication could be continued, I say there is good reason to believe that it would come to an end if a new commencement were not obtained by a conjunction of the two sexual elements.

That character which is common to these two distinct processes is this, that, whether we consider the reproduction, or perpetuation, or modification of organic beings as they take place asexually, or as they may take place sexually,—in either case, I say, the offspring has a constant tendency to assume, speaking generally, the character of the parent. As I said just now, if you take a slip of a plant, and tend it with care, it will eventually grow up and develop into a plant like that from which it had sprung; and this tendency is so strong that, as gardeners know, this mode of multiplying by means of cuttings is the only secure mode of propagating very many varieties of plants; the peculiarity of the primitive stock seems to be better preserved if you propagate it by means of a slip than if you resort to the sexual mode.

Again, in experiments upon the lower animals, such as the polype, to which I have referred, it is most extraordinary that, although cut up into various pieces, each particular piece will grow up into the form of the primitive stock; the head, if separated, will reproduce the body and the tail; and if you cut off the tail, you will find that that will reproduce the body and all the rest of the members, without in any way deviating from the plan of the organism from which these portions have been detached. And so far does this go, that some experimentalists have carefully examined the lower orders of animals,—among them the Abbe Spallanzani, who made a number of experiments upon snails and salamanders,—and have found that they might mutilate them to an incredible extent; that you might cut off the jaw or the greater part of the head, or the leg or the tail, and repeat the experiment several times, perhaps, cutting off the same member again and again; and yet each of those types would be reproduced according to the primitive type: nature making no mistake, never putting on a fresh kind of leg, or head, or tail, but always tending to repeat and to return to the primitive type.

It is the same in sexual reproduction: it is a matter of perfectly common experience, that the tendency on the part of the offspring always is, speaking broadly, to reproduce the form of the parents. The proverb has it that the thistle does not bring forth grapes; so, among ourselves, there is always a likeness, more or less marked and distinct, between children and their parents. That is a matter of familiar and ordinary observation. We notice the same thing occurring in the cases of the domestic animals—dogs, for instance, and their offspring. In all these cases of propagation and perpetuation, there seems to be a tendency in the offspring to take the characters of the parental organisms. To that tendency a special name is given—it is called 'Atavism', it expresses this tendency to revert to the ancestral type, and comes from the Latin word 'atavus', ancestor.

Well, this 'Atavism' which I shall speak of, is, as I said before, one of the most marked and striking tendencies of organic beings; but, side by side with this hereditary tendency there is an equally distinct and remarkable tendency to variation. The tendency to reproduce the original stock has, as it were, its limits, and side by side with it there is a tendency to vary in certain directions, as if there were two opposing powers working upon the organic being, one tending to take it in a straight line, and the other tending to make it diverge from that straight line, first to one side and then to the other.

So that you see these two tendencies need not precisely contradict one another, as the ultimate result may not always be very remote from what would have been the case if the line had been quite straight.

This tendency to variation is less marked in that mode of propagation which takes place asexually; it is in that mode that the minor characters of animal and vegetable structures are most completely preserved. Still, it will happen sometimes, that the gardener, when he has planted a cutting of some favourite plant, will find, contrary to his expectation, that the slip grows up a little different from the primitive stock—that it produces flowers of a different colour or make, or some deviation in one way or another. This is what is called the 'sporting' of plants.

In animals the phenomena of asexual propagation are so obscure, that at present we cannot be said to know much about them; but if we turn to that mode of perpetuation which results from the sexual process, then we find variation a perfectly constant occurrence, to a certain extent; and, indeed, I think that a certain amount of variation from the primitive stock is the necessary result of the method of sexual propagation itself; for, inasmuch as the thing propagated proceeds from two organisms of different sexes and different makes and temperaments, and as the offspring is to be either of one sex or the other, it is quite clear that it cannot be an exact diagonal of the two, or it would be of no sex at all; it cannot be an exact intermediate form between that of each of its parents—it must deviate to one side or the other. You do not find that the male follows the precise type of the male parent, nor does the female always inherit the precise characteristics of the mother,—there is always a proportion of the female character in the male offspring, and of the male character in the female offspring. That must be quite plain to all of you who have looked at all attentively on your own children or those of your neighbours; you will have noticed how very often it may happen that the son shall exhibit the maternal type of character, or the daughter possess the characteristics of the father's family. There are all sorts of intermixtures and intermediate conditions between the two, where complexion, or beauty, or fifty other different peculiarities belonging to either side of the house, are reproduced in other members of the same family. Indeed, it is sometimes to be remarked in this kind of variation, that the variety belongs, strictly speaking, to neither of the immediate parents; you will see a child in a family who is not like either its father or its mother; but some old person who knew its grandfather or grandmother, or, it may be, an uncle, or, perhaps, even a more distant relative, will see a great similarity between the child and one of these. In this way it constantly happens that the characteristic of some previous member of the family comes out and is reproduced and recognised in the most unexpected manner.

But apart from that matter of general experience, there are some cases which put that curious mixture in a very clear light. You are aware that the offspring of the Ass and the Horse, or rather of the he-Ass and the Mare, is what is called a Mule; and, on the other hand, the offspring of the Stallion and the she-Ass is what is called a 'Hinny'. I never saw one myself; but they have been very carefully studied. Now, the curious thing is this, that although you have the same elements in the experiment in each case, the offspring is entirely different in character, according as the male influence comes from the Ass or the Horse. Where the Ass is the male, as in the case of the Mule, you find that the head is like that of the Ass, that the ears are long, the tail is tufted at the end, the feet are small, and the voice is an unmistakable bray; these are all points of similarity to the Ass; but, on the other hand, the barrel of the body and the cut of the neck are much more like those of the Mare. Then, if you look at the Hinny,—the result of the union of the Stallion and the she-Ass, then you find it is the Horse that has the predominance; that the head is more like that of the Horse, the ears are shorter, the legs coarser, and the type is altogether altered; while the voice, instead of being a bray, is the ordinary neigh of the Horse. Here, you see, is a most curious thing: you take exactly the same elements, Ass and Horse, but you combine the sexes in a different manner, and the result is modified accordingly. You have in this case, however, a result which is not general and universal—there is usually an important preponderance, but not always on the same side.

Here, then, is one intelligible, and, perhaps, necessary cause of variation: the fact, that there are two sexes sharing in the production of the offspring, and that the share taken by each is different and variable, not only for each combination, but also for different members of the same family.

Secondly, there is a variation, to a certain extent—though, in all probability, the influence of this cause has been very much exaggerated—but there is no doubt that variation is produced, to a certain extent, by what are commonly known as external conditions,—such as temperature, food, warmth, and moisture. In the long run, every variation depends, in some sense, upon external conditions, seeing that everything has a cause of its own. I use the term "external conditions" now in the sense in which it is ordinarily employed: certain it is, that external conditions have a definite effect. You may take a plant which has single flowers, and by dealing with the soil, and nourishment, and so on, you may by-and-by convert single flowers into double flowers, and make thorns shoot out into branches. You may thicken or make various modifications in the shape of the fruit. In animals, too, you may produce analogous changes in this way, as in the case of that deep bronze colour which persons rarely lose after having passed any length of time in tropical countries. You may also alter the development of the muscles very much, by dint of training; all the world knows that exercise has a great effect in this way; we always expect to find the arm of a blacksmith hard and wiry, and possessing a large development of the brachial muscles. No doubt training, which is one of the forms of external conditions, converts what are originally only instructions, teachings, into habits, or, in other words, into organizations, to a great extent; but this second cause of variation cannot be considered to be by any means a large one. The third cause that I have to mention, however, is a very extensive one. It is one that, for want of a better name, has been called "spontaneous variation;" which means that when we do not know anything about the cause of phenomena, we call it spontaneous. In the orderly chain of causes and effects in this world, there are very few things of which it can be said with truth that they are spontaneous. Certainly not in these physical matters,—in these there is nothing of the kind,—everything depends on previous conditions. But when we cannot trace the cause of phenomena, we call them spontaneous.

Of these variations, multitudinous as they are, but little is known with perfect accuracy. I will mention to you some two or three cases, because they are very remarkable in themselves, and also because I shall want to use them afterwards. Reaumur, a famous French naturalist, a great many years ago, in an essay which he wrote upon the art of hatching chickens,—which was indeed a very curious essay,—had occasion to speak of variations and monstrosities. One very remarkable case had come under his notice of a variation in the form of a human member, in the person of a Maltese, of the name of Gratio Kelleia, who was born with six fingers upon each hand, and the like number of toes to each of his feet. That was a case of spontaneous variation. Nobody knows why he was born with that number of fingers and toes, and as we don't know, we call it a case of "spontaneous" variation. There is another remarkable case also. I select these, because they happen to have been observed and noted very carefully at the time. It frequently happens that a variation occurs, but the persons who notice it do not take any care in noting down the particulars, until at length, when inquiries come to be made, the exact circumstances are forgotten; and hence, multitudinous as may be such "spontaneous" variations, it is exceedingly difficult to get at the origin of them.

The second case is one of which you may find the whole details in the "Philosophical Transactions" for the year 1813, in a paper communicated by Colonel Humphrey to the President of the Royal Society,—"On a new Variety in the Breed of Sheep," giving an account of a very remarkable breed of sheep, which at one time was well known in the northern states of America, and which went by the name of the Ancon or the Otter breed of sheep. In the year 1791, there was a farmer of the name of Seth Wright in Massachusetts, who had a flock of sheep, consisting of a ram and, I think, of some twelve or thirteen ewes. Of this flock of ewes, one at the breeding-time bore a lamb which was very singularly formed; it had a very long body, very short legs, and those legs were bowed! I will tell you by-and-by how this singular variation in the breed of sheep came to be noted, and to have the prominence that it now has. For the present, I mention only these two cases; but the extent of variation in the breed of animals is perfectly obvious to any one who has studied natural history with ordinary attention, or to any person who compares animals with others of the same kind. It is strictly true that there are never any two specimens which are exactly alike; however similar, they will always differ in some certain particular.

Now let us go back to Atavism,—to the hereditary tendency I spoke of. What will come of a variation when you breed from it, when Atavism comes, if I may say so, to intersect variation? The two cases of which I have mentioned the history, give a most excellent illustration of what occurs. Gratio Kelleia, the Maltese, married when he was twenty-two years of age, and, as I suppose there were no six-fingered ladies in Malta, he married an ordinary five-fingered person. The result of that marriage was four children; the first, who was christened Salvator, had six fingers and six toes, like his father; the second was George, who had five fingers and toes, but one of them was deformed, showing a tendency to variation; the third was Andre; he had five fingers and five toes, quite perfect; the fourth was a girl, Marie; she had five fingers and five toes, but her thumbs were deformed, showing a tendency toward the sixth.

These children grew up, and when they came to adult years, they all married, and of course it happened that they all married five-fingered and five-toed persons. Now let us see what were the results. Salvator had four children; they were two boys, a girl, and another boy; the first two boys and the girl were six-fingered and six-toed like their grandfather; the fourth boy had only five fingers and five toes. George had only four children; there were two girls with six fingers and six toes; there was one girl with six fingers and five toes on the right side, and five fingers and five toes on the left side, so that she was half and half. The last, a boy, had five fingers and five toes. The third, Andre, you will recollect, was perfectly well-formed, and he had many children whose hands and feet were all regularly developed. Marie, the last, who, of course, married a man who had only five fingers, had four children; the first, a boy, was born with six toes, but the other three were normal.

Now observe what very extraordinary phenomena are presented here. You have an accidental variation arising from what you may call a monstrosity; you have that monstrosity tendency or variation diluted in the first instance by an admixture with a female of normal construction, and you would naturally expect that, in the results of such an union, the monstrosity, if repeated, would be in equal proportion with the normal type; that is to say, that the children would be half and half, some taking the peculiarity of the father, and the others being of the purely normal type of the mother; but you see we have a great preponderance of the abnormal type. Well, this comes to be mixed once more with the pure, the normal type, and the abnormal is again produced in large proportion, notwithstanding the second dilution. Now what would have happened if these abnormal types had intermarried with each other; that is to say, suppose the two boys of Salvator had taken it into their heads to marry their first cousins, the two first girls of George, their uncle? You will remember that these are all of the abnormal type of their grandfather. The result would probably have been, that their offspring would have been in every case a further development of that abnormal type. You see it is only in the fourth, in the person of Marie, that the tendency, when it appears but slightly in the second generation, is washed out in the third, while the progeny of Andre, who escaped in the first instance, escape altogether.

We have in this case a good example of nature's tendency to the perpetuation of a variation. Here it is certainly a variation which carried with it no use or benefit; and yet you see the tendency to perpetuation may be so strong, that, notwithstanding a great admixture of pure blood, the variety continues itself up to the third generation, which is largely marked with it. In this case, as I have said, there was no means of the second generation intermarrying with any but five-fingered persons, and the question naturally suggests itself, What would have been the result of such marriage? Reaumur narrates this case only as far as the third generation. Certainly it would have been an exceedingly curious thing if we could have traced this matter any further; had the cousins intermarried, a six-fingered variety of the human race might have been set up.

To show you that this supposition is by no means an unreasonable one, let me now point out what took place in the case of Seth Wright's sheep, where it happened to be a matter of moment to him to obtain a breed or raise a flock of sheep like that accidental variety that I have described—and I will tell you why. In that part of Massachusetts where Seth Wright was living, the fields were separated by fences, and the sheep, which were very active and robust, would roam abroad, and without much difficulty jump over these fences into other people's farms. As a matter of course, this exuberant activity on the part of the sheep constantly gave rise to all sorts of quarrels, bickerings, and contentions among the farmers of the neighbourhood; so it occurred to Seth Wright, who was, like his successors, more or less 'cute, that if he could get a stock of sheep like those with the bandy legs, they would not be able to jump over the fences so readily, and he acted upon that idea. He killed his old ram, and as soon as the young one arrived at maturity, he bred altogether from it. The result was even more striking than in the human experiment which I mentioned just now. Colonel Humphreys testifies that it always happened that the offspring were either pure Ancons or pure ordinary sheep; that in no case was there any mixing of the Ancons with the others. In consequence of this, in the course of a very few years, the farmer was able to get a very considerable flock of this variety, and a large number of them were spread throughout Massachusetts. Most unfortunately, however—I suppose it was because they were so common—nobody took enough notice of them to preserve their skeletons; and although Colonel Humphreys states that he sent a skeleton to the President of the Royal Society at the same time that he forwarded his paper, I am afraid that the variety has entirely disappeared; for a short time after these sheep had become prevalent in that district, the Merino sheep were introduced; and as their wool was much more valuable, and as they were a quiet race of sheep, and showed no tendency to trespass or jump over fences, the Otter breed of sheep, the wool of which was inferior to that of the Merino, was gradually allowed to die out.

You see that these facts illustrate perfectly well what may be done if you take care to breed from stocks that are similar to each other. After having got a variation, if, by crossing a variation with the original stock, you multiply that variation, and then take care to keep that variation distinct from the original stock, and make them breed together,—then you may almost certainly produce a race whose tendency to continue the variation is exceedingly strong.

This is what is called "selection"; and it is by exactly the same process as that by which Seth Wright bred his Ancon sheep, that our breeds of cattle, dogs, and fowls, are obtained. There are some possibilities of exception, but still, speaking broadly, I may say that this is the way in which all our varied races of domestic animals have arisen; and you must understand that it is not one peculiarity or one characteristic alone in which animals may vary. There is not a single peculiarity or characteristic of any kind, bodily or mental, in which offspring may not vary to a certain extent from the parent and other animals.

Among ourselves this is well known. The simplest physical peculiarity is mostly reproduced. I know a case of a man whose wife has the lobe of one of her ears a little flattened. An ordinary observer might scarcely notice it, and yet every one of her children has an approximation to the same peculiarity to some extent. If you look at the other extreme, too, the gravest diseases, such as gout, scrofula, and consumption, may be handed down with just the same certainty and persistence as we noticed in the perpetuation of the bandy legs of the Ancon sheep.

However, these facts are best illustrated in animals, and the extent of the variation, as is well known, is very remarkable in dogs. For example, there are some dogs very much smaller than others; indeed, the variation is so enormous that probably the smallest dog would be about the size of the head of the largest; there are very great variations in the structural forms not only of the skeleton but also in the shape of the skull, and in the proportions of the face and the disposition of the teeth.

The Pointer, the Retriever, Bulldog, and the Terrier, differ very greatly, and yet there is every reason to believe that every one of these races has arisen from the same source,—that all the most important races have arisen by this selective breeding from accidental variation.

A still more striking case of what may be done by selective breeding, and it is a better case, because there is no chance of that partial infusion of error to which I alluded, has been studied very carefully by Mr. Darwin,—the case of the domestic pigeons. I dare say there may be some among you who may be pigeon 'fanciers', and I wish you to understand that in approaching the subject, I would speak with all humility and hesitation, as I regret to say that I am not a pigeon fancier. I know it is a great art and mystery, and a thing upon which a man must not speak lightly; but I shall endeavour, as far as my understanding goes, to give you a summary of the published and unpublished information which I have gained from Mr. Darwin.

Among the enormous variety,—I believe there are somewhere about a hundred and fifty kinds of pigeons,—there are four kinds which may be selected as representing the extremest divergences of one kind from another. Their names are the Carrier, the Pouter, the Fantail, and the Tumbler. In the large diagrams they are each represented in their relative sizes to each other. This first one is the Carrier; you will notice this large excrescence on its beak; it has a comparatively small head; there is a bare space round the eyes; it has a long neck, a very long beak, very strong legs, large feet, long wings, and so on. The second one is the Pouter, a very large bird, with very long legs and beak. It is called the Pouter because it is in the habit of causing its gullet to swell up by inflating it with air. I should tell you that all pigeons have a tendency to do this at times, but in the Pouter it is carried to an enormous extent. The birds appear to be quite proud of their power of swelling and puffing themselves out in this way; and I think it is about as droll a sight as you can well see to look at a cage full of these pigeons puffing and blowing themselves out in this ridiculous manner.

The third kind I mentioned—the Fantail—is a small bird, with exceedingly small legs and a very small beak. It is most curiously distinguished by the size and extent of its tail, which, instead of containing twelve feathers, may have many more,—say thirty, or even more—I believe there are some with as many as forty-two. This bird has a curious habit of spreading out the feathers of its tail in such a way that they reach forward, and touch its head; and if this can be accomplished, I believe it is looked upon as a point of great beauty.

But here is the last great variety,—the Tumbler; and of that great variety, one of the principal kinds, and one most prized, is the specimen represented here—the short-faced Tumbler. Its beak is reduced to a mere nothing. Just compare the beak of this one and that of the first one, the Carrier—I believe the orthodox comparison of the head and beak of a thoroughly well-bred Tumbler is to stick an oat into a cherry, and that will give you the proper relative proportions of the head and beak. The feet and legs are exceedingly small, and the bird appears to be quite a dwarf when placed side by side with this great Carrier.

These are differences enough in regard to their external appearance; but these differences are by no means the whole or even the most important of the differences which obtain between these birds. There is hardly a single point of their structure which has not become more or less altered; and to give you an idea of how extensive these alterations are, I have here some very good skeletons, for which I am indebted to my friend, Mr. Tegetmeier, a great authority in these matters; by means of which, if you examine them by-and-by, you will be able to see the enormous difference in their bony structures.

I had the privilege, some time ago, of access to some important MSS. of Mr. Darwin, who, I may tell you, has taken very great pains and spent much valuable time and attention on the investigation of these variations, and getting together all the facts that bear upon them. I obtained from these MSS. the following summary of the differences between the domestic breeds of pigeons; that is to say, a notification of the various points in which their organization differs. In the first place, the back of the skull may differ a good deal, and the development of the bones of the face may vary a great deal; the back varies a good deal; the shape of the lower jaw varies; the tongue varies very greatly, not only in correlation to the length and size of the beak, but it seems also to have a kind of independent variation of its own. Then the amount of naked skin round the eyes, and at the base of the beak, may vary enormously; so may the length of the eyelids, the shape of the nostrils, and the length of the neck. I have already noticed the habit of blowing out the gullet, so remarkable in the Pouter, and comparatively so in the others. There are great differences, too, in the size of the female and the male, the shape of the body, the number and width of the processes of the ribs, the development of the ribs, and the size, shape, and development of the breastbone. We may notice, too,—and I mention the fact because it has been disputed by what is assumed to be high authority,—the variation in the number of the sacral vertebrae. The number of these varies from eleven to fourteen, and that without any diminution in the number of the vertebrae of the back or of the tail. Then the number and position of the tail-feathers may vary enormously, and so may the number of the primary and secondary feathers of the wings. Again, the length of the feet and of the beak,—although they have no relation to each other, yet appear to go together,—that is, you have a long beak wherever you have long feet. There are differences also in the periods of the acquirement of the perfect plumage,—the size and shape of the eggs,—the nature of flight, and the powers of flight,—so-called "homing" birds having enormous flying powers;* ([Footnote] *The "Carrier," I learn from Mr. Tegetmeier, does not 'carry'; a high-bred bird of this breed being but a poor flier. The birds which fly long distances, and come home,—"homing" birds,—and are consequently used as carriers, are not "carriers" in the fancy sense.) while, on the other hand, the little Tumbler is so called because of its extraordinary faculty of turning head over heels in the air, instead of pursuing a direct course. And, lastly, the dispositions and voices of the birds may vary. Thus the case of the pigeons shows you that there is hardly a single particular,—whether of instinct, or habit, or bony structure, or of plumage,—of either the internal economy or the external shape, in which some variation or change may not take place, which, by selective breeding, may become perpetuated, and form the foundation of, and give rise to, a new race.

If you carry in your mind's eye these four varieties of pigeons, you will bear with you as good a notion as you can have, perhaps, of the enormous extent to which a deviation from a primitive type may be carried by means of this process of selective breeding.

End of The Perpetuation of Living Beings.

[ [!-- H2 anchor --] ]

THE CONDITIONS OF EXISTENCE AS AFFECTING THE PERPETUATION OF LIVING BEINGS.

In the last Lecture I endeavoured to prove to you that, while, as a general rule, organic beings tend to reproduce their kind, there is in them, also, a constantly recurring tendency to vary—to vary to a greater or to a less extent. Such a variety, I pointed out to you, might arise from causes which we do not understand; we therefore called it spontaneous; and it might come into existence as a definite and marked thing, without any gradations between itself and the form which preceded it. I further pointed out, that such a variety having once arisen, might be perpetuated to some extent, and indeed to a very marked extent, without any direct interference, or without any exercise of that process which we called selection. And then I stated further, that by such selection, when exercised artificially—if you took care to breed only from those forms which presented the same peculiarities of any variety which had arisen in this manner—the variation might be perpetuated, as far as we can see, indefinitely.

The next question, and it is an important one for us, is this: Is there any limit to the amount of variation from the primitive stock which can be produced by this process of selective breeding? In considering this question, it will be useful to class the characteristics, in respect of which organic beings vary, under two heads: we may consider structural characteristics, and we may consider physiological characteristics.

In the first place, as regards structural characteristics, I endeavoured to show you, by the skeletons which I had upon the table, and by reference to a great many well-ascertained facts, that the different breeds of Pigeons, the Carriers, Pouters, and Tumblers, might vary in any of their internal and important structural characters to a very great degree; not only might there be changes in the proportions of the skull, and the characters of the feet and beaks, and so on; but that there might be an absolute difference in the number of the vertebrae of the back, as in the sacral vertebrae of the Pouter; and so great is the extent of the variation in these and similar characters that I pointed out to you, by reference to the skeletons and the diagrams, that these extreme varieties may absolutely differ more from one another in their structural characters than do what naturalists call distinct SPECIES of pigeons; that is to say, that they differ so much in structure that there is a greater difference between the Pouter and the Tumbler than there is between such wild and distinct forms as the Rock Pigeon or the Ring Pigeon, or the Ring Pigeon and the Stock Dove; and indeed the differences are of greater value than this, for the structural differences between these domesticated pigeons are such as would be admitted by a naturalist, supposing he knew nothing at all about their origin, to entitle them to constitute even distinct genera.

As I have used this term SPECIES, and shall probably use it a good deal, I had better perhaps devote a word or two to explaining what I mean by it.

Animals and plants are divided into groups, which become gradually smaller, beginning with a KINGDOM, which is divided into SUB-KINGDOMS; then come the smaller divisions called PROVINCES; and so on from a PROVINCE to a CLASS from a CLASS to an ORDER, from ORDERS to FAMILIES, and from these to GENERA, until we come at length to the smallest groups of animals which can be defined one from the other by constant characters, which are not sexual; and these are what naturalists call SPECIES in practice, whatever they may do in theory.

If, in a state of nature, you find any two groups of living beings, which are separated one from the other by some constantly-recurring characteristic, I don't care how slight and trivial, so long as it is defined and constant, and does not depend on sexual peculiarities, then all naturalists agree in calling them two species; that is what is meant by the use of the word species—that is to say, it is, for the practical naturalist, a mere question of structural differences.* ([Footnote] * I lay stress here on the PRACTICAL signification of "Species." Whether a physiological test between species exist or not, it is hardly ever applicable by the practical naturalist.)

We have seen now—to repeat this point once more, and it is very essential that we should rightly understand it—we have seen that breeds, known to have been derived from a common stock by selection, may be as different in their structure from the original stock as species may be distinct from each other.

But is the like true of the physiological characteristics of animals? Do the physiological differences of varieties amount in degree to those observed between forms which naturalists call distinct species? This is a most important point for us to consider.

As regards the great majority of physiological characteristics, there is no doubt that they are capable of being developed, increased, and modified by selection.

There is no doubt that breeds may be made as different as species in many physiological characters. I have already pointed out to you very briefly the different habits of the breeds of Pigeons, all of which depend upon their physiological peculiarities,—as the peculiar habit of tumbling, in the Tumbler—the peculiarities of flight, in the "homing" birds,—the strange habit of spreading out the tail, and walking in a peculiar fashion, in the Fantail,—and, lastly, the habit of blowing out the gullet, so characteristic of the Pouter. These are all due to physiological modifications, and in all these respects these birds differ as much from each other as any two ordinary species do.

So with Dogs in their habits and instincts. It is a physiological peculiarity which leads the Greyhound to chase its prey by sight,—that enables the Beagle to track it by the scent,—that impels the Terrier to its rat-hunting propensity,—and that leads the Retriever to its habit of retrieving. These habits and instincts are all the results of physiological differences and peculiarities, which have been developed from a common stock, at least there is every reason to believe so. But it is a most singular circumstance, that while you may run through almost the whole series of physiological processes, without finding a check to your argument, you come at last to a point where you do find a check, and that is in the reproductive processes. For there is a most singular circumstance in respect to natural species—at least about some of them—and it would be sufficient for the purposes of this argument if it were true of only one of them, but there is, in fact, a great number of such cases—and that is, that, similar as they may appear to be to mere races or breeds, they present a marked peculiarity in the reproductive process. If you breed from the male and female of the same race, you of course have offspring of the like kind, and if you make the offspring breed together, you obtain the same result, and if you breed from these again, you will still have the same kind of offspring; there is no check. But if you take members of two distinct species, however similar they may be to each other and make them breed together, you will find a check, with some modifications and exceptions, however, which I shall speak of presently. If you cross two such species with each other, then,—although you may get offspring in the case of the first cross, yet, if you attempt to breed from the products of that crossing, which are what are called HYBRIDS—that is, if you couple a male and a female hybrid—then the result is that in ninety-nine cases out of a hundred you will get no offspring at all; there will be no result whatsoever.

The reason of this is quite obvious in some cases; the male hybrids, although possessing all the external appearances and characteristics of perfect animals, are physiologically imperfect and deficient in the structural parts of the reproductive elements necessary to generation. It is said to be invariably the case with the male mule, the cross between the Ass and the Mare; and hence it is, that, although crossing the Horse with the Ass is easy enough, and is constantly done, as far as I am aware, if you take two mules, a male and a female, and endeavour to breed from them, you get no offspring whatever; no generation will take place. This is what is called the sterility of the hybrids between two distinct species.

You see that this is a very extraordinary circumstance; one does not see why it should be. The common teleological explanation is, that it is to prevent the impurity of the blood resulting from the crossing of one species with another, but you see it does not in reality do anything of the kind. There is nothing in this fact that hybrids cannot breed with each other, to establish such a theory; there is nothing to prevent the Horse breeding with the Ass, or the Ass with the Horse. So that this explanation breaks down, as a great many explanations of this kind do, that are only founded on mere assumptions.

Thus you see that there is a great difference between "mongrels," which are crosses between distinct races, and "hybrids," which are crosses between distinct species. The mongrels are, so far as we know, fertile with one another. But between species, in many cases, you cannot succeed in obtaining even the first cross: at any rate it is quite certain that the hybrids are often absolutely infertile one with another.

Here is a feature, then, great or small as it may be, which distinguishes natural species of animals. Can we find any approximation to this in the different races known to be produced by selective breeding from a common stock? Up to the present time the answer to that question is absolutely a negative one. As far as we know at present, there is nothing approximating to this check. In crossing the breeds between the Fantail and the Pouter, the Carrier and the Tumbler, or any other variety or race you may name—so far as we know at present—there is no difficulty in breeding together the mongrels. Take the Carrier and the Fantail, for instance, and let them represent the Horse and the Ass in the case of distinct species; then you have, as the result of their breeding, the Carrier-Fantail mongrel,—we will say the male and female mongrel,—and, as far as we know, these two when crossed would not be less fertile than the original cross, or than Carrier with Carrier. Here, you see, is a physiological contrast between the races produced by selective modification and natural species. I shall inquire into the value of this fact, and of some modifying circumstances by and by; for the present I merely put it broadly before you.

But while considering this question of the limitations of species, a word must be said about what is called RECURRENCE—the tendency of races which have been developed by selective breeding from varieties to return to their primitive type. This is supposed by many to put an absolute limit to the extent of selective and all other variations. People say, "It is all very well to talk about producing these different races, but you know very well that if you turned all these birds wild, these Pouters, and Carriers, and so on, they would all return to their primitive stock." This is very commonly assumed to be a fact, and it is an argument that is commonly brought forward as conclusive; but if you will take the trouble to inquire into it rather closely, I think you will find that it is not worth very much. The first question of course is, Do they thus return to the primitive stock? And commonly as the thing is assumed and accepted, it is extremely difficult to get anything like good evidence of it. It is constantly said, for example, that if domesticated Horses are turned wild, as they have been in some parts of Asia Minor and South America, that they return at once to the primitive stock from which they were bred. But the first answer that you make to this assumption is, to ask who knows what the primitive stock was; and the second answer is, that in that case the wild Horses of Asia Minor ought to be exactly like the wild Horses of South America. If they are both like the same thing, they ought manifestly to be like each other! The best authorities, however, tell you that it is quite different. The wild Horse of Asia is said to be of a dun colour, with a largish head, and a great many other peculiarities; while the best authorities on the wild Horses of South America tell you that there is no similarity between their wild Horses and those of Asia Minor; the cut of their heads is very different, and they are commonly chestnut or bay-coloured. It is quite clear, therefore, that as by these facts there ought to have been two primitive stocks, they go for nothing in support of the assumption that races recur to one primitive stock, and so far as this evidence is concerned, it falls to the ground.

Suppose for a moment that it were so, and that domesticated races, when turned wild, did return to some common condition, I cannot see that this would prove much more than that similar conditions are likely to produce similar results; and that when you take back domesticated animals into what we call natural conditions, you do exactly the same thing as if you carefully undid all the work you had gone through, for the purpose of bringing the animal from its wild to its domesticated state. I do not see anything very wonderful in the fact, if it took all that trouble to get it from a wild state, that it should go back into its original state as soon as you removed the conditions which produced the variation to the domesticated form. There is an important fact, however, forcibly brought forward by Mr. Darwin, which has been noticed in connection with the breeding of domesticated pigeons; and it is, that however different these breeds of pigeons may be from each other, and we have already noticed the great differences in these breeds, that if, among any of those variations, you chance to have a blue pigeon turn up, it will be sure to have the black bars across the wings, which are characteristic of the original wild stock, the Rock Pigeon.

Now, this is certainly a very remarkable circumstance; but I do not see myself how it tells very strongly either one way or the other. I think, in fact, that this argument in favour of recurrence to the primitive type might prove a great deal too much for those who so constantly bring it forward. For example, Mr. Darwin has very forcibly urged, that nothing is commoner than if you examine a dun horse—and I had an opportunity of verifying this illustration lately, while in the islands of the West Highlands, where there are a great many dun horses—to find that horse exhibit a long black stripe down his back, very often stripes on his shoulder, and very often stripes on his legs. I, myself, saw a pony of this description a short time ago, in a baker's cart, near Rothesay, in Bute: it had the long stripe down the back, and stripes on the shoulders and legs, just like those of the Ass, the Quagga, and the Zebra. Now, if we interpret the theory of recurrence as applied to this case, might it not be said that here was a case of a variation exhibiting the characters and conditions of an animal occupying something like an intermediate position between the Horse, the Ass, the Quagga, and the Zebra, and from which these had been developed? In the same way with regard even to Man. Every anatomist will tell you that there is nothing commoner, in dissecting the human body, than to meet with what are called muscular variations—that is, if you dissect two bodies very carefully, you will probably find that the modes of attachment and insertion of the muscles are not exactly the same in both, there being great peculiarities in the mode in which the muscles are arranged; and it is very singular, that in some dissections of the human body you will come upon arrangements of the muscles very similar indeed to the same parts in the Apes. Is the conclusion in that case to be, that this is like the black bars in the case of the Pigeon, and that it indicates a recurrence to the primitive type from which the animals have been probably developed? Truly, I think that the opponents of modification and variation had better leave the argument of recurrence alone, or it may prove altogether too strong for them.

To sum up—the evidence as far as we have gone is against the argument as to any limit to divergences, so far as structure is concerned; and in favour of a physiological limitation. By selective breeding we can produce structural divergences as great as those of species, but we cannot produce equal physiological divergences. For the present I leave the question there.

Now, the next problem that lies before us—and it is an extremely important one—is this: Does this selective breeding occur in nature? Because, if there is no proof of it, all that I have been telling you goes for nothing in accounting for the origin of species. Are natural causes competent to play the part of selection in perpetuating varieties? Here we labour under very great difficulties. In the last lecture I had occasion to point out to you the extreme difficulty of obtaining evidence even of the first origin of those varieties which we know to have occurred in domesticated animals. I told you, that almost always the origin of these varieties is overlooked, so that I could only produce two of three cases, as that of Gratio Kelleia and of the Ancon sheep. People forget, or do not take notice of them until they come to have a prominence; and if that is true of artificial cases, under our own eyes, and in animals in our own care, how much more difficult it must be to have at first hand good evidence of the origin of varieties in nature! Indeed, I do not know that it is possible by direct evidence to prove the origin of a variety in nature, or to prove selective breeding; but I will tell you what we can prove—and this comes to the same thing—that varieties exist in nature within the limits of species, and, what is more, that when a variety has come into existence in nature, there are natural causes and conditions, which are amply competent to play the part of a selective breeder; and although that is not quite the evidence that one would like to have—though it is not direct testimony—yet it is exceeding good and exceedingly powerful evidence in its way.

As to the first point, of varieties existing among natural species, I might appeal to the universal experience of every naturalist, and of any person who has ever turned any attention at all to the characteristics of plants and animals in a state of nature; but I may as well take a few definite cases, and I will begin with Man himself.

I am one of those who believe that, at present, there is no evidence whatever for saying, that mankind sprang originally from any more than a single pair; I must say, that I cannot see any good ground whatever, or even any tenable sort of evidence, for believing that there is more than one species of Man. Nevertheless, as you know, just as there are numbers of varieties in animals, so there are remarkable varieties of men. I speak not merely of those broad and distinct variations which you see at a glance. Everybody, of course, knows the difference between a Negro and a white man, and can tell a Chinaman from an Englishman. They each have peculiar characteristics of colour and physiognomy; but you must recollect that the characters of these races go very far deeper—they extend to the bony structure, and to the characters of that most important of all organs to us—the brain; so that, among men belonging to different races, or even within the same race, one man shall have a brain a third, or half, or even seventy per cent. bigger than another; and if you take the whole range of human brains, you will find a variation in some cases of a hundred per cent. Apart from these variations in the size of the brain, the characters of the skull vary. Thus if I draw the figures of a Mongul and of a Negro head on the blackboard, in the case of the last the breadth would be about seven-tenths, and in the other it would be nine-tenths of the total length. So that you see there is abundant evidence of variation among men in their natural condition. And if you turn to other animals there is just the same thing. The fox, for example, which has a very large geographical distribution all over Europe, and parts of Asia, and on the American Continent, varies greatly. There are mostly large foxes in the North, and smaller ones in the South. In Germany alone, the foresters reckon some eight different sorts.

Of the tiger, no one supposes that there is more than one species; they extend from the hottest parts of Bengal, into the dry, cold, bitter steppes of Siberia, into a latitude of 50 degrees,—so that they may even prey upon the reindeer. These tigers have exceedingly different characteristics, but still they all keep their general features, so that there is no doubt as to their being tigers. The Siberian tiger has a thick fur, a small mane, and a longitudinal stripe down the back, while the tigers of Java and Sumatra differ in many important respects from the tigers of Northern Asia. So lions vary; so birds vary; and so, if you go further back and lower down in creation, you find that fishes vary. In different streams, in the same country even, you will find the trout to be quite different to each other and easily recognisable by those who fish in the particular streams. There is the same differences in leeches; leech collectors can easily point out to you the differences and the peculiarities which you yourself would probably pass by; so with fresh-water mussels; so, in fact, with every animal you can mention.

In plants there is the same kind of variation. Take such a case even as the common bramble. The botanists are all at war about it; some of them wanting to make out that there are many species of it, and others maintaining that they are but many varieties of one species; and they cannot settle to this day which is a species and which is a variety!

So that there can be no doubt whatsoever that any plant and any animal may vary in nature; that varieties may arise in the way I have described,—as spontaneous varieties,—and that those varieties may be perpetuated in the same way that I have shown you spontaneous varieties are perpetuated; I say, therefore, that there can be no doubt as to the origin and perpetuation of varieties in nature.

But the question now is:—Does selection take place in nature? is there anything like the operation of man in exercising selective breeding, taking place in nature? You will observe that, at present, I say nothing about species; I wish to confine myself to the consideration of the production of those natural races which everybody admits to exist. The question is, whether in nature there are causes competent to produce races, just in the same way as man is able to produce by selection, such races of animals as we have already noticed.

When a variety has arisen, the CONDITIONS OF EXISTENCE are such as to exercise an influence which is exactly comparable to that of artificial selection. By Conditions of Existence I mean two things,—there are conditions which are furnished by the physical, the inorganic world, and there are conditions of existence which are furnished by the organic world. There is, in the first place, CLIMATE; under that head I include only temperature and the varied amount of moisture of particular places. In the next place there is what is technically called STATION, which means—given the climate, the particular kind of place in which an animal or a plant lives or grows; for example, the station of a fish is in the water, of a fresh-water fish in fresh water; the station of a marine fish is in the sea, and a marine animal may have a station higher or deeper. So again with land animals: the differences in their stations are those of different soils and neighbourhoods; some being best adapted to a calcareous, and others to an arenaceous soil. The third condition of existence is FOOD, by which I mean food in the broadest sense, the supply of the materials necessary to the existence of an organic being; in the case of a plant the inorganic matters, such as carbonic acid, water, ammonia, and the earthy salts or salines; in the case of the animal the inorganic and organic matters, which we have seen they require; then these are all, at least the two first, what we may call the inorganic or physical conditions of existence. Food takes a mid-place, and then come the organic conditions; by which I mean the conditions which depend upon the state of the rest of the organic creation, upon the number and kind of living beings, with which an animal is surrounded. You may class these under two heads: there are organic beings, which operate as 'opponents', and there are organic beings which operate as 'helpers' to any given organic creature. The opponents may be of two kinds: there are the 'indirect opponents', which are what we may call 'rivals'; and there are the 'direct opponents', those which strive to destroy the creature; and these we call 'enemies'. By rivals I mean, of course, in the case of plants, those which require for their support the same kind of soil and station, and, among animals, those which require the same kind of station, or food, or climate; those are the indirect opponents; the direct opponents are, of course, those which prey upon an animal or vegetable. The 'helpers' may also be regarded as direct and indirect: in the case of a carnivorous animal, for example, a particular herbaceous plant may in multiplying be an indirect helper, by enabling the herbivora on which the carnivore preys to get more food, and thus to nourish the carnivore more abundantly; the direct helper may be best illustrated by reference to some parasitic creature, such as the tape-worm. The tape-worm exists in the human intestines, so that the fewer there are of men the fewer there will be of tape-worms, other things being alike. It is a humiliating reflection, perhaps, that we may be classed as direct helpers to the tape-worm, but the fact is so: we can all see that if there were no men there would be no tape-worms.

It is extremely difficult to estimate, in a proper way, the importance and the working of the Conditions of Existence. I do not think there were any of us who had the remotest notion of properly estimating them until the publication of Mr. Darwin's work, which has placed them before us with remarkable clearness; and I must endeavour, as far as I can in my own fashion, to give you some notion of how they work. We shall find it easiest to take a simple case, and one as free as possible from every kind of complication.

I will suppose, therefore, that all the habitable part of this globe—the dry land, amounting to about 51,000,000 square miles,—I will suppose that the whole of that dry land has the same climate, and that it is composed of the same kind of rock or soil, so that there will be the same station everywhere; we thus get rid of the peculiar influence of different climates and stations. I will then imagine that there shall be but one organic being in the world, and that shall be a plant. In this we start fair. Its food is to be carbonic acid, water and ammonia, and the saline matters in the soil, which are, by the supposition, everywhere alike. We take one single plant, with no opponents, no helpers, and no rivals; it is to be a "fair field, and no favour". Now, I will ask you to imagine further that it shall be a plant which shall produce every year fifty seeds, which is a very moderate number for a plant to produce; and that, by the action of the winds and currents, these seeds shall be equally and gradually distributed over the whole surface of the land. I want you now to trace out what will occur, and you will observe that I am not talking fallaciously any more than a mathematician does when he expounds his problem. If you show that the conditions of your problem are such as may actually occur in nature and do not transgress any of the known laws of nature in working out your proposition, then you are as safe in the conclusion you arrive at as is the mathematician in arriving at the solution of his problem. In science, the only way of getting rid of the complications with which a subject of this kind is environed, is to work in this deductive method. What will be the result, then? I will suppose that every plant requires one square foot of ground to live upon; and the result will be that, in the course of nine years, the plant will have occupied every single available spot in the whole globe! I have chalked upon the blackboard the figures by which I arrive at the result:—

Plants. Plants
1 x 50 in 1st year = 50
50 x 50 " 2nd " = 2,500
2,500 x 50 " 3rd " = 125,000
125,000 x 50 " 4th " = 6,250,000
6,250,000 x 50 " 5th " = 312,500,000
312,500,000 x 50 " 6th " = 15,625,000,000
15,625,000,000 x 50 " 7th " = 781,250,000,000
781,250,000,000 x 50 " 8th " = 39,062,500,000,000
39,062,500,000,000 x 50 " 9th " = 1,953,125,000,000,000

51,000,000 sq. miles—the dry surface of the earth x 27,878,400—the number of sq. ft. in 1 sq. mile = sq. ft. 1,421,798,400,000,000 being 531,326,600,000,000 square feet less than would be required at the end of the ninth year.

You will see from this that, at the end of the first year the single plant will have produced fifty more of its kind; by the end of the second year these will have increased to 2,500; and so on, in succeeding years, you get beyond even trillions; and I am not at all sure that I could tell you what the proper arithmetical denomination of the total number really is; but, at any rate, you will understand the meaning of all those noughts. Then you see that, at the bottom, I have taken the 51,000,000 of square miles, constituting the surface of the dry land; and as the number of square feet are placed under and subtracted from the number of seeds that would be produced in the ninth year, you can see at once that there would be an immense number more of plants than there would be square feet of ground for their accommodation. This is certainly quite enough to prove my point; that between the eighth and ninth year after being planted the single plant would have stocked the whole available surface of the earth.

This is a thing which is hardly conceivable—it seems hardly imaginable—yet it is so. It is indeed simply the law of Malthus exemplified. Mr. Malthus was a clergyman, who worked out this subject most minutely and truthfully some years ago; he showed quite clearly,—and although he was much abused for his conclusions at the time, they have never yet been disproved and never will be—he showed that in consequence of the increase in the number of organic beings in a geometrical ratio, while the means of existence cannot be made to increase in the same ratio, that there must come a time when the number of organic beings will be in excess of the power of production of nutriment, and that thus some check must arise to the further increase of those organic beings. At the end of the ninth year we have seen that each plant would not be able to get its full square foot of ground, and at the end of another year it would have to share that space with fifty others the produce of the seeds which it would give off.

What, then, takes place? Every plant grows up, flourishes, occupies its square foot of ground, and gives off its fifty seeds; but notice this, that out of this number only one can come to anything; there is thus, as it were, forty-nine chances to one against its growing up; it depends upon the most fortuitous circumstances whether any one of these fifty seeds shall grow up and flourish, or whether it shall die and perish. This is what Mr. Darwin has drawn attention to, and called the "STRUGGLE FOR EXISTENCE"; and I have taken this simple case of a plant because some people imagine that the phrase seems to imply a sort of fight.

I have taken this plant and shown you that this is the result of the ratio of the increase, the necessary result of the arrival of a time coming for every species when exactly as many members must be destroyed as are born; that is the inevitable ultimate result of the rate of production. Now, what is the result of all this? I have said that there are forty-nine struggling against every one; and it amounts to this, that the smallest possible start given to any one seed may give it an advantage which will enable it to get ahead of all the others; anything that will enable any one of these seeds to germinate six hours before any of the others will, other things being alike, enable it to choke them out altogether. I have shown you that there is no particular in which plants will not vary from each other; it is quite possible that one of our imaginary plants may vary in such a character as the thickness of the integument of its seeds; it might happen that one of the plants might produce seeds having a thinner integument, and that would enable the seeds of that plant to germinate a little quicker than those of any of the others, and those seeds would most inevitably extinguish the forty-nine times as many that were struggling with them.

I have put it in this way, but you see the practical result of the process is the same as if some person had nurtured the one and destroyed the other seeds. It does not matter how the variation is produced, so long as it is once allowed to occur. The variation in the plant once fairly started tends to become hereditary and reproduce itself; the seeds would spread themselves in the same way and take part in the struggle with the forty-nine hundred, or forty-nine thousand, with which they might be exposed. Thus, by degrees, this variety, with some slight organic change or modification, must spread itself over the whole surface of the habitable globe, and extirpate or replace the other kinds. That is what is meant by NATURAL SELECTION; that is the kind of argument by which it is perfectly demonstrable that the conditions of existence may play exactly the same part for natural varieties as man does for domesticated varieties. No one doubts at all that particular circumstances may be more favourable for one plant and less so for another, and the moment you admit that, you admit the selective power of nature. Now, although I have been putting a hypothetical case, you must not suppose that I have been reasoning hypothetically. There are plenty of direct experiments which bear out what we may call the theory of natural selection; there is extremely good authority for the statement that if you take the seed of mixed varieties of wheat and sow it, collecting the seed next year and sowing it again, at length you will find that out of all your varieties only two or three have lived, or perhaps even only one. There were one or two varieties which were best fitted to get on, and they have killed out the other kinds in just the same way and with just the same certainty as if you had taken the trouble to remove them. As I have already said, the operation of nature is exactly the same as the artificial operation of man.

But if this be true of that simple case, which I put before you, where there is nothing but the rivalry of one member of a species with others, what must be the operation of selective conditions, when you recollect as a matter of fact, that for every species of animal or plant there are fifty or a hundred species which might all, more or less, be comprehended in the same climate, food, and station;—that every plant has multitudinous animals which prey upon it, and which are its direct opponents; and that these have other animals preying upon them,—that every plant has its indirect helpers in the birds that scatter abroad its seed, and the animals that manure it with their dung;—I say, when these things are considered, it seems impossible that any variation which may arise in a species in nature should not tend in some way or other either to be a little better or worse than the previous stock; if it is a little better it will have an advantage over and tend to extirpate the latter in this crush and struggle; and if it is a little worse it will itself be extirpated.

I know nothing that more appropriately expresses this, than the phrase, "the struggle for existence"; because it brings before your minds, in a vivid sort of way, some of the simplest possible circumstances connected with it. When a struggle is intense there must be some who are sure to be trodden down, crushed, and overpowered by others; and there will be some who just manage to get through only by the help of the slightest accident. I recollect reading an account of the famous retreat of the French troops, under Napoleon, from Moscow. Worn out, tired, and dejected, they at length came to a great river over which there was but one bridge for the passage of the vast army. Disorganised and demoralised as that army was, the struggle must certainly have been a terrible one—every one heeding only himself, and crushing through the ranks and treading down his fellows. The writer of the narrative, who was himself one of those who were fortunate enough to succeed in getting over, and not among the thousands who were left behind or forced into the river, ascribed his escape to the fact that he saw striding onward through the mass a great strong fellow,—one of the French Cuirassiers, who had on a large blue cloak—and he had enough presence of mind to catch and retain a hold of this strong man's cloak. He says, "I caught hold of his cloak, and although he swore at me and cut at and struck me by turns, and at last, when he found he could not shake me off, fell to entreating me to leave go or I should prevent him from escaping, besides not assisting myself, I still kept tight hold of him, and would not quit my grasp until he had at last dragged me through." Here you see was a case of selective saving—if we may so term it—depending for its success on the strength of the cloth of the Cuirassier's cloak. It is the same in nature; every species has its bridge of Beresina; it has to fight its way through and struggle with other species; and when well nigh overpowered, it may be that the smallest chance, something in its colour, perhaps—the minutest circumstance—will turn the scale one way or the other.

Suppose that by a variation of the black race it had produced the white man at any time—you know that the Negroes are said to believe this to have been the case, and to imagine that Cain was the first white man, and that we are his descendants—suppose that this had ever happened, and that the first residence of this human being was on the West Coast of Africa. There is no great structural difference between the white man and the Negro, and yet there is something so singularly different in the constitution of the two, that the malarias of that country, which do not hurt the black at all, cut off and destroy the white. Then you see there would have been a selective operation performed; if the white man had risen in that way, he would have been selected out and removed by means of the malaria. Now there really is a very curious case of selection of this sort among pigs, and it is a case of selection of colour too. In the woods of Florida there are a great many pigs, and it is a very curious thing that they are all black, every one of them. Professor Wyman was there some years ago, and on noticing no pigs but these black ones, he asked some of the people how it was that they had no white pigs, and the reply was that in the woods of Florida there was a root which they called the Paint Root, and that if the white pigs were to eat any of it, it had the effect of making their hoofs crack, and they died, but if the black pigs eat any of it, it did not hurt them at all. Here was a very simple case of natural selection. A skilful breeder could not more carefully develope the black breed of pigs, and weed out all the white pigs, than the Paint Root does.

To show you how remarkably indirect may be such natural selective agencies as I have referred to, I will conclude by noticing a case mentioned by Mr. Darwin, and which is certainly one of the most curious of its kind. It is that of the Humble Bee. It has been noticed that there are a great many more humble bees in the neighbourhood of towns, than out in the open country; and the explanation of the matter is this: the humble bees build nests, in which they store their honey and deposit the larvae and eggs. The field mice are amazingly fond of the honey and larvae; therefore, wherever there are plenty of field mice, as in the country, the humble bees are kept down; but in the neighbourhood of towns, the number of cats which prowl about the fields eat up the field mice, and of course the more mice they eat up the less there are to prey upon the larvae of the bees—the cats are therefore the INDIRECT HELPERS of the bees!* Coming back a step farther we may say that the old maids are also indirect friends of the humble bees, and indirect enemies of the field mice, as they keep the cats which eat up the latter! This is an illustration somewhat beneath the dignity of the subject, perhaps, but it occurs to me in passing, and with it I will conclude this lecture. ([Footnote] *The humble bees, on the other hand, are direct helpers of some plants, such as the heartsease and red clover, which are fertilized by the visits of the bees; and they are indirect helpers of the numerous insects which are more or less completely supported by the heartsease and red clover.)

End of The Conditions of Existence.

[ [!-- H2 anchor --] ]

A CRITICAL EXAMINATION OF THE POSITION OF MR. DARWIN'S WORK, "ON THE ORIGIN OF SPECIES," IN RELATION TO THE COMPLETE THEORY OF THE CAUSES OF THE PHENOMENA OF ORGANIC NATURE.

In the preceding five lectures I have endeavoured to give you an account of those facts, and of those reasonings from facts, which form the data upon which all theories regarding the causes of the phenomena of organic nature must be based. And, although I have had frequent occasion to quote Mr. Darwin—as all persons hereafter, in speaking upon these subjects, will have occasion to quote his famous book on the "Origin of Species,"—you must yet remember that, wherever I have quoted him, it has not been upon theoretical points, or for statements in any way connected with his particular speculations, but on matters of fact, brought forward by himself, or collected by himself, and which appear incidentally in his book. If a man WILL make a book, professing to discuss a single question, an encyclopaedia, I cannot help it.

Now, having had an opportunity of considering in this sort of way the different statements bearing upon all theories whatsoever, I have to lay before you, as fairly as I can, what is Mr. Darwin's view of the matter and what position his theories hold, when judged by the principles which I have previously laid down, as deciding our judgments upon all theories and hypotheses.

I have already stated to you that the inquiry respecting the causes of the phenomena of organic nature resolves itself into two problems—the first being the question of the origination of living or organic beings; and the second being the totally distinct problem of the modification and perpetuation of organic beings when they have already come into existence. The first question Mr. Darwin does not touch; he does not deal with it at all; but he says—given the origin of organic matter—supposing its creation to have already taken place, my object is to show in consequence of what laws and what demonstrable properties of organic matter, and of its environments, such states of organic nature as those with which we are acquainted must have come about. This, you will observe, is a perfectly legitimate proposition; every person has a right to define the limits of the inquiry which he sets before himself; and yet it is a most singular thing that in all the multifarious, and, not unfrequently, ignorant attacks which have been made upon the 'Origin of Species', there is nothing which has been more speciously criticised than this particular limitation. If people have nothing else to urge against the book, they say—"Well, after all, you see, Mr. Darwin's explanation of the 'Origin of Species' is not good for much, because, in the long run, he admits that he does not know how organic matter began to exist. But if you admit any special creation for the first particle of organic matter you may just as well admit it for all the rest; five hundred or five thousand distinct creations are just as intelligible, and just as little difficult to understand, as one." The answer to these cavils is two-fold. In the first place, all human inquiry must stop somewhere; all our knowledge and all our investigation cannot take us beyond the limits set by the finite and restricted character of our faculties, or destroy the endless unknown, which accompanies, like its shadow, the endless procession of phenomena. So far as I can venture to offer an opinion on such a matter, the purpose of our being in existence, the highest object that human beings can set before themselves, is not the pursuit of any such chimera as the annihilation of the unknown; but it is simply the unwearied endeavour to remove its boundaries a little further from our little sphere of action.

I wonder if any historian would for a moment admit the objection, that it is preposterous to trouble ourselves about the history of the Roman Empire, because we do not know anything positive about the origin and first building of the city of Rome! Would it be a fair objection to urge, respecting the sublime discoveries of a Newton, or a Kepler, those great philosophers, whose discoveries have been of the profoundest benefit and service to all men,—to say to them—"After all that you have told us as to how the planets revolve, and how they are maintained in their orbits, you cannot tell us what is the cause of the origin of the sun, moon, and stars. So what is the use of what you have done?" Yet these objections would not be one whit more preposterous than the objections which have been made to the 'Origin of Species.' Mr. Darwin, then, had a perfect right to limit his inquiry as he pleased, and the only question for us—the inquiry being so limited—is to ascertain whether the method of his inquiry is sound or unsound; whether he has obeyed the canons which must guide and govern all investigation, or whether he has broken them; and it was because our inquiry this evening is essentially limited to that question, that I spent a good deal of time in a former lecture (which, perhaps, some of you thought might have been better employed), in endeavouring to illustrate the method and nature of scientific inquiry in general. We shall now have to put in practice the principles that I then laid down.

I stated to you in substance, if not in words, that wherever there are complex masses of phenomena to be inquired into, whether they be phenomena of the affairs of daily life, or whether they belong to the more abstruse and difficult problems laid before the philosopher, our course of proceeding in unravelling that complex chain of phenomena with a view to get at its cause, is always the same; in all cases we must invent an hypothesis; we must place before ourselves some more or less likely supposition respecting that cause; and then, having assumed an hypothesis, having supposed cause for the phenomena in question, we must endeavour, on the one hand, to demonstrate our hypothesis, or, on the other, to upset and reject it altogether, by testing it in three ways. We must, in the first place, be prepared to prove that the supposed causes of the phenomena exist in nature; that they are what the logicians call 'vera causae'—true causes;—in the next place, we should be prepared to show that the assumed causes of the phenomena are competent to produce such phenomena as those which we wish to explain by them; and in the last place, we ought to be able to show that no other known causes are competent to produce those phenomena. If we can succeed in satisfying these three conditions we shall have demonstrated our hypothesis; or rather I ought to say we shall have proved it as far as certainty is possible for us; for, after all, there is no one of our surest convictions which may not be upset, or at any rate modified by a further accession of knowledge. It was because it satisfied these conditions that we accepted the hypothesis as to the disappearance of the tea-pot and spoons in the case I supposed in a previous lecture; we found that our hypothesis on that subject was tenable and valid, because the supposed cause existed in nature, because it was competent to account for the phenomena, and because no other known cause was competent to account for them; and it is upon similar grounds that any hypothesis you choose to name is accepted in science as tenable and valid.

What is Mr. Darwin's hypothesis? As I apprehend it—for I have put it into a shape more convenient for common purposes than I could find 'verbatim' in his book—as I apprehend it, I say, it is, that all the phenomena of organic nature, past and present, result from, or are caused by, the inter-action of those properties of organic matter, which we have called ATAVISM and VARIABILITY, with the CONDITIONS OF EXISTENCE; or, in other words,—given the existence of organic matter, its tendency to transmit its properties, and its tendency occasionally to vary; and, lastly, given the conditions of existence by which organic matter is surrounded—that these put together are the causes of the Present and of the Past conditions of ORGANIC NATURE.

Such is the hypothesis as I understand it. Now let us see how it will stand the various tests which I laid down just now. In the first place, do these supposed causes of the phenomena exist in nature? Is it the fact that in nature these properties of organic matter—atavism and variability—and those phenomena which we have called the conditions of existence,—is it true that they exist? Well, of course, if they do not exist, all that I have told you in the last three or four lectures must be incorrect, because I have been attempting to prove that they do exist, and I take it that there is abundant evidence that they do exist; so far, therefore, the hypothesis does not break down.

But in the next place comes a much more difficult inquiry:—Are the causes indicated competent to give rise to the phenomena of organic nature? I suspect that this is indubitable to a certain extent. It is demonstrable, I think, as I have endeavoured to show you, that they are perfectly competent to give rise to all the phenomena which are exhibited by RACES in nature. Furthermore, I believe that they are quite competent to account for all that we may call purely structural phenomena which are exhibited by SPECIES in nature. On that point also I have already enlarged somewhat. Again, I think that the causes assumed are competent to account for most of the physiological characteristics of species, and I not only think that they are competent to account for them, but I think that they account for many things which otherwise remain wholly unaccountable and inexplicable, and I may say incomprehensible. For a full exposition of the grounds on which this conviction is based, I must refer you to Mr. Darwin's work; all that I can do now is to illustrate what I have said by two or three cases taken almost at random.

I drew your attention, on a previous evening, to the facts which are embodied in our systems of Classification, which are the results of the examination and comparison of the different members of the animal kingdom one with another. I mentioned that the whole of the animal kingdom is divisible into five sub-kingdoms; that each of these sub-kingdoms is again divisible into provinces; that each province may be divided into classes, and the classes into the successively smaller groups, orders, families, genera, and species.

Now, in each of these groups, the resemblance in structure among the members of the group is closer in proportion as the group is smaller. Thus, a man and a worm are members of the animal kingdom in virtue of certain apparently slight though really fundamental resemblances which they present. But a man and a fish are members of the same sub-kingdom 'Vertebrata', because they are much more like one another than either of them is to a worm, or a snail, or any member of the other sub-kingdoms. For similar reasons men and horses are arranged as members of the same Class, 'Mammalia'; men and apes as members of the same Order, 'Primates'; and if there were any animals more like men than they were like any of the apes, and yet different from men in important and constant particulars of their organization, we should rank them as members of the same Family, or of the same Genus, but as of distinct Species.

That it is possible to arrange all the varied forms of animals into groups, having this sort of singular subordination one to the other, is a very remarkable circumstance; but, as Mr. Darwin remarks, this is a result which is quite to be expected, if the principles which he lays down be correct. Take the case of the races which are known to be produced by the operation of atavism and variability, and the conditions of existence which check and modify these tendencies. Take the case of the pigeons that I brought before you; there it was shown that they might be all classed as belonging to some one of five principal divisions, and that within these divisions other subordinate groups might be formed. The members of these groups are related to one another in just the same way as the genera of a family, and the groups themselves as the families of an order, or the orders of a class; while all have the same sort of structural relations with the wild rock-pigeon, as the members of any great natural group have with a real or imaginary typical form. Now, we know that all varieties of pigeons of every kind have arisen by a process of selective breeding from a common stock, the rock-pigeon; hence, you see, that if all species of animals have proceeded from some common stock, the general character of their structural relations, and of our systems of classification, which express those relations, would be just what we find them to be. In other words, the hypothetical cause is, so far, competent to produce effects similar to those of the real cause.

Take, again, another set of very remarkable facts,—the existence of what are called rudimentary organs, organs for which we can find no obvious use, in the particular animal economy in which they are found, and yet which are there.

Such are the splint-like bones in the leg of the horse, which I here show you, and which correspond with bones which belong to certain toes and fingers in the human hand and foot. In the horse you see they are quite rudimentary, and bear neither toes nor fingers; so that the horse has only one "finger" in his fore-foot and one "toe" in his hind foot. But it is a very curious thing that the animals closely allied to the horse show more toes than he; as the rhinoceros, for instance: he has these extra toes well formed, and anatomical facts show very clearly that he is very closely related to the horse indeed. So we may say that animals, in an anatomical sense nearly related to the horse, have those parts which are rudimentary in him, fully developed.

Again, the sheep and the cow have no cutting-teeth, but only a hard pad in the upper jaw. That is the common characteristic of ruminants in general. But the calf has in its upper jaw some rudiments of teeth which never are developed, and never play the part of teeth at all. Well, if you go back in time, you find some of the older, now extinct, allies of the ruminants have well-developed teeth in their upper jaws; and at the present day the pig (which is in structure closely connected with ruminants) has well-developed teeth in its upper jaw; so that here is another instance of organs well-developed and very useful, in one animal, represented by rudimentary organs, for which we can discover no purpose whatsoever, in another closely allied animal. The whalebone whale, again, has horny "whalebone" plates in its mouth, and no teeth; but the young foetal whale, before it is born, has teeth in its jaws; they, however, are never used, and they never come to anything. But other members of the group to which the whale belongs have well-developed teeth in both jaws.

Upon any hypothesis of special creation, facts of this kind appear to me to be entirely unaccountable and inexplicable, but they cease to be so if you accept Mr. Darwin's hypothesis, and see reason for believing that the whalebone whale and the whale with teeth in its mouth both sprang from a whale that had teeth, and that the teeth of the foetal whale are merely remnants—recollections, if we may so say—of the extinct whale. So in the case of the horse and the rhinoceros: suppose that both have descended by modification from some earlier form which had the normal number of toes, and the persistence of the rudimentary bones which no longer support toes in the horse becomes comprehensible.

In the language that we speak in England, and in the language of the Greeks, there are identical verbal roots, or elements entering into the composition of words. That fact remains unintelligible so long as we suppose English and Greek to be independently created tongues; but when it is shown that both languages are descended from one original, the Sanscrit, we give an explanation of that resemblance. In the same way the existence of identical structural roots, if I may so term them, entering into the composition of widely different animals, is striking evidence in favour of the descent of those animals from a common original.

To turn to another kind of illustration:—If you regard the whole series of stratified rocks—that enormous thickness of sixty or seventy thousand feet that I have mentioned before, constituting the only record we have of a most prodigious lapse of time, that time being, in all probability, but a fraction of that of which we have no record;—if you observe in these successive strata of rocks successive groups of animals arising and dying out, a constant succession, giving you the same kind of impression, as you travel from one group of strata to another, as you would have in travelling from one country to another;—when you find this constant succession of forms, their traces obliterated except to the man of science,—when you look at this wonderful history, and ask what it means, it is only a paltering with words if you are offered the reply,—'They were so created.'

But if, on the other hand, you look on all forms of organized beings as the results of the gradual modification of a primitive type, the facts receive a meaning, and you see that these older conditions are the necessary predecessors of the present. Viewed in this light the facts of palaeontology receive a meaning—upon any other hypothesis, I am unable to see, in the slightest degree, what knowledge or signification we are to draw out of them. Again, note as bearing upon the same point, the singular likeness which obtains between the successive Faunae and Florae, whose remains are preserved on the rocks: you never find any great and enormous difference between the immediately successive Faunae and Florae, unless you have reason to believe there has also been a great lapse of time or a great change of conditions. The animals, for instance, of the newest tertiary rocks, in any part of the world, are always, and without exception, found to be closely allied with those which now live in that part of the world. For example, in Europe, Asia, and Africa, the large mammals are at present rhinoceroses, hippopotamuses, elephants, lions, tigers, oxen, horses, etc.; and if you examine the newest tertiary deposits, which contain the animals and plants which immediately preceded those which now exist in the same country, you do not find gigantic specimens of ant-eaters and kangaroos, but you find rhinoceroses, elephants, lions, tigers, etc.,—of different species to those now living,—but still their close allies. If you turn to South America, where, at the present day, we have great sloths and armadilloes and creatures of that kind, what do you find in the newest tertiaries? You find the great sloth-like creature, the 'Megatherium', and the great armadillo, the 'Glyptodon', and so on. And if you go to Australia you find the same law holds good, namely, that that condition of organic nature which has preceded the one which now exists, presents differences perhaps of species, and of genera, but that the great types of organic structure are the same as those which now flourish.

What meaning has this fact upon any other hypothesis or supposition than one of successive modification? But if the population of the world, in any age, is the result of the gradual modification of the forms which peopled it in the preceding age,—if that has been the case, it is intelligible enough; because we may expect that the creature that results from the modification of an elephantine mammal shall be something like an elephant, and the creature which is produced by the modification of an armadillo-like mammal shall be like an armadillo. Upon that supposition, I say, the facts are intelligible; upon any other, that I am aware of, they are not.

So far, the facts of palaeontology are consistent with almost any form of the doctrine of progressive modification; they would not be absolutely inconsistent with the wild speculations of De Maillet, or with the less objectionable hypothesis of Lamarck. But Mr. Darwin's views have one peculiar merit; and that is, that they are perfectly consistent with an array of facts which are utterly inconsistent with and fatal to, any other hypothesis of progressive modification which has yet been advanced. It is one remarkable peculiarity of Mr. Darwin's hypothesis that it involves no necessary progression or incessant modification, and that it is perfectly consistent with the persistence for any length of time of a given primitive stock, contemporaneously with its modifications. To return to the case of the domestic breeds of pigeons, for example; you have the Dove-cot pigeon, which closely resembles the Rock pigeon, from which they all started, existing at the same time with the others. And if species are developed in the same way in nature, a primitive stock and its modifications may, occasionally, all find the conditions fitted for their existence; and though they come into competition, to a certain extent, with one another, the derivative species may not necessarily extirpate the primitive one, or 'vice versa'.

Now palaeontology shows us many facts which are perfectly harmonious with these observed effects of the process by which Mr. Darwin supposes species to have originated, but which appear to me to be totally inconsistent with any other hypothesis which has been proposed. There are some groups of animals and plants, in the fossil world, which have been said to belong to "persistent types," because they have persisted, with very little change indeed, through a very great range of time, while everything about them has changed largely. There are families of fishes whose type of construction has persisted all the way from the carboniferous rock right up to the cretaceous; and others which have lasted through almost the whole range of the secondary rocks, and from the lias to the older tertiaries. It is something stupendous this—to consider a genus lasting without essential modifications through all this enormous lapse of time while almost everything else was changed and modified.

Thus I have no doubt that Mr. Darwin's hypothesis will be found competent to explain the majority of the phenomena exhibited by species in nature; but in an earlier lecture I spoke cautiously with respect to its power of explaining all the physiological peculiarities of species.

There is, in fact, one set of these peculiarities which the theory of selective modification, as it stands at present, is not wholly competent to explain, and that is the group of phenomena which I mentioned to you under the name of Hybridism, and which I explained to consist in the sterility of the offspring of certain species when crossed one with another. It matters not one whit whether this sterility is universal, or whether it exists only in a single case. Every hypothesis is bound to explain, or, at any rate, not be inconsistent with, the whole of the facts which it professes to account for; and if there is a single one of these facts which can be shown to be inconsistent with (I do not merely mean inexplicable by, but contrary to) the hypothesis, the hypothesis falls to the ground,—it is worth nothing. One fact with which it is positively inconsistent is worth as much, and as powerful in negativing the hypothesis, as five hundred. If I am right in thus defining the obligations of an hypothesis, Mr. Darwin, in order to place his views beyond the reach of all possible assault, ought to be able to demonstrate the possibility of developing from a particular stock by selective breeding, two forms, which should either be unable to cross one with another, or whose cross-bred offspring should be infertile with one another.

For, you see, if you have not done that you have not strictly fulfilled all the conditions of the problem; you have not shown that you can produce, by the cause assumed, all the phenomena which you have in nature. Here are the phenomena of Hybridism staring you in the face, and you cannot say, 'I can, by selective modification, produce these same results.' Now, it is admitted on all hands that, at present, so far as experiments have gone, it has not been found possible to produce this complete physiological divergence by selective breeding. I stated this very clearly before, and I now refer to the point, because, if it could be proved, not only that this HAS not been done, but that it CANNOT be done; if it could be demonstrated that it is impossible to breed selectively, from any stock, a form which shall not breed with another, produced from the same stock; and if we were shown that this must be the necessary and inevitable results of all experiments, I hold that Mr. Darwin's hypothesis would be utterly shattered.

But has this been done? or what is really the state of the case? It is simply that, so far as we have gone yet with our breeding, we have not produced from a common stock two breeds which are not more or less fertile with one another.

I do not know that there is a single fact which would justify any one in saying that any degree of sterility has been observed between breeds absolutely known to have been produced by selective breeding from a common stock. On the other hand, I do not know that there is a single fact which can justify any one in asserting that such sterility cannot be produced by proper experimentation. For my own part, I see every reason to believe that it may, and will be so produced. For, as Mr. Darwin has very properly urged, when we consider the phenomena of sterility, we find they are most capricious; we do not know what it is that the sterility depends on. There are some animals which will not breed in captivity; whether it arises from the simple fact of their being shut up and deprived of their liberty, or not, we do not know, but they certainly will not breed. What an astounding thing this is, to find one of the most important of all functions annihilated by mere imprisonment!

So, again, there are cases known of animals which have been thought by naturalists to be undoubted species, which have yielded perfectly fertile hybrids; while there are other species which present what everybody believes to be varieties* which are more or less infertile with one another. ([Footnote] *And as I conceive with very good reason; but if any objector urges that we cannot prove that they have been produced by artificial or natural selection, the objection must be admitted—ultrasceptical as it is. But in science, scepticism is a duty.) There are other cases which are truly extraordinary; there is one, for example, which has been carefully examined,—of two kinds of sea-weed, of which the male element of the one, which we may call A, fertilizes the female element of the other, B; while the male element of B will not fertilize the female element of A; so that, while the former experiment seems to show us that they are 'varieties', the latter leads to the conviction that they are 'species'.

When we see how capricious and uncertain this sterility is, how unknown the conditions on which it depends, I say that we have no right to affirm that those conditions will not be better understood by and by, and we have no ground for supposing that we may not be able to experiment so as to obtain that crucial result which I mentioned just now. So that though Mr. Darwin's hypothesis does not completely extricate us from this difficulty at present, we have not the least right to say it will not do so.

There is a wide gulf between the thing you cannot explain and the thing that upsets you altogether. There is hardly any hypothesis in this world which has not some fact in connection with it which has not been explained, but that is a very different affair to a fact that entirely opposes your hypothesis; in this case all you can say is, that your hypothesis is in the same position as a good many others.

Now, as to the third test, that there are no other causes competent to explain the phenomena, I explained to you that one should be able to say of an hypothesis, that no other known causes than those supposed by it are competent to give rise to the phenomena. Here, I think, Mr. Darwin's view is pretty strong. I really believe that the alternative is either Darwinism or nothing, for I do not know of any rational conception or theory of the organic universe which has any scientific position at all beside Mr. Darwin's. I do not know of any proposition that has been put before us with the intention of explaining the phenomena of organic nature, which has in its favour a thousandth part of the evidence which may be adduced in favour of Mr. Darwin's views. Whatever may be the objections to his views, certainly all others are absolutely out of court.

Take the Lamarckian hypothesis, for example. Lamarck was a great naturalist, and to a certain extent went the right way to work; he argued from what was undoubtedly a true cause of some of the phenomena of organic nature. He said it is a matter of experience that an animal may be modified more or less in consequence of its desires and consequent actions. Thus, if a man exercise himself as a blacksmith, his arms will become strong and muscular; such organic modification is a result of this particular action and exercise. Lamarck thought that by a very simple supposition based on this truth he could explain the origin of the various animal species: he said, for example, that the short-legged birds which live on fish had been converted into the long-legged waders by desiring to get the fish without wetting their bodies, and so stretching their legs more and more through successive generations. If Lamarck could have shown experimentally, that even races of animals could be produced in this way, there might have been some ground for his speculations. But he could show nothing of the kind, and his hypothesis has pretty well dropped into oblivion, as it deserved to do. I said in an earlier lecture that there are hypotheses and hypotheses, and when people tell you that Mr. Darwin's strongly-based hypothesis is nothing but a mere modification of Lamarck's, you will know what to think of their capacity for forming a judgment on this subject.

But you must recollect that when I say I think it is either Mr. Darwin's hypothesis or nothing; that either we must take his view, or look upon the whole of organic nature as an enigma, the meaning of which is wholly hidden from us; you must understand that I mean that I accept it provisionally, in exactly the same way as I accept any other hypothesis. Men of science do not pledge themselves to creeds; they are bound by articles of no sort; there is not a single belief that it is not a bounden duty with them to hold with a light hand and to part with it cheerfully, the moment it is really proved to be contrary to any fact, great or small. And if, in course of time I see good reasons for such a proceeding, I shall have no hesitation in coming before you, and pointing out any change in my opinion without finding the slightest occasion to blush for so doing. So I say that we accept this view as we accept any other, so long as it will help us, and we feel bound to retain it only so long as it will serve our great purpose—the improvement of Man's estate and the widening of his knowledge. The moment this, or any other conception, ceases to be useful for these purposes, away with it to the four winds; we care not what becomes of it!

But to say truth, although it has been my business to attend closely to the controversies roused by the publication of Mr. Darwin's book, I think that not one of the enormous mass of objections and obstacles which have been raised is of any very great value, except that sterility case which I brought before you just now. All the rest are misunderstandings of some sort, arising either from prejudice, or want of knowledge, or still more from want of patience and care in reading the work.

For you must recollect that it is not a book to be read with as much ease as its pleasant style may lead you to imagine. You spin through it as if it were a novel the first time you read it, and think you know all about it; the second time you read it you think you know rather less about it; and the third time, you are amazed to find how little you have really apprehended its vast scope and objects. I can positively say that I never take it up without finding in it some new view, or light, or suggestion that I have not noticed before. That is the best characteristic of a thorough and profound book; and I believe this feature of the 'Origin of Species' explains why so many persons have ventured to pass judgment and criticisms upon it which are by no means worth the paper they are written on.

Before concluding these lectures there is one point to which I must advert,—though, as Mr. Darwin has said nothing about man in his book, it concerns myself rather than him;—for I have strongly maintained on sundry occasions that if Mr. Darwin's views are sound, they apply as much to man as to the lower mammals, seeing that it is perfectly demonstrable that the structural differences which separate man from the apes are not greater than those which separate some apes from others. There cannot be the slightest doubt in the world that the argument which applies to the improvement of the horse from an earlier stock, or of ape from ape, applies to the improvement of man from some simpler and lower stock than man. There is not a single faculty—functional or structural, moral, intellectual, or instinctive,—there is no faculty whatever that is not capable of improvement; there is no faculty whatsoever which does not depend upon structure, and as structure tends to vary, it is capable of being improved.

Well, I have taken a good deal of pains at various times to prove this, and I have endeavoured to meet the objections of those who maintain, that the structural differences between man and the lower animals are of so vast a character and enormous extent, that even if Mr. Darwin's views are correct, you cannot imagine this particular modification to take place. It is, in fact, easy matter to prove that, so far as structure is concerned, man differs to no greater extent from the animals which are immediately below him than these do from other members of the same order. Upon the other hand, there is no one who estimates more highly than I do the dignity of human nature, and the width of the gulf in intellectual and moral matters, which lies between man and the whole of the lower creation.

But I find this very argument brought forward vehemently by some. "You say that man has proceeded from a modification of some lower animal, and you take pains to prove that the structural differences which are said to exist in his brain do not exist at all, and you teach that all functions, intellectual, moral, and others, are the expression or the result, in the long run, of structures, and of the molecular forces which they exert." It is quite true that I do so.

"Well, but," I am told at once, somewhat triumphantly, "you say in the same breath that there is a great moral and intellectual chasm between man and the lower animals. How is this possible when you declare that moral and intellectual characteristics depend on structure, and yet tell us that there is no such gulf between the structure of man and that of the lower animals?"

I think that objection is based upon a misconception of the real relations which exist between structure and function, between mechanism and work. Function is the expression of molecular forces and arrangements no doubt; but, does it follow from this, that variation in function so depends upon variation in structure that the former is always exactly proportioned to the latter? If there is no such relation, if the variation in function which follows on a variation in structure, may be enormously greater than the variation of the structure, then, you see, the objection falls to the ground.

Take a couple of watches—made by the same maker, and as completely alike as possible; set them upon the table, and the function of each—which is its rate of going—will be performed in the same manner, and you shall be able to distinguish no difference between them; but let me take a pair of pincers, and if my hand is steady enough to do it, let me just lightly crush together the bearings of the balance-wheel, or force to a slightly different angle the teeth of the escapement of one of them, and of course you know the immediate result will be that the watch, so treated, from that moment will cease to go. But what proportion is there between the structural alteration and the functional result? Is it not perfectly obvious that the alteration is of the minutest kind, yet that slight as it is, it has produced an infinite difference in the performance of the functions of these two instruments?

Well, now, apply that to the present question. What is it that constitutes and makes man what he is? What is it but his power of language—that language giving him the means of recording his experience—making every generation somewhat wiser than its predecessor,—more in accordance with the established order of the universe?

What is it but this power of speech, of recording experience, which enables men to be men—looking before and after and, in some dim sense, understanding the working of this wondrous universe—and which distinguishes man from the whole of the brute world? I say that this functional difference is vast, unfathomable, and truly infinite in its consequences; and I say at the same time, that it may depend upon structural differences which shall be absolutely inappreciable to us with our present means of investigation. What is this very speech that we are talking about? I am speaking to you at this moment, but if you were to alter, in the minutest degree, the proportion of the nervous forces now active in the two nerves which supply the muscles of my glottis, I should become suddenly dumb. The voice is produced only so long as the vocal chords are parallel; and these are parallel only so long as certain muscles contract with exact equality; and that again depends on the equality of action of those two nerves I spoke of. So that a change of the minutest kind in the structure of one of these nerves, or in the structure of the part in which it originates, or of the supply of blood to that part, or of one of the muscles to which it is distributed, might render all of us dumb. But a race of dumb men, deprived of all communication with those who could speak, would be little indeed removed from the brutes. And the moral and intellectual difference between them and ourselves would be practically infinite, though the naturalist should not be able to find a single shadow of even specific structural difference.

But let me dismiss this question now, and, in conclusion, let me say that you may go away with it as my mature conviction, that Mr. Darwin's work is the greatest contribution which has been made to biological science since the publication of the 'Regne Animal' of Cuvier, and since that of the 'History of Development' of Von Baer. I believe that if you strip it of its theoretical part it still remains one of the greatest encyclopaedias of biological doctrine that any one man ever brought forth; and I believe that, if you take it as the embodiment of an hypothesis, it is destined to be the guide of biological and psychological speculation for the next three or four generations.

End of A Critical Examination of "On The Origin of Species".

[ [!-- H2 anchor --] ]